CN114229896B - 一种三维结构的MoS2/Carbon/FeOx复合材料及其制备方法 - Google Patents

一种三维结构的MoS2/Carbon/FeOx复合材料及其制备方法 Download PDF

Info

Publication number
CN114229896B
CN114229896B CN202111418385.XA CN202111418385A CN114229896B CN 114229896 B CN114229896 B CN 114229896B CN 202111418385 A CN202111418385 A CN 202111418385A CN 114229896 B CN114229896 B CN 114229896B
Authority
CN
China
Prior art keywords
mos
feo
carbon
composite material
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111418385.XA
Other languages
English (en)
Other versions
CN114229896A (zh
Inventor
王锦富
刘川里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Mingmei New Energy Co ltd
Original Assignee
Guangzhou Mingmei New Energy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Mingmei New Energy Co ltd filed Critical Guangzhou Mingmei New Energy Co ltd
Priority to CN202111418385.XA priority Critical patent/CN114229896B/zh
Publication of CN114229896A publication Critical patent/CN114229896A/zh
Application granted granted Critical
Publication of CN114229896B publication Critical patent/CN114229896B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种三维结构的MoS2/Carbon/FeOx复合材料及其制备方法,通过将氧化石墨烯粉末超声分散于水中,加入钼酸钠以及硫脲,然后进行水热反应,得到MoS2/graphene复合粉末。将二茂铁溶解于乙腈中,然后加入上MoS2/graphene粉末,超声分散均匀,然后微波反应。最后将收集到的粉末在氩气保护下高温煅烧后得到了由零维FeOx纳米颗粒、一维CNTs、二维graphene纳米片以及二维MoS2纳米片所构成的具有分级结构的三维复合纳米材料MoS2/Carbon/FeOx

Description

一种三维结构的MoS2/Carbon/FeOx复合材料及其制备方法
技术领域
本发明涉及电化学材料技术领域,具体涉及一种三维结构的MoS2/Carbon/FeOx复合材料及其制备方法。
背景技术
锂离子电池(LIBs)由于其高能量密度、高功率密度、长循环寿命和低电池记忆效应,是最有前途的储能系统之一。负极材料作为锂离子电池的重要组成部分,对锂离子电池的电化学性能有重要影响。可逆容量大、循环寿命长、倍率性能好、安全性高的新型电极材料是未来高性能锂离子电池的要求(ACS Nano 2015,9,3369)。
二硫化钼(MoS2)作为一种典型的过渡金属硫化物,具有层状结构,在光催化、电子器件、电催化、储能等领域显示出显著的优势(Chemical Society Reviews 2015,44,2713)。MoS2通常被认为是由范德华力堆积在一起的少量S-Mo-S分子层。这种层状结构使得在MoS2中插入锂离子具有较低的体积膨胀率。最近的研究结果表明,MoS2基负极材料能够提供900~1300mAh·g-1的可逆容量,远远高于传统商业石墨负极。(ChemicalCommunications 2011,47,4252)。
然而,MoS2导电性差,不利于锂离子电池的应用。因此,为了解决这一问题,将MoS2与碳材料(包括石墨烯、碳纳米管等)进行复合。同时,将MoS2与具有储锂性能的纳米颗粒复合,以提高MoS2的锂存储性能。这些纳米颗粒不仅作为锂存储容器,而且作为间隔层,避免了MoS2纳米片在充放电过程中重新堆积。MoS2纳米片可以同时有效地缓解MoS2的体积变化。此外,由于特殊的分子机制将电磁能转化为热能,微波加热可以在快速的时间急剧升温到1000℃,因此被广泛应用于碳材料的合成。
发明内容
本发明的目的在于克服现有技术存在的不足之处而提供一种三维结构的MoS2/Carbon/FeOx复合材料及其制备方法
为实现上述目的,本发明采取的技术方案为:
一种三维结构的MoS2/Carbon/FeOx复合材料的制备方法,包括以下步骤:
