CN106417375A - 一种掺杂稀土铈的铜锌复合氧化物及其制备方法和应用 - Google Patents

一种掺杂稀土铈的铜锌复合氧化物及其制备方法和应用 Download PDF

Info

Publication number
CN106417375A
CN106417375A CN201610843143.8A CN201610843143A CN106417375A CN 106417375 A CN106417375 A CN 106417375A CN 201610843143 A CN201610843143 A CN 201610843143A CN 106417375 A CN106417375 A CN 106417375A
Authority
CN
China
Prior art keywords
composite oxide
zno
rare earth
copper
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610843143.8A
Other languages
English (en)
Inventor
丁燕
杜熠
梁金生
张红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201610843143.8A priority Critical patent/CN106417375A/zh
Publication of CN106417375A publication Critical patent/CN106417375A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits

Abstract

本发明为一种掺杂稀土铈的铜锌复合氧化物及其制备方法和应用,该复合氧化物为球形Ce‑CuO‑ZnO颗粒,颗粒尺寸为30~50 nm,晶体结构为纤锌矿晶型,禁带宽度值为2.68~3.05 eV;各成分摩尔百分含量为:CuO:1.00~9.00%;Ce:0.05~0.20%;ZnO:90.80~98.95%。本发明降低了ZnO的禁带宽度,所需激发能量降低,此外其还具有极好的耐热性能,制备工艺简单,制作成本低廉,抑菌率在重复使用六次之后仍可达92%以上,抗菌耐久性良好。

