CN106411795A - 一种非重构框架下的信号估计方法 - Google Patents

一种非重构框架下的信号估计方法 Download PDF

Info

Publication number
CN106411795A
CN106411795A CN201610933561.6A CN201610933561A CN106411795A CN 106411795 A CN106411795 A CN 106411795A CN 201610933561 A CN201610933561 A CN 201610933561A CN 106411795 A CN106411795 A CN 106411795A
Authority
CN
China
Prior art keywords
sampled signal
matrix
signal
vector
auto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610933561.6A
Other languages
English (en)
Other versions
CN106411795B (zh
Inventor
高玉龙
王松
陈艳平
许康
马永奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201610933561.6A priority Critical patent/CN106411795B/zh
Publication of CN106411795A publication Critical patent/CN106411795A/zh
Application granted granted Critical
Publication of CN106411795B publication Critical patent/CN106411795B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

一种非重构框架下的信号估计方法,属于认知无线电参数识别和估计领域。为了解决现有采用重构算法恢复信号时,存在重构速度慢,准确性差的问题。估计方法包括:建立采样信号循环谱向量和采样信号循环自相关向量rx的联系;建立采样信号压缩测量值自相关向量rz和采样信号循环自相关向量rx的联系;建立采样信号压缩测量值自相关向量rz和采样信号循环谱向量的关系;删除采样信号循环谱向量中的冗余元素,获得简化后的采样信号循环谱向量利用采样信号压缩测量值自相关向量rz和基于块稀疏的正交匹配追踪算法,对简化后的采样信号循环谱向量进行重构,获得原始信号循环谱;根据原始信号循环谱提取原始信号的参数信息。主要用于提取信号参数信息。