(1)将氧化石墨烯分散于去离子水中,然后加入钼酸钠和硫脲,搅拌;
(2)将步骤(1)所得混合溶液进行水热反应,反应结束后经过冷却、抽滤、洗涤、干燥和研磨后得到MoS2/graphene复合粉末;
(3)将二茂铁超声溶解于乙腈中,然后再加入MoS2/graphene复合粉末,超声分散均匀;在本发明制备方法中,乙腈首先作为溶剂溶解二茂铁,因此二茂铁可以在反应体系中均匀分布;其次,乙腈也可以作为碳源在高温下裂解形成碳。
(4)然后将步骤(3)所得混合溶液转移至微波下反应;
(5)微波结束后,将得到的材料在惰性气体或氮气保护下高温煅烧,即得所述三维结构的MoS2/Carbon/FeOx复合材料。
本发明制备方法将氧化石墨烯粉末超声分散于去离子水中,然后加入钼酸钠以及硫脲,搅拌均匀,氧化石墨烯含有大量羧基、羟基等含氧基団,通过配位作用吸附水中MoO4 2-离子,水热过程中,硫脲分解产生具有还原性的H2S,并进一步将MoO4 2-还原成MoS2。因此MoS2纳米片就生长在氧化石墨烯表面,命名为MoS2/graphene复合粉末。将二茂铁超声溶解于装有乙腈的坩埚中,然后加入上述得到的MoS2/graphene粉末,超声分散均匀,然后快速将坩埚转移至微波炉中,在微波反应过程中,由于温度急剧上升,吸附在MoS2/graphene表面的二茂铁分子分解,其中铁元素逐渐被氧化成FeOx纳米颗粒,而余下的茂基作为碳源,在高温环境中由铁催化反应快速生长成CNTs。最后将收集到的粉末在氩气保护下高温煅烧后得到了由零维FeOx纳米颗粒、一维CNTs、二维graphene纳米片以及二维MoS2纳米片所构成的具有分级结构的三维复合纳米材料MoS2/Carbon/FeOx
进一步地,所述氧化石墨烯采用hummer法制备制得。发明人通过研究发现,hummer法制备氧化石墨烯是单层的或者是少层的,而市售的氧化石墨烯品质差,是许多层的。因此,如果用市售的氧化石墨烯作为原料,那么合成的复合材料性能较差。
进一步地,步骤(1)中的氧化石墨烯是通过超声分散于去离子水中。发明人通过研究发现,超声振动传递到液体中,从而在液体中产生大量的空化气泡,随着这些空化气泡产生和爆破,产生出微射流可以将氧化石墨烯的固体颗粒击碎,由于超声波的振动和分散作用,可以使氧化石墨烯和水更加充分的混合,利于后续反应的均匀性和充分性。
进一步地,步骤(1)中,氧化石墨烯的质量浓度为0.1~0.3mg/mL、钼酸钠的质量浓度为8~12mg/mL,硫脲的质量浓度为20~30mg/mL。
进一步地,步骤(2)中,水热反应温度为180~210℃,反应时间为12~36h。
硫脲在水中长时间受热分解产生具有还原性的H2S,并进一步将MoO4 2-还原成MoS2。发明人通过研究发现,上述反应温度和反应时间可以保证硫脲的充分分解及H2S对MoO4 2-的还原反应。
进一步地,步骤(3)中,每2~8mL乙腈中加入二茂铁100~200mg,每2~8mL乙腈中加入MoS2/graphene复合粉末200~400mg。发明人通过研究发现,如果加入的二茂铁过多,那么复合材料中形成的FeOx纳米颗粒以及碳纳米管过多,复合材料的比容量会降低;如果加入的二茂铁过少,那么复合材料中形成的FeOx纳米颗粒以及碳纳米管过少,复合材料的循环稳定性变差。
进一步地,步骤(4)中,微波功率为600~1000W,反应时间为30~60s。发明人通过研究发现,在微波反应过程中,由于温度急剧上升,吸附在MoS2/graphene表面的二茂铁分子分解,其中铁元素逐渐被氧化成FeOx纳米颗粒,而余下的茂基作为碳源,在高温环境中由铁催化反应快速生长成CNTs。更进一步优选的,微波功率选用800W,反应既温和又彻底。
进一步地,步骤(5)中,高温煅烧温度为400~500℃,煅烧时间为2~4h。
第二方面,本发明还提供一种上述的制备方法制得的三维结构的MoS2/Carbon/FeOx复合材料。本发明所述复合材料既包括零维FeOx纳米颗粒、一维CNTs,又包括二维graphene纳米片以及二维MoS2,是一种具有分级结构的三维复合纳米材料。
第三方面,本发明还提供上述的三维结构的MoS2/Carbon/FeOx复合材料在锂离子电池中的应用。
与现有技术相比,本发明具有以下有益效果:
(1)本发明制备的比容量高、倍率好、循环稳定性好的三维分级纳米结构的MoS2/Carbon/FeOx复合材料应用于锂离子电池负极材料未见文献报道,具有很好的应用发展前景。
(2)本发明微波法制备了三维分级纳米结构的MoS2/Carbon/FeOx复合材料。此种三维分级杂化结构材料可以提高MoS2/Carbon/FeOx材料的比表面积、力学稳定性和导电性,有利于提高MoS2/Carbon/FeOx材料的储锂比容量,有助于电解液的渗透,防止了MoS2纳米片以及FeOx纳米颗粒在充放电过程中的团聚,重叠,从而提高MoS2/Carbon/FeOx的循环稳定性,为寻求新型锂离子电池负极材料提供研究思路。
附图说明
图1为本发明对比例1所制得的复合材料的扫描电镜图(SEM);
图2为本发明实施例1所制得MoS2/Carbon/FeOx复合材料的扫描电镜图(SEM);
图3为本发明实施例1所制得MoS2/Carbon/FeOx复合材料的透射电镜图(TEM);
