CN106410132B - 二维片状MoS2@石墨烯复合纳米材料及其制备方法 - Google Patents

二维片状MoS2@石墨烯复合纳米材料及其制备方法 Download PDF

Info

Publication number
CN106410132B
CN106410132B CN201610752288.7A CN201610752288A CN106410132B CN 106410132 B CN106410132 B CN 106410132B CN 201610752288 A CN201610752288 A CN 201610752288A CN 106410132 B CN106410132 B CN 106410132B
Authority
CN
China
Prior art keywords
mos
graphene
sheet
dimensional sheet
polyethyleneimine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610752288.7A
Other languages
English (en)
Other versions
CN106410132A (zh
Inventor
张海娇
夏赛赛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610752288.7A priority Critical patent/CN106410132B/zh
Publication of CN106410132A publication Critical patent/CN106410132A/zh
Application granted granted Critical
Publication of CN106410132B publication Critical patent/CN106410132B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种二维片状MoS2@石墨烯复合纳米材料及其制备方法。本发明以热解还原的氧化石墨烯、聚乙烯亚胺、钼酸钠、硫脲为原料,水为溶剂,采用简单的水热合成方法,在聚乙烯亚胺的辅助作用下,可得具有均匀形貌和结构的片状MoS2@石墨烯复合纳米材料。电镜结果表明,超薄的MoS2纳米片竖直均匀地负载在高质量的石墨烯上且分散性很好。XRD谱图显示,与未热处理的前驱体相比,煅烧后的MoS2材料结晶度明显提高,属于典型的六方晶系的2H‑MoS2晶相。本发明合成工艺简单可控,材料形貌均一度和负载率高,可重复性好,在锂离子电池等新能源领域具有一定的应用前景。