Description

一种非重构框架下的信号估计方法
技术领域
本发明属于认知无线电参数识别和估计领域。
背景技术
根据压缩感知理论,其主要研究内容包括对将信号进行稀疏分解和表示,设计合适的测量矩阵以及重构算法恢复信号内容。假设信号在某个变换域能够被稀疏表示,而且采样的测量矩阵和信号的稀疏矩阵不相关,因此能够从远远低于原始信号维度的少量非自适应的测量值以较高概率恢复出原始信号。在恢复信号内容时,重构算法占据着大量的计算资源。所以重构算法成为将压缩感知进行实际应用的瓶颈,成为亟待突破和解决的问题。
而信号的参数估计问题是推理问题,它不需要知道具体的信号形式和信号内容,因此在进行信号参数估计时可以完全省略信号的重构,直接利用压缩测量数据进行信号参数的识别,也就是所谓的非重构框架下的信号参数识别。
信号的循环谱能够区分数字调制信号在码速率、载波、调制方式上的不同,并且信号的循环谱具有特殊的稀疏性。按照所呈现出周期性统计特征划分,循环平稳信号可分为一阶(均值)、二阶(相关函数)和高阶(高阶累积量)循环平稳。数字调制信号的循环谱具有更高的稀疏性,利用循环谱高度的稀疏性可以减少参数估计算法运算量。
因此,亟需一种在无需对压缩信号进行重构,简化运算步骤,来获取信号参数的方法。
发明内容
本发明是为了解决现有采用重构算法恢复信号时,存在重构速度慢,准确性差的问题,本发明提供了一种非重构框架下的信号估计方法。
一种非重构框架下的信号估计方法,该方法包括如下步骤:
步骤一:建立采样信号循环谱向量和采样信号循环自相关向量rx的联系;
步骤二:建立采样信号压缩测量值自相关向量rz和采样信号循环自相关向量rx的联系;
步骤三:根据步骤一和步骤二获得的联系建立采样信号压缩测量值自相关向量rz和采样信号循环谱向量的关系;
步骤四:删除采样信号循环谱向量中的冗余元素,获得简化后的采样信号循环谱向量
步骤五:利用采样信号压缩测量值自相关向量rz和基于块稀疏的正交匹配追踪算法,对简化后的采样信号循环谱向量进行重构,获得原始信号循环谱;
步骤六:根据原始信号循环谱提取原始信号的参数信息,从而完成在非重构框架下的信号估计。
所述步骤一中建立采样信号循环谱向量和采样信号循环自相关向量rx的联系的具体步骤为;
步骤一一:根据采样信号建立采样信号自相关矩阵Rx,其中,
采样信号自相关矩阵Rx满足n+v<N,因此,将采样信号自相关矩阵Rx去冗余后,转化为向量形式,获得采样信号循环自相关向量rx,且
其中,表示对求均值,E{}表示求均值,xt表示采样信号,表示采样信号的转置,rx表示采样信号自相关向量,rx(n,ν)表示索引为(n,ν)的自相关值,n表示时刻,ν表示延迟时间,x表示原始信号,x*表示采样信号的共轭,T表示周期信号的周期,Ts表示采样周期,N表示总的采样点数;
步骤一二:由于采样信号自相关矩阵Rx沿对角对称,故,将采样信号自相关矩阵Rx中的重复元素置0,获得协方差辅助矩阵R,
步骤一三:定义协方差辅助矩阵R与采样信号循环自相关向量rx之间的映射关系为,
vec{R}=Brx (公式四),
其中,vec{·}表示矩阵向量化,B表示vec{R}与rx的映射矩阵,
步骤一四:对协方差辅助矩阵R进行循环自相关操作,获得采样信号循环自相关矩阵其中
其中,Gv表示循环自相关操作矩阵,Dv表示选择矩阵;
步骤一五:对采样信号循环自相关矩阵作傅立叶变换,获得采样信号循环谱矩阵
其中,F表示傅立叶变换矩阵,
步骤一六:对公式五中的采样信号循环自相关矩阵进行向量化操作,获得
其中,vec{}表示矩阵向量化,表示Dv的转置,表示直积,H表示采样信号循环自相关向量rx与循环自相关向量之间的变换矩阵;
对公式六中的采样信号循环谱矩阵进行向量化操作,获得
其中,表示采样信号循环谱向量,F-1表示傅立叶变换矩阵的逆,F-T表示表示傅立叶变换矩阵的逆的转置,IN表示N维的单位矩阵,W表示采样信号循环自相关向量与采样信号循环谱向量之间的变换矩阵,