图4为本发明实施例3所制得MoS2/Carbon/FeOx复合材料的XRD图谱;
图5为本发明实施例1制备的MoS2/Carbon/FeOx复合材料在0.01~3.0V、0.2A·g-1电流密度下的循环充放电测试曲线;
图6为MoS2/graphene复合粉末在0.01~3.0V、0.2A·g-1电流密度下的循环充放电测试曲线;
图7为本发明对比例1所制备的复合材料在0.01~3.0V、0.2A·g-1电流密度下的循环充放电测试曲线;
图8为本发明实施例2所制得的复合材料在0.01~3.0V、0.2A·g-1电流密度下的循环充放电测试曲线;
图9为本发明实施例1和对比例1所制得的复合材料在0.01~3.0V电压下的倍率放电循环曲线。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例1
本发明所述一种三维结构的MoS2/Carbon/FeOx复合材料的制备方法,包括以下步骤:
将5.0mg氧化石墨烯粉末超声分散于30mL去离子水中,然后加入300mg钼酸钠以及600mg硫脲,搅拌30min,然后将混合溶液转移至50mL水热釜中,密封后在210℃下反应24h,反应结束后经过冷却、抽滤、洗涤、干燥、研磨后得到MoS2/graphene复合材料。氧化石墨烯粉末可选用市售产品也采用hummer法制备氧化石墨烯粉末,优选采用hummer法制备的氧化石墨烯粉末。
将150mg二茂铁超声溶解于装有5ml乙腈的坩埚中,然后加入上述得到的MoS2/graphene复合材料300mg,超声分散均匀,然后快速将坩埚转移至微波炉中,在微波功率为800W条件下反应40s,最后将收集到的粉末在氩气保护下450℃煅烧2h后得到三维分级纳米结构的MoS2/Carbon/FeOx复合材料。
实施例2
本发明所述一种三维结构的MoS2/Carbon/FeOx复合材料的制备方法,包括以下步骤:
将6.0mg氧化石墨烯粉末超声分散于30mL去离子水中,然后加入250mg钼酸钠以及500mg硫脲,搅拌30min,然后将混合溶液转移至50mL水热釜中,密封后在210℃下反应18h,反应结束后经过冷却、抽滤、洗涤、干燥、研磨后得到MoS2/graphene复合材料。氧化石墨烯粉末可选用市售产品也采用hummer法制备氧化石墨烯粉末,优选采用hummer法制备的氧化石墨烯粉末。
将180mg二茂铁超声溶解于装有5.5mL乙腈的坩埚中,然后加入上述得到的MoS2/graphene复合材料350mg,超声分散均匀,然后快速将坩埚转移至微波炉中,在微波功率为800W条件下反应60s,最后将收集到的粉末在氩气保护下450℃煅烧2h后得到三维分级纳米结构的MoS2/Carbon/FeOx复合材料。
实施例3
本发明所述一种三维结构的MoS2/Carbon/FeOx复合材料的制备方法,包括以下步骤:
将8.0mg氧化石墨烯粉末超声分散于30mL去离子水中,然后加入350mg钼酸钠以及700mg硫脲,搅拌30min,然后将混合溶液转移至50mL水热釜中,密封后在200℃下反应30h,反应结束后经过冷却、抽滤、洗涤、干燥、研磨后得到MoS2/graphene复合材料。氧化石墨烯粉末可选用市售产品也采用hummer法制备氧化石墨烯粉末,优选采用hummer法制备的氧化石墨烯粉末。
将200mg二茂铁超声溶解于装有6mL乙腈的坩埚中,然后加入上述得到的MoS2/graphene复合材料400mg,超声分散均匀,然后快速将坩埚转移至微波炉中,在微波功率为800W条件下反应50s,最后将收集到的粉末在氩气保护下480℃煅烧2h后得到三维分级纳米结构的MoS2/Carbon/FeOx复合材料。
对比例1
本发明所述一种三维结构的MoS2/Carbon/FeOx复合材料的制备方法的一种对比例,包括以下步骤:
将5.0mg氧化石墨烯粉末超声分散于30mL去离子水中,然后加入300mg钼酸钠以及600mg硫脲,搅拌30min,然后将混合溶液转移至50mL水热釜中,密封后在210℃下反应24h,反应结束后经过冷却、抽滤、洗涤、干燥、研磨后得到MoS2/graphene复合材料。
称取90mg上述得到的MoS2/graphene材料超声分散于15mL乙醇及15mL乙二醇的混合溶剂中,然后再加入45mg二茂铁及1mL含量为30wt%的过氧化氢溶液,搅拌均匀后将混合溶液转移至50mL水热釜中,密封后在210℃下反应24h,最后经冷却、抽滤、干燥,并在氩气保护下经450℃煅烧2h后得到MoS2/graphene/FeOx负极材料。
效果例
SEM分析所用的仪器为德国蔡司Sigma型扫描电子显微镜,加速电压为10KV。TEM分析所用的仪器为日本电子公司的JSM-2010型投射电子显微镜(TEM)观察试样表面的微观形貌,加速电压为200KV,制样采用无水乙醇分散后滴加铜网上,空气中干燥。使用日本电子公司JSM-6380F型扫描电子显微镜(SEM)对材料进行形貌观察。
XRD分析所用的仪器为北京普析通用仪器有限公司XD-2型X射线衍射仪(XRD)表征所制备最终产物的晶相结构材料。测试条件为Cu靶,Kα辐射,36kV,30mA,步宽0.02°,扫描范围10~80°。样品为粉末置于样品台凹槽压平,直接检测。