Description

二维片状MoS2@石墨烯复合纳米材料及其制备方法
技术领域
本发明涉及一种二维片状MoS2@石墨烯纳米复合材料及其制备方法,属于新能源材料等领域。
背景技术
21世纪以来,环境污染和能源短缺问题日益严重。因此,迫切需要开发利用各种新能源技术。锂离子电池以其比容量高、安全性好、自放电小、性能稳定、无环境污染等优点成为最能满足未来社会可持续发展要求的高能电池之一。而负极材料是影响锂离子电池性能的关键材料之一。如何提高电池负极材料的能量密度,获得具有可逆容量高、循环性能好、结构稳定和环境友好等优点的材料,是近年来学者们研究的重点。在历经了对石墨、无定形碳、硅基材料及合金材料等的研究后,人们发现ZnS2、WS2、MoS2等一些过渡金属二硫化物具有类石墨烯结构和独特的S-M-S(M=Zn,W,Mo等过渡金属元素)三明治式层状结构,该类结构层内健作用强,而层间相对较弱,这一特征使其可以作为电化学储锂的嵌入式电极材料。在这些二硫化物中,MoS2具有较高的电化学理论容量以及较好的安全性能,有望成为锂离子电池新一代的负极材料。但是,在较高的表面能及层与层之间范德华力的共同影响下,MoS2电极材料在使用过程中容易发生堆积,导致大的体积膨胀以及电极结构的塌甭,从而严重影响其电化学性能。为解决以上问题,比较有效的方法就是制备不同纳米结构的MoS2或将MoS2与导电性好、结构稳定的碳基底材料复合。
石墨烯,凭借其好的化学稳定性、高的比表面和优异的导电性成为制备MoS2@碳复合材料的理想基底。更重要的是,由于二者具有相似的晶体结构和微观形貌,从而可实现结构上的匹配和电学性能上的互补,能够最大程度地发挥二者之间的协同效应。目前,对于石墨烯负载MoS2复合材料的研究,虽然已经取得了一定的成绩,但制备过程相对繁琐,而且MoS2的形貌比较单一,性能也差强人意,不能充分发挥MoS2和石墨烯结合的复合材料的优势。因此,通过简单灵活的方法,制备具有形貌和结构可控且性能优异的石墨烯复合材料,在材料和新能源领域,具有重要的研究意义。
发明内容
本发明的目的之一在于提供一种二维片状MoS2@石墨烯纳米复合材料。
本发明的目的之二在于提供该复合纳米材料的制备方法。
为达到上述目的,本发明采用以下技术方案:
一种二维片状MoS2@石墨烯纳米复合材料,其特征在于:该材料由二维片状的MoS2与还原的氧化石墨烯复合而成;所得结构中,片状的MoS2竖直均匀生长于石墨烯纳米片上,并在其表面相互交联成许多开放的空间,这非常有利于充放电过程中锂离子的传输。
一种制备上述的二维片状MoS2@石墨烯纳米复合材料的方法,其特征在于该方法的具体步骤为:
a.将氧化石墨烯加入到去离子水中,配制成浓度为0.0417~0.0833mol/L的溶液;
b.将聚乙烯亚胺加入到去离子水中,配制成浓度为0.286~0.491mmol/L的溶液;
c.再将步骤a和步骤b所得溶液混合,搅拌0.5~1h;然后再加入钼酸钠,搅拌均匀后加入硫脲,搅拌1~2h;所述的氧化石墨烯、聚乙烯亚胺、钼酸钠、硫脲的摩尔比为: 1.35~2.69:0.0050~0.0079:1:4.24;
d.将步骤c所得混合溶液在180~220℃条件下反应12~24h;反应完成后,将产物离心并用去离子水和乙醇反复洗涤,烘干后在氮气氛围中600~800℃焙烧1~3h,即得MoS2@石墨烯复合纳米材料。
本发明以钼酸钠为钼源,硫脲为硫源,在聚乙烯亚胺作助剂的条件下,与还原的氧化石墨烯进行复合,制备出具有二维片状形貌均一、负载均匀的MoS2@石墨烯复合纳米材料。
本发明工艺过程中,聚乙烯亚胺通过静电作用吸附在带负电的石墨烯上。随后,加入的钼酸钠水解后产生的钼酸根离子吸附在聚乙烯亚胺修饰的石墨烯上,最后加入的硫脲在高温下分解出的还原性硫化氢气体将钼酸根还原成二硫化钼,形成片状形貌的MoS2@石墨烯复合纳米材料。本发明得到的材料负载均匀,形貌独特。
与现有的合成技术相比,本发明技术具有以下显著优点:合成工艺简单可控,材料形貌均一度和负载率高,可重复性好,在锂离子电池等新能源领域具有一定的应用前景。
附图说明
图1为本发明实施例1中所得二维片状MoS2@石墨烯复合纳米材料的XRD谱图。
图2为本发明实施例1中所得二维片状MoS2@石墨烯复合纳米材料的TEM图片。
图3为本发明实施例1中所得二维片状MoS2@石墨烯复合纳米材料的SEM图片。
图4为本发明实施例1和对比例所得MoS2@石墨烯复合纳米材料的电化学循环性能图。