步骤一七:根据公式七和公式八,建立采样信号循环谱向量和采样信号循环自相关向量rx之间的变换关系,获得:
其中,表示矩阵H求伪逆。
所述的步骤二中建立采样信号压缩测量值自相关向量rz和采样信号循环自相关向量rx的联系的具体步骤为:
步骤二一:首先,对采样信号进行压缩,获得压缩测量值zt,然后对原始信号xt和压缩测量值zt进行自相关操作,获得采样信号自相关矩阵Rx和采样信号压缩测量值自相关矩阵Rz,其中,zt=Axt
定义采样信号自相关矩阵Rx与采样信号循环自相关向量rx之间的映射关系为:
vec{Rx}=PNrx (公式十),
定义采样信号压缩测量值自相关矩阵Rz与采样信号压缩测量值自相关向量rz之间的映射关系为:
rz=QMvec{Rz} (公式十一),
其中,A表示测量矩阵,PN表示采样信号自相关向量rx与自相关矩阵向量vec{Rx}之间的映射矩阵,QM表示测量值自相关向量rz与测量值自相关矩阵向量vec{Rz}的映射矩阵;
步骤二二:对等式zt=Axt两边同时进行自相关矩阵变换,获得Rz=ARxAH,再
对等式Rz=ARxAH两边同时向量化,获得
vec{Rz}=vec{ARxAH} (公式十二),
最后,将公式十和公式十一同时代入公式十二,获得采样信号压缩测量值自相关向量rz和采样信号循环自相关向量rx之间关系为:
其中,AH表示测量矩阵A的转置,Φ表示压缩测量值自相关向量rz与采样信号自相关向量rx之间的变换矩阵。
所述的步骤三中,根据步骤一和步骤二建立采样信号压缩测量值自相关向量rz和采样信号循环谱向量的关系的具体步骤为:
将公式九获得的采样信号循环自相关向量rx代入到公式十三中,获得采样信号压缩测量值自相关向量rz与采样信号循环谱向量的关系为:
其中,Ψ表示采样信号压缩测量值自相关向量rz与采样信号循环谱向量之间的变换矩阵。
所述的vec{·}具有性质
其中,U、X和V均表示矩阵,VT表示矩阵V的转置。
所述选择矩阵Dv,在位置(v,v)上,元素v=1;其余位置上的元素均为0。
本发明设计思想:根据信号循环谱的定义,信号的频率由循环频率α划分为离散区域。信号的循环谱S(α,f)在|f|+|α|/2≤fmax区域内存在非零值,在双频率平面形成了菱形的支撑区,如图5中菱形支撑区所示,其数据处理点数为2fmax×4fmax。为了减少数据处理点数,可以将菱形区域进行平移如5中变换后支撑区所示,可以将数据处理点数降低为2fmax×2fmax。其中,α表示循环频率,f表示数字频率,fmax表示信号的最大频率。
BPSK信号循环谱如图6,信号循环谱为段稀疏,在循环双频率平面内只在少数区域呈现非零值,需要恢复出来的点数较少,因此可以利用其段稀疏的信息,减少恢复算法的运算复杂度。压缩感知的重构算法的目标向量必须满足稀疏性质,所以在不重构信号时域表达的前提下,只能根据信号的稀疏性来区分信号。调制信号的循环平稳特征完全满足这项要求,因为调制信号在双频率平面呈现出稀疏性,并且调制信号的高阶循环累积量仅在几个循环频率处为较大值,其余为零。
因此,利用压缩测量值直接估计出信号的二阶累积量,作为特征值提取各信号的循环频率。建立压采样信号压缩测量值自相关向量rz与采样信号循环谱向量之间的关系。
本发明的基本思想是根据信号在信号二维频谱平面具有的高度稀疏和对称的特性,利用压缩感知获得少量测量点。传统的信号循环谱获得方式是根据测量值先恢复出原始的信号,再利用恢复出来的原始信号获取信号的二维循环谱。这样会大大增加系统的复杂度。
本发明是通过建立信号的测量值与二维循环谱之间的关系,根据循环谱的稀疏性利用基于块稀疏的正交匹配追踪算法得到信号的循环谱。该方法利用了所有信号映射的自相关函数的延时信息,信号的压缩率甚至可以延伸到非稀疏的段内信号当中。通过分析信号二阶循环统计特性的重要信息,为我们提供估计信号参数的一种新方式。