Description

一种掺杂稀土铈的铜锌复合氧化物及其制备方法和应用
技术领域
本发明属于无机纳米抗菌剂领域,具体涉及一种掺杂稀土铈的铜锌复合氧化物及其制备方法和应用。
背景技术
抗菌材料可以有效地避免或降低细菌的交叉感染以及疾病的蔓延和传播,其所具备的抗菌和杀菌作用主要是基材中添加了抗菌剂或在其基材表面涂覆了抗菌剂的作用。所以抗菌材料抗菌效果的好坏仅取决于抗菌剂抗菌性能的优劣。
目前广泛使用的抗菌剂有:天然抗菌剂、有机抗菌剂和无机抗菌剂等。天然抗菌剂使用寿命短、易分解;有机抗菌剂持久性差,长期使用危害环境和人类健康。而无机抗菌剂抗菌性能具有广谱、安全性,但是其制备技术复杂,成本较高。无机抗菌材料主要是利用Ag+、Cu2+、Zn2+等无机重金属离子或无机氧化物TiO2、ZnO等来实现材料的抗菌功能,其按照抗菌机理可分为两大类:(1)金属型无机抗菌剂,是通过物理吸附、离子交换等方式将金属离子固定于无机载体(如沸石、不溶性磷酸盐、活性炭)上制成的无机金属离子抗菌剂;(2)光催化型无机抗菌剂,主要指的是能被大于材料禁带宽度能量的光子激活的一类半导体氧化物,常见的有TiO2、ZrO2、V2O3、ZnO、CdS、SeO2等,光催化剂有Pb、Pt、Au等金属离子。
氧化锌(ZnO)是一种广泛应用于抗菌剂制备以及在有机物光催化领域的极具应用和开发价值的半导体材料,它只可在紫外光照射下受到激发,因而使其应用领域受到了限制。国内外诸多学者在ZnO的改性研究中,Yayapao O等人将Ce负载在ZnO纳米粒子上,结果表明Ce负载量为3%的ZnO对亚甲基蓝(MB)的降解效率为98%,是纯ZnO降解效率(49.81%)的1.97倍(Yayapao O,ThongtemS,Phuruangrat A,et al.Sonochemical synthessphotocatalysis and photonic properties of 3%Ce-doped ZnO nanoneedles[J].Ceramics International.2013(39):S563~S568);Liu Z以金属铜作为Cu2+源,氨作为配位剂、空气作为氧化剂,通过协调氧化均匀共沉淀法制备了CuO/ZnO复合材料,在复合材料对甲基橙(MO)的降解实验中发现,降解率由51.9%提高到88.2%(Liu Z L,Deng J C,DengJ J,et al.Fabrication and photocatalysis of CuO/ZnO nanocom posites via a newmethod[J].Materials Science and Engineering B.2008,150:99~104);Chang Y制备的ZnO/SnO2复合半导体对亚甲蓝的光催化效率提高到了96%(Chang Y J,Lin CC.Photocatalytic decolorization of methylene blue in aqueous solutions usingcoupled ZnO/SnO2photocatalysts[J].Powder Technology.2013,246:137~143)。目前对ZnO进行离子掺杂或半导体复合改性是拓宽ZnO光谱响应范围的有效途径。
专利CN102078814A将铜盐、锌盐、锆盐的混合水溶液与碱的水溶液分别滴加到魔芋葡甘聚糖溶液中,滴加过程中控制溶液pH值为5~10,得到沉淀的混合溶液经数次洗涤后焙烧,最终得到铜锌锆复合氧化物;专利CN103495420A将铜粉与锌粉混合后制得金属混合粉,经研磨得到Zn-Cu合金粉,再加入矿化剂反应得到ZnO-CuO复合金属氧化物粉体,将其洗涤过滤后得到ZnO-CuO复合金属氧化物粉体。
发明内容
本发明的目的为针对当前技术的不足,提供一种掺杂稀土铈的铜锌复合氧化物的制备方法。该方法(1)以铜、铈离子共掺杂制备Ce-CuO-ZnO,使其禁带宽度低于ZnO的禁带宽度,从而拓宽其光谱响应范围,大肠杆菌抑菌率达到99.32%;(2)提供Ce-CuO-ZnO的最佳制备工艺是以柠檬酸作为络合剂、硝酸盐作为金属离子来源,采用超声波辅助自蔓延溶胶-凝胶法制备,制备得到的Ce-CuO-ZnO颗粒尺寸为30~50nm,且完好保持了ZnO的晶形结构,并且降低了ZnO的禁带宽度,所需激发能量降低,此外其还具有极好的耐热性能,制备工艺简单,制作成本低廉,抑菌率在重复使用六次之后仍可达92%以上,抗菌耐久性良好。