具体实施方式
所有实施例均按上述技术方案的操作步骤进行操作。本发明所使用的氧化石墨烯的制备方法请参见J.Am.Chem.Soc.,2008,130,5856-5857。具体如下:将石墨粉研磨后加入到溶解有过硫酸钾(K2S2O8)和五氧化二磷(P2O5)的浓硫酸中,搅拌均匀,完成预氧化过程。随后在冰浴环境下,将石墨预氧化物溶解在浓硫酸中,用高锰酸钾(KMnO4)进行充分的氧化。然后加入过氧化氢(H2O2)终止反应,最后用稀盐酸溶液进行酸洗处理后即可得到石墨烯氧化物。以上述制备的石墨烯氧化物为前驱体,通过高温热解法制备还原氧化石墨烯纳米片。
实施例1
a.称取30mg烘干的还原的氧化石墨烯,溶解于40ml去离子水中,超声2h,使其分散均匀;
b.称取344mg聚乙烯亚胺,溶解于20ml去离子水中,搅拌2h,使其分散均匀;将上述溶液混合,搅拌1h,使其混合均匀;
c.将0.3g钼酸钠加入上述混合溶液中,继续搅拌1h;再加入0.4g的硫脲,充分搅拌1h;
d.将反应后的混合溶液倒入带聚四氟乙烯内衬的高压反应釜中,在200℃条件下反应 24h;
e.反应完成后,将产物离心并用去离子水和乙醇反复洗涤,60℃下烘干并于氮气氛围中 600℃煅烧2h,即得本发明制备的二维片状MoS2@石墨烯纳米材料。
将所制得的样品进行物性表征,其部分结果如附图所示。由结果可知,所得MoS2@石墨烯复合材料形貌均一,超薄的MoS2纳米片均匀地负载在高质量的石墨烯上。
实施例2
本实施例的制备过程和步骤与实施例1基本相同,不同在于d步骤:
将0.1g钼酸钠加入上述溶液中,继续搅拌1h;再加入0.4g的硫脲,充分搅拌1h;
所得结果与实施例1结果相似,都是片状的MoS2负载在石墨烯上,但负载的MoS2片很稀疏,形貌有所改变。
对比例
本实施例的制备过程和步骤与实施例1基本相同,不同在于b步骤:
没有加入聚乙烯亚胺;
所得结果与实施例1明显不同。少量的MoS2负载在石墨烯上,形貌变成了不规则的花状,且负载不均匀。
参见附图,图1为本发明实施例1所得二维片状MoS2@石墨烯复合纳米材料煅烧前后的 XRD谱图。XRD分析:在日本RigaKu D/max-2550型X射线衍射仪上进行。从图中可知,本发明所得复合纳米材料中,煅烧前的衍射峰较弱,表明其结晶度较差;而煅烧后,衍射峰明显变强,其出峰位置在2θ=14.4°,34.6°,40.1°,58.6°,69.3°分别对应于MoS2的(002),(100),(103),(110),(201)晶面,与标准谱图(JCPDF No.37-1492)相一致,是典型的六方晶系2H-MoS2晶相。此外,在2θ=24.1°左右出现的宽峰归属于还原的氧化石墨烯的(002)峰。说明所得复合材料为结晶良好的高纯度的2H-MoS2@还原的氧化石墨烯。
参见附图,图2为本发明实施例1所得二维片状MoS2@石墨烯复合纳米材料的透射电镜 (TEM)图片。TEM分析:采用日本电子株式会社JEOL JEM-200CX型透射电子显微镜观察材料形貌和结构。从TEM结果可知,所得复合材料中,MoS2呈现出独特的二维片状形貌,且竖直均匀负载在石墨烯上,并且周围未见游离的MoS2纳米粒子和未负载的石墨烯,证明两者已经成功结合在一起。。
参见附图,图3为本发明实施例1所得二维片状MoS2@石墨烯复合纳米材料的扫描电镜 (SEM)图片。SEM分析:采用日本电子公司JSM-20CX型发射扫描电子显微镜观察材料表面形貌。从中可以看出,大量的MoS2超薄纳米片均匀生长在石墨烯表面上,形成像网一样的结构紧紧包裹在石墨烯上面,与TEM的观察相一致。
参见附图,图4为本发明实施例1和对比例所得MoS2@石墨烯复合纳米材料的电化学循环性能图。其中,电化学性能的测试方法如下:将PVDF(聚偏二氟乙烯,2.5wt.%水溶液)、炭黑以及制得的MoS2@石墨烯复合纳米材料用匀浆机混合均匀,并均匀的涂布在铜箔上制成电池的负极;正极为金属锂片,隔膜为微孔聚丙烯材料,电解液是由乙烯碳酸脂(EC)、丙烯碳酸脂(DMC)、碳酸乙酯(DEC)和LiPF6按一定比例配制而成。电池是在充满氩气的手套箱中装配而成,测试装置为蓝电电池测试系统CT2001A。从图4中可知,实施例1所得复合纳米材料在电流密度为100mA/g的条件下首次放电容量为1783.3mAh/g,50次循环后的放电容量为1059.1mAh/g,其容量保持率依然可以达到59.4%。