利用压缩感知测量值直接获得信号循环谱,根据数字调制信号在循环谱的稀疏性和其包含的丰富信息来进行信号参数估计任务。但是计算信号循环谱会带来极大的运算量,利用循环谱呈现的块稀疏性和对称性,本发明使用基于块恢复算法(BOMP)对信号的循环谱进行重构。与传统的正交匹配追踪算法(OMP)相比大大减少了运算时间。
本发明具体涉及在压缩采样下基于非重构的思想,利用通信调制信号的循环平稳特性对通信信号进行识别和检测的方法。
本发明带来的有益效果是,本发明具体是基于信号进行压缩感知后,获得的少量采样不经过对信号的重构,即:省略了对信号进行重构的过程,直接恢复出信号的循环谱,大大简化了运算的复杂度,运算速度提高了5%以上,提高了认知无线电系统在低信噪比环境下的检测能力。
附图说明
图1为本发明所述的一种非重构框架下的信号估计方法的流程图
图2为原始信号循环谱三维图。
图3为恢复出来的信号循环谱三维图。
图4为基于块稀疏的正交匹配追踪算法(BOMP)和传统的正交匹配追踪算法(OMP)的性能比较曲线;
图5为循环谱支撑区变换示意图。
图6为BPSK信号的循环谱三维图。
具体实施方式
具体实施方式一:参见图1说明本实施方式,本实施方式所述的一种非重构框架下的信号估计方法,该方法包括如下步骤:
步骤一:建立采样信号循环谱向量和采样信号循环自相关向量rx的联系;
步骤二:建立采样信号压缩测量值自相关向量rz和采样信号循环自相关向量rx的联系;
步骤三:根据步骤一和步骤二获得的联系建立采样信号压缩测量值自相关向量rz和采样信号循环谱向量的关系;
步骤四:删除采样信号循环谱向量中的冗余元素,获得简化后的采样信号循环谱向量
步骤五:利用采样信号压缩测量值自相关向量rz和基于块稀疏的正交匹配追踪算法,对简化后的采样信号循环谱向量进行重构,获得原始信号循环谱;
步骤六:根据原始信号循环谱提取原始信号的参数信息,从而完成在非重构框架下的信号估计。
本实施方式,本发明,首先将信号经过测量矩阵获得欠奈奎斯特采样值,利用推导出来的测量值的相关值与信号的循环谱之间的联系,根据循环谱具有对称型和高度稀疏等特性简化构造信号循环谱的计算复杂度,利用基于块稀疏的正交匹配追踪算法获得信号的循环谱,进而提取出数字调制信号的参数,大大简化了运算的复杂度,提高了认知无线电系统在低信噪比环境下的检测能力。
基于块稀疏的正交匹配追踪算法是一种现有算法,该算法主要由三部分构成:相关测试、更新信号支撑块、更新残差。其中算法在每次相关测试时只找到信号支撑的一个块,对于块稀疏度为K的信号,至少要进行K次迭代才能恢复源信号,要求块稀疏度K已知且每次迭代找到信号支撑的一个块后,便不再改变。
在不压缩原始信号的情况下即压缩率M/N=1时,获取的原始信号循环谱如图2所示。M表示测量值的长度,N表示采样信号的长度,利用压缩感知在压缩率M/N=0.5时获取的恢复出来的信号循环谱如图3所示。基于块稀疏的正交匹配追踪算法(BOMP)与传统的正交匹配追踪算法(OMP)的性能对比,如图4所示,但是基于块的算法在运算时间上有较大的提升。表1为BOMP与OMP恢复算法运算时间对比,可知基于块的算法减少的运算点数,在不影响估计结果的情况下,大大节约了运算时间,参见表1。
表1算法运算时间对比
具体实施方式二:本实施方式与具体实施方式一所述的一种非重构框架下的信号估计方法的区别在于,所述步骤一中建立采样信号循环谱向量和采样信号循环自相关向量rx的联系的具体步骤为;
步骤一一:根据采样信号建立采样信号自相关矩阵Rx,其中,
采样信号自相关矩阵Rx满足n+v<N,因此,将采样信号自相关矩阵Rx去冗余后,转化为向量形式,获得采样信号循环自相关向量rx,且