本发明的技术方案是:
一种掺杂稀土铈的铜锌复合氧化物,该复合氧化物为球形Ce-CuO-ZnO颗粒,颗粒尺寸为30~50nm,晶体结构为纤锌矿晶型,禁带宽度值为2.68~3.05eV;各成分摩尔百分含量为:CuO:1.00~9.00%;Ce:0.05~0.20%;ZnO:90.80~98.95%。
所述的掺杂稀土铈的铜锌复合氧化物的制备方法,包括如下步骤:
(1)按照所述的球形Ce-CuO-ZnO的组成配比,称取硝酸锌、硝酸铜及硝酸铈;配制水和乙醇的混合溶液作为溶剂;以硝酸锌、硝酸铜及硝酸铈的摩尔量之和作为金属总摩尔量,摩尔比金属总摩尔量与柠檬酸=1∶1.18~1.23,称取柠檬酸;
(2)将硝酸锌、硝酸铜、硝酸铈和柠檬酸加入到溶剂中,室温下超声分散20min,得到溶胶;所述的硝酸盐在溶剂中的浓度为0.5~1mol/L;
(3)在80℃水浴中,将溶胶在磁力搅拌下进行凝聚,得到凝胶,室温下陈化10h,再放入烘箱中,80℃下脱水干燥、研磨,得到前驱体粉末;
(4)将前驱体粉末在400~550℃下进行热处理,得到掺杂稀土铈的铜锌复合氧化物。
步骤(1)所述的溶剂为水与乙醇组成的混合溶液,其中体积比水∶乙醇=5~1∶1~2。
所述的掺杂稀土铈的铜锌复合氧化物的应用,可应用于工业循环冷却水领域杀菌抑菌剂。
本发明其有益效果为
本发明是在ZnO中掺杂铜和稀土铈,采用超声波辅助自蔓延溶胶-凝胶法制备掺杂稀土铈的铜锌复合氧化物(Ce-CuO-ZnO)。该制备方法利用超声的空化效应实现介观尺度超微细均匀混合,能够有效防止颗粒团聚。同时将溶胶-凝胶过程与自蔓延燃烧相结合,利用硝酸盐与柠檬酸发生氧化还原反应,引起自蔓延燃烧,燃烧向四周推进直到干凝胶粉末燃烧完全,得到的纳米粒子夹杂在未分解完全的有机物中,进一步热处理得到颗粒尺寸为30~50nm的无团聚、高比表面积Ce-CuO-ZnO,其晶型结构为纤锌矿型。通过共掺杂制备Ce-CuO-ZnO,随着Ce-CuO-ZnO中铜的百分含量的不同,其固体物理学参量的禁带宽度值为2.68~3.05eV,大大低于ZnO的禁隙能值(3.37eV),因而使得Ce-CuO-ZnO的光谱响应范围大于ZnO的光谱响应范围。以大肠杆菌为作用对象,其抗菌率最高可达到96.18%,并且经过6次抗菌浸泡实验后其抗菌率依然维持在92%以上,具有良好的抗菌耐久性。
附图说明
为了更清楚的阐述本发明的目的、技术方案和特点,下面结合附图对本发明作进一步的详细描述。
图1为实施例2中的铜锌氧化物(CuO-ZnO)与Ce-CuO-ZnO抑制大肠杆菌效果对比照片,其中,图1(a)为掺杂5.00mol%Cu的CuO-ZnO抑制大肠杆菌效果照片;图1(b)为掺杂5.00mol%Cu与0.10mol%Ce的Ce-CuO-ZnO的抑制大肠杆菌效果照片;
图2为实施例1中得到的Ce-CuO-ZnO不同循环次数抑制大肠杆菌抑菌率曲线
图3为实施例3中得到的掺杂0.10mol%Ce、不同Cu掺杂量的Ce-CuO-ZnO与未掺杂铜的含0.10mol%Ce的Ce-ZnO的XRD谱图。
具体实施方式
以下结合具体实施例对本发明进行进一步的说明。
实施例1
称取0.005mol硝酸铜(Cu(NO3)2,分子量:187.56),0.0001mol硝酸铈(Ce(NO3)3·6H2O,分子量:434.12),0.0949mol硝酸锌(Zn(NO3)2·6H2O,分子量:297.49)以及0.12mol柠檬酸(C6H8O7,分子量:192.14);配置水∶乙醇为1∶1的混合溶液200ml,将此混合溶液作为溶剂,将硝酸锌、硝酸铜、硝酸铈和柠檬酸加入到溶剂中,室温下超声分散20min,得到稳定的均匀透明的溶胶;在80℃水浴中,将溶胶在磁力搅拌下进行凝聚,得到凝胶,室温下陈化10h,再放入烘箱中,80℃下脱水干燥、研磨,得到前驱体粉末;将前驱体粉末在500℃下进行热处理,得到掺杂稀土铈,含5.00mol%Cu和0.10mol%Ce的Ce-CuO-ZnO。
所得铜锌复合氧化物Ce-CuO-ZnO,其晶体结构为纤锌矿型,禁带宽度为2.74eV,颗粒尺寸为30~35nm。