Claims (2)

1.一种二维片状MoS2@石墨烯纳米复合材料,其特征在于:该材料由二维片状的MoS2纳米片与还原的氧化石墨烯复合而成;二维片状的MoS2纳米片竖直均匀生长于石墨烯纳米片上,二维片状的MoS2纳米片以网状结构包裹在石墨烯纳米片上面,即二维片状的MoS2纳米片在石墨烯纳米片表面相互交联成开放的空间;
以钼酸钠为钼源,硫脲为硫源,在聚乙烯亚胺作助剂的条件下,与还原的氧化石墨烯进行复合,制备二维片状MoS2@石墨烯纳米复合材料,在二维片状MoS2@石墨烯纳米复合材料制备工艺过程中,聚乙烯亚胺通过静电作用吸附在带负电的石墨烯上;随后,加入的钼酸钠水解后产生的钼酸根离子吸附在聚乙烯亚胺修饰的石墨烯上,最后加入的硫脲在180~220℃高温下分解出的还原性硫化氢气体将钼酸根还原成二硫化钼,形成片状形貌的二维片状MoS2@石墨烯纳米复合材料。
2.一种制备根据权利要求1所述的二维片状MoS2@石墨烯纳米复合材料的方法,其特征在于该方法的具体步骤为:
a.将还原的氧化石墨烯加入到去离子水中,配制成浓度为0.0417~0.0833mol/L的溶液;
b.将聚乙烯亚胺加入到去离子水中配制成浓度为0.286~0.491mmol/L的溶液;
c.再将步骤a和步骤b所得溶液混合,搅拌0.5~1h;然后再加入钼酸钠,搅拌均匀后加入硫脲,搅拌1~2h;所述还原的氧化石墨烯、聚乙烯亚胺、钼酸钠、硫脲的摩尔比为:1.35~2.69:0.0050~0.0079:1:4.24;
d.将步骤c所得混合溶液在180~220℃条件下反应12~24h;反应完成后,将产物离心并用去离子水和乙醇反复洗涤,烘干后在氮气氛围中600~800℃焙烧1~3h,即得二维片状MoS2@石墨烯纳米复合材料。
CN201610752288.7A 2016-11-09 2016-11-09 二维片状MoS2@石墨烯复合纳米材料及其制备方法 Expired - Fee Related CN106410132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610752288.7A CN106410132B (zh) 2016-11-09 2016-11-09 二维片状MoS2@石墨烯复合纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610752288.7A CN106410132B (zh) 2016-11-09 2016-11-09 二维片状MoS2@石墨烯复合纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106410132A CN106410132A (zh) 2017-02-15
CN106410132B true CN106410132B (zh) 2019-08-06

Family

ID=58003756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610752288.7A Expired - Fee Related CN106410132B (zh) 2016-11-09 2016-11-09 二维片状MoS2@石墨烯复合纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106410132B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904397B (zh) * 2017-12-08 2020-08-04 中国石油化工股份有限公司 一种二硫化钼/c/石墨烯复合材料
CN109904398A (zh) * 2017-12-08 2019-06-18 中国石油化工股份有限公司 一种二硫化钼/石墨烯复合材料
CN109470761B (zh) * 2018-10-19 2020-12-04 重庆医科大学 一种用于玉米赤霉烯酮zen检测的电化学dna适体传感器及检测zen的方法
CN109686954A (zh) * 2018-12-27 2019-04-26 陕西科技大学 一种C-O-Mo键桥接单片锥形MoS2/NG钠离子负极材料及其制备方法
CN112678826B (zh) * 2019-10-18 2022-12-09 济南三川新材料科技有限公司 二维过渡金属硫族化合物的合成方法
CN110787815B (zh) * 2019-11-13 2022-07-29 南京工程学院 一种TiO2/MoS2核壳结构三维光子晶体复合材料及其制备方法
CN111022533B (zh) * 2019-12-05 2021-09-10 铁科纵横(天津)科技发展有限公司 高速列车用粉末冶金闸片摩擦材料及其制备方法
CN112903761B (zh) * 2021-01-19 2022-09-23 重庆大学 一种二硫化钼-还原氧化石墨烯-氧化亚铜三元复合材料及其制备方法和应用
CN113511670B (zh) * 2021-07-26 2022-05-03 湖北工程学院 一种氧化石墨烯上复合硫化锌的三维花束状结构纳米材料及应用及制备方法
CN114229896B (zh) * 2021-11-25 2024-01-12 广州明美新能源股份有限公司 一种三维结构的MoS2/Carbon/FeOx复合材料及其制备方法
CN117457884A (zh) * 2023-12-11 2024-01-26 湖南豪曼新能源科技有限公司 一种碳负载金属硫化物负极材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319102A (zh) * 2014-10-23 2015-01-28 上海工程技术大学 一种制备负载三维花状石墨烯/二硫化钼复合材料的纤维状对电极的方法
CN104600315A (zh) * 2015-01-07 2015-05-06 上海大学 一种片状MoS2/石墨烯复合气凝胶及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014105246A2 (en) * 2012-10-05 2014-07-03 Massachusetts Institute Of Technology Nanofluidic sorting system for gene synthesis and pcr reaction products