其中,表示对求均值,E{}表示求均值,xt表示采样信号,表示采样信号的转置,rx表示采样信号自相关向量,rx(n,ν)表示索引为(n,ν)的自相关值,n表示时刻,ν表示延迟时间,x表示原始信号,x*表示采样信号的共轭,T表示周期信号的周期,Ts表示采样周期,N表示总的采样点数;
步骤一二:由于采样信号自相关矩阵Rx沿对角对称,故,将采样信号自相关矩阵Rx中的重复元素置0,获得协方差辅助矩阵R,
步骤一三:定义协方差辅助矩阵R与采样信号循环自相关向量rx之间的映射关系为,
vec{R}=Brx (公式四),
其中,vec{·}表示矩阵向量化,B表示vec{R}与rx的映射矩阵,
步骤一四:对协方差辅助矩阵R进行循环自相关操作,获得采样信号循环自相关矩阵其中
其中,Gv表示循环自相关操作矩阵,Dv表示选择矩阵;
步骤一五:对采样信号循环自相关矩阵作傅立叶变换,获得采样信号循环谱矩阵
其中,F表示傅立叶变换矩阵,
步骤一六:对公式五中的采样信号循环自相关矩阵进行向量化操作,获得
其中,vec{}表示矩阵向量化,表示Dv的转置,表示直积,H表示采样信号循环自相关向量rx与循环自相关向量之间的变换矩阵;
对公式六中的采样信号循环谱矩阵进行向量化操作,获得
其中,表示采样信号循环谱向量,F-1表示傅立叶变换矩阵的逆,F-T表示表示傅立叶变换矩阵的逆的转置,IN表示N维的单位矩阵,W表示采样信号循环自相关向量与采样信号循环谱向量之间的变换矩阵,
步骤一七:根据公式七和公式八,建立采样信号循环谱向量和采样信号循环自相关向量rx之间的变换关系,获得:
其中,表示矩阵H求伪逆。
具体实施方式三:本实施方式与具体实施方式二所述的一种非重构框架下的信号估计方法的区别在于,所述的步骤二中建立采样信号压缩测量值自相关向量rz和采样信号循环自相关向量rx的联系的具体步骤为:
步骤二一:首先,对采样信号进行压缩,获得压缩测量值zt,然后对原始信号xt和压缩测量值zt进行自相关操作,获得采样信号自相关矩阵Rx和采样信号压缩测量值自相关矩阵Rz,其中,zt=Axt
定义采样信号自相关矩阵Rx与采样信号循环自相关向量rx之间的映射关系为:
vec{Rx}=PNrx (公式十),
定义采样信号压缩测量值自相关矩阵Rz与采样信号压缩测量值自相关向量rz之间的映射关系为:
rz=QMvec{Rz} (公式十一),
其中,A表示测量矩阵,PN表示采样信号自相关向量rx与自相关矩阵向量vec{Rx}之间的映射矩阵,QM表示测量值自相关向量rz与测量值自相关矩阵向量vec{Rz}的映射矩阵;
步骤二二:对等式zt=Axt两边同时进行自相关矩阵变换,获得Rz=ARxAH,再对等式Rz=ARxAH两边同时向量化,获得
vec{Rz}=vec{ARxAH} (公式十二),
最后,将公式十和公式十一同时代入公式十二,获得采样信号压缩测量值自相关向量rz和采样信号循环自相关向量rx之间关系为:
其中,AH表示测量矩阵A的转置,Φ表示压缩测量值自相关向量rz与采样信号自相关向量rx之间的变换矩阵。
具体实施方式四:本实施方式与具体实施方式三所述的一种非重构框架下的信号估计方法的区别在于,所述的步骤三中,根据步骤一和步骤二建立采样信号压缩测量值自相关向量rz和采样信号循环谱向量的关系的具体步骤为:
将公式九获得的采样信号循环自相关向量rx代入到公式十三中,获得采样信号压缩测量值自相关向量rz与采样信号循环谱向量的关系为:
其中,Ψ表示采样信号压缩测量值自相关向量rz与采样信号循环谱向量之间的变换矩阵。
具体实施方式五:本实施方式与具体实施方式二所述的一种非重构框架下的信号估计方法的区别在于,所述的vec{·}具有性质
其中,U、X和V均表示矩阵,VT表示矩阵V的转置。
具体实施方式六:本实施方式与具体实施方式二所述的一种非重构框架下的信号估计方法的区别在于,所述选择矩阵Dv,在位置(v,v)上,元素v=1;其余位置上的元素均为0。