为了研究Ce-CuO-ZnO的耐久性能,本发明对其进行了循环水浸泡实验。将3gCe-CuO-ZnO复合抗菌材料置于300ml去离子水中,在80℃下浸泡2h,然后进行固液分离,将所得粉末在80℃下进行干燥,以此作为一个循环。然后取出0.5g干燥后的粉体备用,将剩余的粉体以上一个循环同样的比例加入到80℃的去离子水中进行第2次循环,重复上述过滤、干燥等过程。每次循环后取0.5g干燥后的样品备用,用于接下来的抗菌实验,同时将剩余的粉体抗菌材料再重复上述过程。不同循环次数对抗菌性能的影响曲线见图2。
Ce-CuO-ZnO抗菌材料随着浸泡次数的增加抑菌能力降低,但经过4次浸泡后其抑菌率在95%以上。经过6次处理后,抑菌率依然维持在92%以上,说明Ce-CuO-ZnO具有良好的抗菌耐久性。
实施例2(对比例)
称取0.005mol硝酸铜(Cu(NO3)2,分子量:187.56),0.095mol硝酸锌(Zn(NO3)2·6H2O,分子量:297.49)以及0.12mol柠檬酸(C6H8O7,分子量:192.14);配置体积比水∶乙醇为1∶1的混合溶液200ml,将此混合溶液作为溶剂,在超声波作用下溶解上述药品,室温下超声20min,得到稳定的均匀透明的溶胶;在80℃水浴中,将胶体溶液在磁力搅拌下进行凝聚,得到凝胶,室温下陈化10h,再放入烘箱中,80℃下脱水干燥、研磨,得到前驱体粉末;将前驱体粉末在500℃下进行热处理,得到未掺杂稀土铈的铜锌氧化物(CuO-ZnO)。
为了研究Ce-CuO-ZnO的抑菌率,本发明采用杀菌率法来测定Ce-CuO-ZnO的抑菌率。实验中将实施例2中所得未掺杂稀土铈的CuO-ZnO作为对比例,测定实施例1中所得Ce-CuO-ZnO的抑菌率。在无菌操作条件下分别称取0.5g上述所制备的CuO-ZnO与Ce-CuO-ZnO抗菌剂(经过高压蒸汽灭菌),放入灭菌的空玻璃平皿内,每个平皿加入10ml浓度为2000个/ml的大肠杆菌,混匀;同时设置空白对照组,在对照组中只加入10ml 2000个/ml的菌液,混匀;在室温下将混合均匀的实验组和对照组放置规定时间;将反应后的实验组和对照组再经过充分混匀后,分别接种营养琼脂培养皿3个,每个培养皿接种0.1ml的菌液,在37℃的恒温箱中培养24h,观察细菌的生长情况,记录活菌数。并按:
计算杀菌率,评估材料的抑菌能力。
图1为含5.00mol%Cu的CuO-ZnO与含5.00mol%Cu和0.10mol%Ce的Ce-CuO-ZnO抑制大肠杆菌效果对比照片,5.00mol%Cu的CuO-ZnO所在的培养基作为空白试验组,Ce-CuO-ZnO的抑菌率为96.18%。
实施例3
按实施例1所述制备步骤,改变化学药剂的用量,称取0.003mol硝酸铜(Cu(NO3)2,分子量:187.56),0.0001mol硝酸铈(Ce(NO3)3·6H2O,分子量:434.12),0.0969mol硝酸锌(Zn(NO3)2·6H2O,分子量:297.49)以及0.12mol柠檬酸(C6H8O7,分子量:192.14)。制备掺杂稀土铈的含3.00mol%Cu和0.10mol%Ce的Ce-CuO-ZnO。
按实施例1所述制备步骤,改变化学药剂用量,称取0.0001mol硝酸铈(Ce(NO3)3·6H2O,分子量:434.12),0.0999mol硝酸锌(Zn(NO3)2·6H2O,分子量:297.49)以及0.12mol柠檬酸(C6H8O7,分子量:192.14)。制备掺杂稀土铈的含0.10mol%Ce的Ce-ZnO。
上述实施例3中所得两种材料结合实施例1中所得掺杂稀土铈的含5.00mol%Cu和0.10mol%Ce的Ce-CuO-ZnO,将三者进行XRD检测。图3为掺杂0.10mol%Ce、不同Cu掺杂量的Ce-CuO-ZnO与未掺杂铜的含0.10mol%Ce的Ce-ZnO的XRD谱图。图3中a为未掺杂铜的含0.10mol%Ce的Ce-ZnO的XRD图谱,b为含3.00mol%Cu和0.10mol%Ce的Ce-CuO-ZnO的XRD图谱,c为含5.00mol%Cu和0.10mol%Ce的Ce-CuO-ZnO的XRD谱图。从图3可以看出3种复合氧化物的XRD衍射峰随Cu掺杂量的增加而向小衍射角度偏移,但是3种复合氧化物的晶型结构仍为纤锌矿型,并且除了观察到ZnO的(100)、(002)、(101)晶面以及氧化铜(111)晶面的衍射峰外,没有发现其他氧化物的衍射峰。
本发明未尽事宜为公知技术。