充放电测试所用的仪器为深圳市新威尔电子有限公司的BTS51800电池测试系统,型号为CT-3008W,在0.01~3.0V电压范围内进行电化学测试。
利用实施例1~3及对比例1制备的复合材料分别制作扣式电池,测试充放电性能。包括以下步骤:
将MoS2/Carbon/FeOx复合材料与导电碳黑、粘结剂聚偏氯乙烯(PVDF)按质量比8∶1∶1混合,再加入适量N-甲基吡咯烷酮(NMP)搅拌均匀,涂布到铜箔上,在真空烘箱中于90℃下烘干,在冲片机上剪片得纳米二氧化钛/石墨烯材料电极片。将所得电极做正极,金属锂片为负极(在这个纽扣电池里面,因为金属锂的电势比MoS2/Carbon/FeOx低,所以在这个纽扣电池里面负极是金属锂,这个纽扣电池仅仅是用来测试我们制备的MoS2/Carbon/FeOx复合材料的各种性能的。在实际应用中MoS2/Carbon/FeOx复合材料作为负极,对应的正极材料一般是钴酸锂,磷酸铁锂等),电解液为含有1M LiPF6/(EC+DMC)(体积比为1∶1)混合体系,隔膜为微孔聚丙烯膜(Celgard 2400),在充满氩气(Ar)的手套箱内组装成2025型扣式电池。用深圳市新威尔电子有限公司BTS51800电池测试系统进行充放电性能测试。
图1表明对比例制备的MoS2/graphene/FeOx呈三维的纳米花瓣状,没有CNTs生成。
图2表明实施例1制备的MoS2/Carbon/FeOx复合材料具有是三维的片层结构,并且可以观察到一维的CNTs存在。
图3进一步表明实施例1制备的MoS2/Carbon/FeOx复合材料是由零维FeOx纳米颗粒、一维CNTs、二维graphene纳米片以及二维MoS2纳米片所构成的具有分级级结构的三维复合纳米材料。
图4中是实施例3制备的MoS2/Carbon/FeOx复合材料的XRD图谱。其中,2θ角在14.0°、33.2°、58.8°的衍射峰依次对应于MoS2(JCPDS 37-1492)的(002)、(101)、(110)晶面。2θ角在34.4°出现明显尖峰,这说明了Fe3O4(JCPDS 28-0491)的存在。同时在32.8°及60.5°都有微弱的峰出现,这两个峰分别对应于Fe2O3(JCPDS 16-0653)和FeO(JCPDS 06-0711),这说明了MoS2/graphene/FeOx/CNTs复合材料中的铁氧化合物是以混晶存在,铁元素存在多种价态。
从图5中可以看出,实施例1制备的MoS2/Carbon/FeOx复合材料在0.01~3.0V、0.2A·g-1电流密度下的循环充放电测试100次之后比容量1012mAh g-1,是初始容量的90.3%。
从图6中可以看出,MoS2/graphene负极材料在0.01~3.0V、0.2A·g-1电流密度下的循环充放电测试100次之后比容量542mAh g-1,是初始容量的54.8%。
从图7中可以看出,对比例制备的MoS2/graphene/FeOx负极材料在0.01~3.0V、0.2A·g-1电流密度下的循环充放电测试100次之后比容量745mAh g-1,是初始容量的75.1%。
从图8中可以看出,实施例2制备的MoS2/Carbon/FeOx复合材料在0.01~3.0V、0.2A·g-1电流密度下的循环充放电测试100次之后比容量805mAh g-1,是初始容量的81.5%。
从图9中可以看出,实施例1制备的MoS2/Carbon/FeOx复合在0.01~3.0V、不同电流密度下的倍率放电性能比对比例MoS2/graphene/FeOx复合材料的好。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (9)

1.一种三维结构的MoS2/Carbon/FeOx复合材料的制备方法,其特征在于,包括以下步骤:
(1)将氧化石墨烯分散于去离子水中,然后加入钼酸钠和硫脲,搅拌;
(2)将步骤(1)所得混合溶液进行水热反应,反应结束后经过冷却、抽滤、洗涤、干燥和研磨后得到MoS2/graphene复合粉末;
(3)将二茂铁超声溶解于乙腈中,然后再加入MoS2/graphene复合粉末,超声分散均匀;
(4)然后将步骤(3)所得混合溶液转移至微波下反应;微波功率为600~1000W,反应时间为30~60s;
(5)微波结束后,将得到的材料在惰性气体或氮气保护下煅烧,即得所述三维结构的MoS2/Carbon/FeOx复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述氧化石墨烯采用hummer法制备制得。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中的氧化石墨烯是通过超声分散于去离子水中。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,氧化石墨烯的质量浓度为0.1~0.3mg/mL、钼酸钠的质量浓度为8~12mg/mL,硫脲的质量浓度为20~30mg/mL。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,水热反应温度为180~210℃,反应时间为12~36h。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,每2~8mL乙腈中加入二茂铁100~200mg,每2~8mL乙腈中加入MoS2/graphene复合粉末200~400mg。