Claims (6)

1.一种非重构框架下的信号估计方法,其特征在于,该方法包括如下步骤:
步骤一:建立采样信号循环谱向量和采样信号循环自相关向量rx的联系;
步骤二:建立采样信号压缩测量值自相关向量rz和采样信号循环自相关向量rx的联系;
步骤三:根据步骤一和步骤二获得的联系建立采样信号压缩测量值自相关向量rz和采样信号循环谱向量的关系;
步骤四:删除采样信号循环谱向量中的冗余元素,获得简化后的采样信号循环谱向量
步骤五:利用采样信号压缩测量值自相关向量rz和基于块稀疏的正交匹配追踪算法,对简化后的采样信号循环谱向量进行重构,获得原始信号循环谱;
步骤六:根据原始信号循环谱提取原始信号的参数信息,从而完成在非重构框架下的信号估计。
2.根据权利要求1所述的一种非重构框架下的信号估计方法,其特征在于,所述步骤一中建立采样信号循环谱向量和采样信号循环自相关向量rx的联系的具体步骤为;
步骤一一:根据采样信号建立采样信号自相关矩阵Rx,其中,
采样信号自相关矩阵Rx满足n+v<N,因此,将采样信号自相关矩阵Rx去冗余后,转化为向量形式,获得采样信号循环自相关向量rx,且
其中,表示对求均值,E{}表示求均值,xt表示采样信号,表示采样信号的转置,rx表示采样信号自相关向量,rx(n,ν)表示索引为(n,ν)的自相关值,n表示时刻,ν表示延迟时间,x表示原始信号,x*表示采样信号的共轭,T表示周期信号的周期,Ts表示采样周期,N表示总的采样点数;
步骤一二:由于采样信号自相关矩阵Rx沿对角对称,故,将采样信号自相关矩阵Rx中的重复元素置0,获得协方差辅助矩阵R,
步骤一三:定义协方差辅助矩阵R与采样信号循环自相关向量rx之间的映射关系为,
vec{R}=Brx (公式四),
其中,vec{·}表示矩阵向量化,B表示vec{R}与rx的映射矩阵,
步骤一四:对协方差辅助矩阵R进行循环自相关操作,获得采样信号循环自相关矩阵其中
其中,Gv表示循环自相关操作矩阵,Dv表示选择矩阵;
步骤一五:对采样信号循环自相关矩阵作傅立叶变换,获得采样信号循环谱矩阵
其中,F表示傅立叶变换矩阵,
步骤一六:对公式五中的采样信号循环自相关矩阵进行向量化操作,获得
其中,vec{}表示矩阵向量化,表示Dv的转置,表示直积,H表示采样信号循环自相关向量rx与循环自相关向量之间的变换矩阵;
对公式六中的采样信号循环谱矩阵进行向量化操作,获得
其中,表示采样信号循环谱向量,F-1表示傅立叶变换矩阵的逆,F-T表示表示傅立叶变换矩阵的逆的转置,IN表示N维的单位矩阵,W表示采样信号循环自相关向量与采样信号循环谱向量之间的变换矩阵,
步骤一七:根据公式七和公式八,建立采样信号循环谱向量和采样信号循环自相关向量rx之间的变换关系,获得:
其中,表示矩阵H求伪逆。
3.根据权利要求2所述的一种非重构框架下的信号估计方法,其特征在于,所述的步骤二中建立采样信号压缩测量值自相关向量rz和采样信号循环自相关向量rx的联系的具体步骤为:
步骤二一:首先,对采样信号进行压缩,获得压缩测量值zt,然后对原始信号xt和压缩测量值zt进行自相关操作,获得采样信号自相关矩阵Rx和采样信号压缩测量值自相关矩阵Rz,其中,zt=Axt
定义采样信号自相关矩阵Rx与采样信号循环自相关向量rx之间的映射关系为:
vec{Rx}=PNrx (公式十),
定义采样信号压缩测量值自相关矩阵Rz与采样信号压缩测量值自相关向量rz之间的映射关系为:
rz=QMvec{Rz} (公式十一),
其中,A表示测量矩阵,PN表示采样信号自相关向量rx与自相关矩阵向量vec{Rx}之间的映射矩阵,QM表示测量值自相关向量rz与测量值自相关矩阵向量vec{Rz}的映射矩阵;
步骤二二:对等式zt=Axt两边同时进行自相关矩阵变换,获得Rz=ARxAH,再
对等式Rz=ARxAH两边同时向量化,获得
vec{Rz}=vec{ARxAH} (公式十二),
最后,将公式十和公式十一同时代入公式十二,获得采样信号压缩测量值自相关向量rz和采样信号循环自相关向量rx之间关系为:
其中,AH表示测量矩阵A的转置,Φ表示压缩测量值自相关向量rz与采样信号自相关向量rx之间的变换矩阵。
4.根据权利要求3所述的一种非重构框架下的信号估计方法,其特征在于,所述的步骤三中,根据步骤一和步骤二建立采样信号压缩测量值自相关向量rz和采样信号循环谱向量的关系的具体步骤为:
将公式九获得的采样信号循环自相关向量rx代入到公式十三中,获得采样信号压缩测量值自相关向量rz与采样信号循环谱向量的关系为:
其中,Ψ表示采样信号压缩测量值自相关向量rz与采样信号循环谱向量之间的变换矩阵。
5.根据权利要求2所述的一种非重构框架下的信号估计方法,其特征在于,所述的vec{·}具有性质
其中,U、X和V均表示矩阵,VT表示矩阵V的转置。
6.根据权利要求2所述的一种非重构框架下的信号估计方法,其特征在于,所述选择矩阵Dv,在位置(v,v)上,元素v=1;其余位置上的元素均为0。
CN201610933561.6A 2016-10-31 2016-10-31 一种非重构框架下的信号估计方法 Expired - Fee Related CN106411795B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610933561.6A CN106411795B (zh) 2016-10-31 2016-10-31 一种非重构框架下的信号估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610933561.6A CN106411795B (zh) 2016-10-31 2016-10-31 一种非重构框架下的信号估计方法