Claims (4)

1.一种掺杂稀土铈的铜锌复合氧化物,其特征为该复合氧化物为球形Ce-CuO-ZnO颗粒,颗粒尺寸为30~50 nm,晶体结构为纤锌矿晶型,禁带宽度值为2.68 ~3.05 eV;各成分摩尔百分含量为:CuO:1.00~9.00%;Ce:0.05~0.20%;ZnO:90.80~98.95% 。
2.如权利要求1所述的掺杂稀土铈的铜锌复合氧化物的制备方法,其特征为包括如下步骤:
(1)按照所述的球形Ce-CuO-ZnO的组成配比,称取硝酸锌、硝酸铜及硝酸铈;配制水和乙醇的混合溶液作为溶剂;以硝酸锌、硝酸铜及硝酸铈的摩尔量之和作为金属总摩尔量,摩尔比金属总摩尔量∶柠檬酸=1∶1.18~1.23,称取柠檬酸;
(2)将硝酸锌、硝酸铜、硝酸铈和柠檬酸加入到溶剂中,室温下超声分散20 min,得到稳定的均匀透明的溶胶;所述的硝酸盐在溶剂中的浓度为0.5~1mol/L;
(3)在80℃水浴中,将溶胶在磁力搅拌下进行凝聚,得到凝胶,室温下陈化10h,再放入烘箱中,80℃下脱水干燥、研磨,得到前驱体粉末;
(4)将前驱体粉末在400~550℃下进行热处理,得到掺杂稀土铈的铜锌复合氧化物。
3.如权利要求1所述的掺杂稀土铈的铜锌复合氧化物的制备方法,其特征为步骤(1)所述的溶剂为水与乙醇组成的混合溶液,其中体积比水∶乙醇=5~1∶1~2。
4.如权利要求1所述的掺杂稀土铈的铜锌复合氧化物的应用,其特征为可应用于工业循环冷却水领域杀菌抑菌剂。
CN201610843143.8A 2016-09-23 2016-09-23 一种掺杂稀土铈的铜锌复合氧化物及其制备方法和应用 Pending CN106417375A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610843143.8A CN106417375A (zh) 2016-09-23 2016-09-23 一种掺杂稀土铈的铜锌复合氧化物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610843143.8A CN106417375A (zh) 2016-09-23 2016-09-23 一种掺杂稀土铈的铜锌复合氧化物及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN106417375A true CN106417375A (zh) 2017-02-22

Family

ID=58166994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610843143.8A Pending CN106417375A (zh) 2016-09-23 2016-09-23 一种掺杂稀土铈的铜锌复合氧化物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106417375A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109395468A (zh) * 2018-10-26 2019-03-01 无锡风正科技有限公司 一种抗过敏原空气滤网
CN110876386A (zh) * 2019-11-20 2020-03-13 厦门稀土材料研究所 一种稀土氧化物协同纳米银抗菌剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1387763A (zh) * 2002-06-12 2003-01-01 骆天荣 纳米复合抗菌剂及其制备方法
US20080063728A1 (en) * 2003-09-30 2008-03-13 Schott Ag Antimicrobial Glass Surfaces of Glass Powders
US20100003203A1 (en) * 2006-10-11 2010-01-07 Basf Se Method of producing surface-modified nanoparticulate metal oxides, metal hydroxides and/or metal oxyhydroxides
CN102138569A (zh) * 2010-01-28 2011-08-03 广东炜林纳功能材料有限公司 一种稀土类复合抗菌剂及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1387763A (zh) * 2002-06-12 2003-01-01 骆天荣 纳米复合抗菌剂及其制备方法
US20080063728A1 (en) * 2003-09-30 2008-03-13 Schott Ag Antimicrobial Glass Surfaces of Glass Powders
US20100003203A1 (en) * 2006-10-11 2010-01-07 Basf Se Method of producing surface-modified nanoparticulate metal oxides, metal hydroxides and/or metal oxyhydroxides
CN102138569A (zh) * 2010-01-28 2011-08-03 广东炜林纳功能材料有限公司 一种稀土类复合抗菌剂及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
SUBHAN, MD ABDUS ET AL.: "Photoluminescence, photocatalytic and antibacterial activities of CeO2·CuO·ZnO nanocomposite fabricated by co-precipitation method", 《SPECTROCHIMICA ACTA PART A:MOLECULAR AND BIOMOLECULAR SPECTROSCOPY》 *
丁艳 等: "M2+(M=Cu、Cd、Ag、Fe)掺杂氧化锌纳米粉晶的抗菌性能", 《无机化学学报》 *
石硕: "铜锌复合氧化物的制备及抗菌性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
范学运 等: "稀土掺杂氧化锌纳米粉的制备及其性能研究", 《人工晶体学报》 *
薛涛 等: "铈掺杂纳米氧化锌抗菌粉的研制及其结构性能分析", 《中国稀土学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109395468A (zh) * 2018-10-26 2019-03-01 无锡风正科技有限公司 一种抗过敏原空气滤网
CN110876386A (zh) * 2019-11-20 2020-03-13 厦门稀土材料研究所 一种稀土氧化物协同纳米银抗菌剂及其制备方法
CN110876386B (zh) * 2019-11-20 2022-01-14 厦门稀土材料研究所 一种稀土氧化物协同纳米银抗菌剂及其制备方法