7.根据权利要求1所述的制备方法,其特征在于,步骤(5)中,煅烧温度为400~500℃,煅烧时间为2~4h。
8.一种如权利要求1~7任一项所述的制备方法制得的三维结构的MoS2/Carbon/FeOx复合材料。
9.一种如权利要求8所述的三维结构的MoS2/Carbon/FeOx复合材料在锂离子电池中的应用。
CN202111418385.XA 2021-11-25 2021-11-25 一种三维结构的MoS2/Carbon/FeOx复合材料及其制备方法 Active CN114229896B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111418385.XA CN114229896B (zh) 2021-11-25 2021-11-25 一种三维结构的MoS2/Carbon/FeOx复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111418385.XA CN114229896B (zh) 2021-11-25 2021-11-25 一种三维结构的MoS2/Carbon/FeOx复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114229896A CN114229896A (zh) 2022-03-25
CN114229896B true CN114229896B (zh) 2024-01-12

Family

ID=80751272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111418385.XA Active CN114229896B (zh) 2021-11-25 2021-11-25 一种三维结构的MoS2/Carbon/FeOx复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114229896B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140475A (zh) * 2015-07-28 2015-12-09 哈尔滨工程大学 一种Fe3O4/MoS2锂离子电池负极材料的制备方法
CN105576212A (zh) * 2016-02-19 2016-05-11 东莞市迈科科技有限公司 一种锂离子电池二氧化钛纳米片包覆石墨烯负极材料的制备方法
CN106410132A (zh) * 2016-11-09 2017-02-15 上海大学 二维片状MoS2@石墨烯复合纳米材料及其制备方法
CN106783201A (zh) * 2016-12-02 2017-05-31 东华大学 一种硫化钼/三氧化二铁复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140475A (zh) * 2015-07-28 2015-12-09 哈尔滨工程大学 一种Fe3O4/MoS2锂离子电池负极材料的制备方法
CN105576212A (zh) * 2016-02-19 2016-05-11 东莞市迈科科技有限公司 一种锂离子电池二氧化钛纳米片包覆石墨烯负极材料的制备方法
CN106410132A (zh) * 2016-11-09 2017-02-15 上海大学 二维片状MoS2@石墨烯复合纳米材料及其制备方法
CN106783201A (zh) * 2016-12-02 2017-05-31 东华大学 一种硫化钼/三氧化二铁复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114229896A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
US11050058B2 (en) Methods of making electrodes, electrodes made therefrom, and electrochemical energy storage cells utilizing the electrodes
Li et al. Preparation of promising anode materials with Sn-MOF as precursors for superior lithium and sodium storage
Zhang et al. Microwave-assisted synthesis of NiCo 2 O 4 double-shelled hollow spheres for high-performance sodium ion batteries
Li et al. High performance porous MnO@ C composite anode materials for lithium-ion batteries