Publications (2)

Publication Number Publication Date
CN106411795A true CN106411795A (zh) 2017-02-15
CN106411795B CN106411795B (zh) 2019-07-16

Family

ID=58012607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610933561.6A Expired - Fee Related CN106411795B (zh) 2016-10-31 2016-10-31 一种非重构框架下的信号估计方法

Country Status (1)

Country Link
CN (1) CN106411795B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064933A (zh) * 2017-03-10 2017-08-18 中国科学院遥感与数字地球研究所 基于循环谱估计的sar层析建筑物高度的方法
CN110011745A (zh) * 2019-04-15 2019-07-12 哈尔滨工业大学 基于dpmm的宽带频谱感知中信号个数的估计方法
CN110113114A (zh) * 2019-04-03 2019-08-09 南京中新赛克科技有限责任公司 一种宽带信号的可靠码率获取系统及获取方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873163A (zh) * 2013-11-05 2014-06-18 南京航空航天大学 一种基于渐近步长的稀疏度自适应压缩频谱感知方法
CN104682963A (zh) * 2015-03-03 2015-06-03 北京邮电大学 一种信号循环平稳特性的重构方法
CN105229733A (zh) * 2013-05-24 2016-01-06 杜比国际公司 包括音频对象的音频场景的高效编码
CN105594215A (zh) * 2013-10-11 2016-05-18 夏普株式会社 颜色信息和色度信令

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105229733A (zh) * 2013-05-24 2016-01-06 杜比国际公司 包括音频对象的音频场景的高效编码
CN105594215A (zh) * 2013-10-11 2016-05-18 夏普株式会社 颜色信息和色度信令
CN103873163A (zh) * 2013-11-05 2014-06-18 南京航空航天大学 一种基于渐近步长的稀疏度自适应压缩频谱感知方法
CN104682963A (zh) * 2015-03-03 2015-06-03 北京邮电大学 一种信号循环平稳特性的重构方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHI TIAN等: "《Cyclic Feature Detection With Sub-Nyquist Smapling for Wideband Spectrum Sensing》", 《IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064933A (zh) * 2017-03-10 2017-08-18 中国科学院遥感与数字地球研究所 基于循环谱估计的sar层析建筑物高度的方法
CN107064933B (zh) * 2017-03-10 2020-12-11 中国科学院遥感与数字地球研究所 基于循环谱估计的sar层析建筑物高度的方法
CN110113114A (zh) * 2019-04-03 2019-08-09 南京中新赛克科技有限责任公司 一种宽带信号的可靠码率获取系统及获取方法
CN110113114B (zh) * 2019-04-03 2021-07-27 南京中新赛克科技有限责任公司 一种宽带信号的可靠码率获取系统及获取方法
CN110011745A (zh) * 2019-04-15 2019-07-12 哈尔滨工业大学 基于dpmm的宽带频谱感知中信号个数的估计方法

Also Published As

Publication number Publication date
CN106411795B (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
CN108322409A (zh) 基于广义正交匹配追踪算法的稀疏ofdm信道估计方法
CN109890043B (zh) 一种基于生成式对抗网络的无线信号降噪方法
CN106411795A (zh) 一种非重构框架下的信号估计方法
CN110365437B (zh) 基于次奈奎斯特采样的快速功率谱估计方法
CN106789766B (zh) 基于同伦法的稀疏ofdm信道估计方法
CN105515585A (zh) 未知稀疏度信号的压缩感知重构方法
CN111901069B (zh) 一种基于神经网络与近似消息传递算法的多用户检测方法
CN102882530A (zh) 一种压缩感知信号重构方法
CN110533591B (zh) 基于编解码器结构的超分辨图像重建方法
CN114283495A (zh) 一种基于二值化神经网络的人体姿态估计方法
CN103903261A (zh) 一种基于分块压缩感知的光谱图像处理方法
CN103532645A (zh) 一种观测矩阵优化的压缩频谱感知方法
Li et al. On joint optimization of sensing matrix and sparsifying dictionary for robust compressed sensing systems
CN114218984B (zh) 一种基于样本多视图学习的射频指纹识别方法
Ying et al. Ear recognition based on weighted wavelet transform and DCT
CN111652132B (zh) 基于深度学习的非视距身份识别方法、设备及存储介质
CN106101732B (zh) 快速压缩高光谱信号的矢量量化方案
CN104243986B (zh) 基于数据驱动张量子空间的压缩视频采集与重构系统
CN110930466B (zh) 面向任意形状BOIs的高光谱自适应压缩传感方法
CN113449259A (zh) 一种基于深度学习的信道状态信息特征提取方法及系统
Shi et al. CSI-based fingerprinting for indoor localization with multi-scale convolutional neural network
Hao et al. A compressive eletroencephalography (EEG) sensor design
Cao et al. Real-Time Deep Compressed Sensing Reconstruction for Electrocardiogram Signals
CN114662523A (zh) 一种融合认知强化压缩感知与人工神经网络的扩频信号检测方法
Kasem et al. DRCS-SR: Deep robust compressed sensing for single image super-resolution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190716

Termination date: 20201031

CF01 Termination of patent right due to non-payment of annual fee