Similar Documents

Publication Publication Date Title
Ghanbari et al. Copper iodide decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic organic pollutant removal and antibacterial activities
Wang et al. Photocatalytic degradation of organic dyes with Er3+: YAlO3/ZnO composite under solar light
CN1331400C (zh) 复合光触媒抗菌剂的制备方法
Fu et al. Highly efficient visible-light photoactivity of Z-scheme MoS2/Ag2CO3 photocatalysts for organic pollutants degradation and bacterial inactivation
CN100500003C (zh) 纳米复合抗菌剂
CN107950570A (zh) 一种石墨烯/二氧化钛/纳米银复合材料的制备方法
Pourmortazavi et al. Synthesis, characterization and photocatalytic activity of neodymium carbonate and neodymium oxide nanoparticles
CN102380366B (zh) 铋、硅共掺杂的纳米二氧化钛光催化剂及其制备、应用
CN105289673A (zh) 一种Bi2WO6/Ag3PO4异质结复合光催化剂及其制备方法和应用
Safaralizadeh et al. Facile construction of C3N4-TE@ TiO2/UiO-66 with double Z-scheme structure as high performance photocatalyst for degradation of tetracycline
Bari et al. Evaluation of bactericidal potential and catalytic dye degradation of multiple morphology based chitosan/polyvinylpyrrolidone-doped bismuth oxide nanostructures
Yadav et al. Low temperature synthesized ZnO/Al2O3 nano-composites for photocatalytic and antibacterial applications
Wang et al. A modified Z-scheme Er3+: YAlO3@(PdS/BiPO4)/(Au/rGO)/CdS photocatalyst for enhanced solar-light photocatalytic conversion of nitrite
CN105771980A (zh) 一种石墨烯/银/介孔二氧化钛纳米复合光催化剂及其制备工艺
Gao et al. A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis
Wei et al. A new catalytic composite of bentonite-based bismuth ferrites with good response to visible light for photo-Fenton reaction: application performance and catalytic mechanism
CN1583255A (zh) 含铋复合氧化物BiMO4和Bi2NO6型半导体光催化剂及制备和应用
CN110354845A (zh) 一种碳纳米点修饰的钨酸铋光催化剂及其制备方法和应用
Manikandan et al. Microwave-assisted thermochemical conversion of Zr–FeOOH nanorods to Zr–ZnFe2O4 nanorods for bacterial disinfection and photo-Fenton catalytic degradation of organic pollutants
CN105457663A (zh) 一种Bi2WO6/Ag3PO4复合光催化杀菌剂及其制备方法
CN108722450A (zh) 高强紫外发射的上转换荧光粉复合光催化材料的制备方法
CN106417375A (zh) 一种掺杂稀土铈的铜锌复合氧化物及其制备方法和应用
CN108855170B (zh) 一种康乃馨样石墨烯基铋系纳米复合材料的制备方法及纳米复合材料
Duan et al. The composite of Zr-doped TiO2 and MOF-derived metal oxide for oxidative removal of formaldehyde at the room temperature
CN1799688A (zh) 一种制备复合二氧化钛光催化材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170222

WD01 Invention patent application deemed withdrawn after publication