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319102A (zh) * 2014-10-23 2015-01-28 上海工程技术大学 一种制备负载三维花状石墨烯/二硫化钼复合材料的纤维状对电极的方法
CN104600315A (zh) * 2015-01-07 2015-05-06 上海大学 一种片状MoS2/石墨烯复合气凝胶及其制备方法

Also Published As

Publication number Publication date
CN106410132A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN106410132B (zh) 二维片状MoS2@石墨烯复合纳米材料及其制备方法
Teng et al. MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes
Zhu et al. Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries
CN102142537B (zh) 一种石墨烯/MoS2复合纳米材料锂离子电池电极及制备方法
Zhou et al. Microwave-assisted synthesis of hollow CuO–Cu2O nanosphere/graphene composite as anode for lithium-ion battery
Ke et al. One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance
CN102142538B (zh) 一种石墨烯/MoS2与无定形碳的锂离子电池电极及制备方法
CN104835654B (zh) 一种三维氮掺杂石墨烯/二硫化钼复合物及其制备方法
CN102214816B (zh) 一种锂离子电池石墨烯/ws2复合纳米材料电极及制备方法
Xiao et al. Effects of structural patterns and degree of crystallinity on the performance of nanostructured ZnO as anode material for lithium-ion batteries
CN105845910A (zh) 花状MoS2@石墨烯纳米复合材料及其制备方法
Xue et al. A simple method to fabricate NiFe2O4/NiO@ Fe2O3 core-shelled nanocubes based on Prussian blue analogues for lithium ion battery
CN104966824A (zh) 一种基于壳聚糖及其衍生物氮掺杂多孔碳球-氧化钴纳米复合负极材料及其制备方法
Ma et al. Fabrication of NiO-ZnO/RGO composite as an anode material for lithium-ion batteries
CN106711413A (zh) 一种锂离子电池多壁碳纳米管/二硫化钼复合电极及制备方法
CN102142539B (zh) 一种容量高和循环稳定的电化学嵌脱镁离子电极及制备方法
Gu et al. One-pot synthesis of SnO2/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries
Du et al. Electrochemical properties of nanostructured Li2FeSiO4/C synthesized by a simple co⿿ precipitation method
Shi et al. Flake-like carbon coated Mn2SnO4 nanoparticles as anode material for lithium-ion batteries
CN104124434A (zh) 多边缘MoS2纳米片/石墨烯电化学贮锂复合电极及制备方法
Li et al. Hydrazine hydrate reduction-induced oxygen vacancy formation in Co3O4 porous nanosheets to optimize the electrochemical lithium storage
Wei et al. Facile mass production of porous SnO2 hollow nanospheres as high performance anode material in lithium-ion batteries
CN104091922A (zh) Mo0.5W0.5S2纳米瓦/石墨烯电化学贮钠复合电极及制备方法
Xu et al. Preparation of large layer spacing bimetallic sulfide hollow nanosphere for high-energy battery system application
CN103682277A (zh) 氮掺杂碳层包裹的空心多孔氧化镍复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190806