US20120104327A1 (en) Spinel-Type Lithium Titanium Oxide/Graphene Composite and Method of Preparing the Same
Su et al. Preparation and electrochemical Li storage performance of MnO@ C nanorods consisting of ultra small MnO nanocrystals
Shi et al. Carbonate-assisted hydrothermal synthesis of porous hierarchical Co3O4/CuO composites as high capacity anodes for lithium-ion batteries
Fang et al. Synthesis of unique hierarchical mesoporous layered-cube Mn2O3 by dual-solvent for high-capacity anode material of lithium-ion batteries
Chen et al. MOF-derived bimetal oxides NiO/NiCo 2 O 4 with different morphologies as anodes for high-performance lithium-ion battery
Liu et al. Chemical reduction-induced oxygen deficiency in Co3O4 nanocubes as advanced anodes for lithium ion batteries
CN109065874B (zh) 一种MoO3/rGO-N纳米复合材料及其制备方法和应用
Liu et al. Optimizing oxygen vacancies can improve the lithium storage properties in NiO porous nanosheet anodes
Qin et al. Strongly anchored MnO nanoparticles on graphene as high-performance anode materials for lithium-ion batteries
Zhang et al. Cu@ MoO2@ C nanocomposite with stable yolk-shell structure for high performance lithium-ion batteries
CN114314673B (zh) 一种片状FeOCl纳米材料的制备方法
Zhao et al. Facile fabrication of hollow CuO nanocubes for enhanced lithium/sodium storage performance
Guo et al. Design of an ultra-stable Sb2Se3 anode with excellent Na storage performance
Zhu et al. In-situ synthesis of F-doped FeOOH nanorods on graphene as anode materials for high lithium storage
CN113054170B (zh) 镍-镍钼氧化物-石墨烯复合材料的制备方法及其应用于锂离子电池
Xu et al. Hierarchical Co 3 O 4@ C hollow microspheres with high capacity as an anode material for lithium-ion batteries
Yan et al. Hierarchical porous Co3O4 spheres fabricated by modified solvothermal method as anode material in Li-ion batteries
CN113410459A (zh) 一种内嵌MoSx纳米片的三维有序大孔类石墨烯炭材料、制备与应用
Zhang et al. Hydrothermal synthesis of NiSe2 octahedral structure and sodium ion storage performance
Li et al. A ZnO/rice husk-based hollow carbonaceous nanosphere composite as an anode for high-performance lithium-ion batteries
Xie et al. Cathode Properties of Na_3MPO_4CO_3 (M= Co/Ni) Prepared by a Hydrothermal Method for Na-ion Batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant