CN106407595A - 一种基于下沉量贡献率的汽车车门的优化方法 - Google Patents

一种基于下沉量贡献率的汽车车门的优化方法 Download PDF

Info

Publication number
CN106407595A
CN106407595A CN201610885528.0A CN201610885528A CN106407595A CN 106407595 A CN106407595 A CN 106407595A CN 201610885528 A CN201610885528 A CN 201610885528A CN 106407595 A CN106407595 A CN 106407595A
Authority
CN
China
Prior art keywords
deflection
arrangements
car door
module
automotive doors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610885528.0A
Other languages
English (en)
Other versions
CN106407595B (zh
Inventor
陆群
李轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Changcheng Huaguan Automobile Technology Development Co Ltd
Original Assignee
Beijing Changcheng Huaguan Automobile Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Changcheng Huaguan Automobile Technology Development Co Ltd filed Critical Beijing Changcheng Huaguan Automobile Technology Development Co Ltd
Priority to CN201610885528.0A priority Critical patent/CN106407595B/zh
Publication of CN106407595A publication Critical patent/CN106407595A/zh
Application granted granted Critical
Publication of CN106407595B publication Critical patent/CN106407595B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)

Abstract

本发明公开了一种基于下沉量贡献率的汽车车门的优化方法,其通过比较汽车车门模型的各个模块对车门下沉量的下沉量贡献率确定对车门下沉量影响最大的模块,从而确定车门的优化方向。

Description

一种基于下沉量贡献率的汽车车门的优化方法
技术领域
本发明涉及汽车领域,特别涉及一种基于下沉量贡献率的汽车车门的优化方法。
背景技术
车门下沉刚度是指车门在打开状态下,承受自然重力载荷或人为外力时,抵抗下沉变形的能力。车门下沉刚度不足会导致车门锁、玻璃升降器等性能受到影响,同时也会影响到车门与车身的配合、密封性能,造成漏风、渗水,以及行驶过程中振动、噪声等问题,严重影响乘员舒适性。
车门下沉刚度不仅考察铰链的性能,与车门结构、车身侧结构(A柱、B柱)也有很大关系,是由车身侧、铰链、车门三方面构成的系统问题。
现有的车门下沉刚度分析方法只对车身、铰链、车门组成的系统进行分析,并给出车门下沉量是否合格的结论。然而这一结论并不能直接指导设计工程师改进设计,甚至不能在车门下沉量不合格的情况下确定需要改进设计的模块,针对整个车门系统的问题不能做到有的放矢。
发明内容
有鉴于此,本发明的目的是提供一种基于下沉量贡献率的汽车车门的优化方法,其通过比较汽车车门模型的各个模块对车门下沉量的下沉量贡献率,确定对车门下沉量影响最大的模块,从而确定车门的优化方向。
本发明的实施例提供了一种基于下沉量贡献率的汽车车门的优化方法,包括:
步骤a、当识别到模型输入信息时,模型存储单元根据该模型输入信息建立汽车车门模型,所述汽车车门模型包括车身模块、铰链模块和车门模块;
步骤b、当接收到车门下沉量计算触发指令时,计算单元根据所述汽车车门模型确定车门下沉量;
步骤c、当从所述计算单元接收到车门下沉量时,比较单元判断所述车门下沉量是否小于阈值,如果是,则输出汽车车门合格的结果并且完成优化,如果否,则执行步骤d;
步骤d、当接收到下沉量贡献率计算触发指令时,计算单元根据所述汽车车门模型分别确定车身模块、铰链模块和车门模块的下沉量贡献率;
步骤e、当从所述计算单元接收到各个模块的下沉量贡献率时,比较单元确定和可视化输出下沉量贡献率最大的模块,修改所述下沉量贡献率最大的模块的模型输入信息,然后执行步骤a。
优选地,所述步骤d包括:
步骤d1、当接收到下沉量贡献率计算触发指令时,计算单元分别确定车身模块、铰链模块和车门模块的下沉量贡献量;
所述车身模块的下沉量贡献量为所述铰链模块和车门模块为刚性材料时的车门下沉量,所述铰链模块的下沉量贡献量为所述车身模块和车门模块为刚性材料时的车门下沉量,所述车门模块的下沉量贡献量为所述车身模块和铰链模块为刚性材料时的车门下沉量;
步骤d2、计算单元分别确定车身模块、铰链模块和车门模块的下沉量贡献率;
所述车身模块的下沉量贡献率为车身模块的下沉量贡献量与车身模块、铰链模块和车门模块的下沉量贡献量三者之和的比值,所述铰链模块的下沉量贡献率为铰链模块的下沉量贡献量与车身模块、铰链模块和车门模块的下沉量贡献量三者之和的比值,所述车门模块的下沉量贡献率为车门模块的下沉量贡献量与车身模块、铰链模块和车门模块的下沉量贡献量三者之和的比值。
优选地,在步骤d1中,计算单元确定车身模块的下沉量贡献量包括:
步骤d11、计算单元根据汽车车门模型确定自重工况下的车门下沉量,在该汽车车门模型中,所述铰链模块和车门模块为刚性材料;
步骤d12、计算单元根据该汽车车门模型确定外力工况下的车门下沉量;
步骤d13、计算单元根据该汽车车门模型确定卸载工况下的车门下沉量,所述卸载工况下的车门下沉量为车身模块的下沉量贡献量;
计算单元确定铰链模块的下沉量贡献量包括:
步骤d14、计算单元根据汽车车门模型确定自重工况下的车门下沉量,在该汽车车门模型中,所述车身模块和车门模块为刚性材料;
步骤d15、计算单元根据该汽车车门模型确定外力工况下的车门下沉量;
步骤d16、计算单元根据该汽车车门模型确定卸载工况下的车门下沉量,所述卸载工况下的车门下沉量为铰链模块的下沉量贡献量;
计算单元确定车门模块的下沉量贡献量包括:
步骤d17、计算单元根据汽车车门模型确定自重工况下的车门下沉量,在该汽车车门模型中,所述车身模块和铰链模块为刚性材料;
步骤d18、计算单元根据该汽车车门模型确定外力工况下的车门下沉量;
步骤d19、计算单元根据该汽车车门模型确定卸载工况下的车门下沉量,所述卸载工况下的车门下沉量为车门模块的下沉量贡献量。
优选地,所述步骤b包括:
步骤b1、当接收到车门下沉量计算触发指令时,计算单元根据所述汽车车门模型确定自重工况下的车门下沉量DG
步骤b2、计算单元根据所述汽车车门模型确定外力工况下的车门下沉量DF
步骤b3、计算单元根据所述汽车车门模型确定卸载工况下的车门下沉量DP
优选地,所述模型输入信息包括:所述车身模块、铰链模块和车门模块的材料参数、形状参数,以及加载至所述车门模块的力学参数。
本实施例的优化方法不仅从整体上判断汽车车门模型的下沉量,而且从每个模块对车门下沉量的影响程度判断对车门下沉量不符合标准要求造成最主要影响的模块,使得对车门模型的优化做到有的放矢,能够大量节省优化的步骤和时间,从而提高汽车车门模型的设计效率。
附图说明
以下附图仅对本发明做示意性说明和解释,并不限定本发明的范围。
图1为本实施例中的汽车车门模型的结构示意图。
图2为本实施例中的基于下沉量贡献率的汽车车门的优化方法的流程图。
图3为图2中步骤d的流程图。
图4为图2中步骤b的流程图。
具体实施方式
为了对发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式,在各图中相同的标号表示相同的部分。
在本文中,“示意性”表示“充当实例、例子或说明”,不应将在本文中被描述为“示意性”的任何图示、实施方式解释为一种更优选的或更具优点的技术方案。
为使图面简洁,各图中的只示意性地表示出了与本发明相关部分,而并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。
如图2所示,本发明的实施例提供了一种基于下沉量贡献率的汽车车门的优化方法,包括:
步骤a、当识别到模型输入信息时,模型存储单元根据该模型输入信息建立汽车车门模型,汽车车门模型包括车身模块、铰链模块和车门模块;
步骤b、当接收到车门下沉量计算触发指令时,计算单元根据汽车车门模型确定车门下沉量;
步骤c、当从计算单元接收到车门下沉量时,比较单元判断车门下沉量是否小于阈值,如果是,则输出汽车车门合格的结果并且完成优化,如果否,则执行步骤d;
步骤d、当接收到下沉量贡献率计算触发指令时,计算单元根据汽车车门模型分别确定车身模块、铰链模块和车门模块的下沉量贡献率;
步骤e、当从计算单元接收到各个模块的下沉量贡献率时,比较单元确定和可视化输出下沉量贡献率最大的模块,修改下沉量贡献率最大的模块的模型输入信息,然后执行步骤a。
执行本实施例的基于下沉量贡献率的汽车车门的优化方法的系统主要包括模型存储单元、计算单元和比较单元,其中,模型存储单元用于存储汽车车门模型的各项信息,计算单元根据计算触发指令基于模型存储单元中存储的汽车车门模型确定与车门下沉量相关的数据,比较单元根据计算单元得到的数据确定下沉量贡献率最大的模块,从而确定车门的优化方向。当然,该系统还需要包括输入端口和输出端口等交互单元。
在本实施例中,汽车车门模型如图1所示包括:车身模块10、铰链模块20和车门模块30,车门模块30通过铰链模块20而连接至车身模块10。
当系统识别到模型输入信息时,模型存储单元根据该模型输入信息建立如图1所示的汽车车门模型。其中,模型输入信息可包括:车身模块10、铰链模块20和车门模块30的材料参数、形状参数、位置参数,以及加载至车门模块30的力学参数。根据以上模型输入信息,能够确定车身模块10、铰链模块20和车门模块30的形状、重量、连接位置关系,以及在不同的工况下加载至汽车车门模型的外力的位置和大小,从而确定与车门下沉量相关的数据。
在模型存储单元根据该模型输入信息建立汽车车门模型以后,当系统接收到车门下沉量计算触发指令时,计算单元根据汽车车门模型确定车门下沉量。此处的车门下沉量可为一种或几种工况下的车门下沉量,工况的数量根据优化标准确定。
计算单元确定并向比较单元输出车门下沉量,当从计算单元接收到车门下沉量时,比较单元将计算单元确定的车门下沉量与预定阈值进行比较,以确定其是否小于预定阈值,其中该预定阈值为车门下沉量的标准要求。如果是,则表示该汽车车门模型的车门下沉量符合标准要求,则系统可输出汽车车门合格的结果,并且确定已完成优化;如果否,则表示该汽车车门模型的车门下沉量不符合标准要求,则系统需要执行确定各个模块的下沉量贡献率的步骤,以确定优化方向。
当计算单元接收到下沉量贡献率计算触发指令时,计算单元根据汽车车门模型确定各个模块的下沉量贡献率,并通过比较单元确定下沉量贡献率最大的模块,即造成车门下沉量过大的最主要的模块,从而确定了汽车车门模型的优化方向。
通过修改该下沉量贡献率最大的模块的模型输入信息实现对汽车车门模型的优化,并且根据修改的模型输入信息建立新的汽车车门模型和确定新的汽车车门模型的车门下沉量,当新的汽车车门模型的车门下沉量符合标准要求时,则汽车车门模型的优化可完成;当新的汽车车门模型的车门下沉量仍不符合标准要求时,则系统需要执行确定各个模块的下沉量贡献率的步骤,以确定进一步的优化方向,直至新的汽车车门模型的车门下沉量符合标准要求为止。
从以上方案可知,在本实施例中,当汽车车门模型的车门下沉量不符合标准要求时,本实施例的优化方法进一步确定汽车车门模型中的每个模块的下沉量贡献率,即每个模块对车门下沉量造成的影响,从而确定出对车门下沉量不符合标准要求造成最主要影响的模块,从而确定了汽车车门模型的优化方向。通过修改对车门下沉量不符合标准要求造成最主要影响的模块的模型输入信息,即该模块的各项参数,实现对汽车车门模型的优化,以使其车门下沉量达到标准要求。
本实施例的优化方法不仅从整体上判断汽车车门模型的下沉量,而且从每个模块对车门下沉量的影响程度判断对车门下沉量不符合标准要求造成最主要影响的模块,使得对车门模型的优化做到有的放矢,能够大量节省优化的步骤和时间,从而提高汽车车门模型的设计效率。
优选地,如图4所示,步骤b包括:
步骤b1、当接收到车门下沉量计算触发指令时,计算单元根据汽车车门模型确定自重工况下的车门下沉量DG
步骤b2、计算单元根据汽车车门模型确定外力工况下的车门下沉量DF
步骤b3、计算单元根据汽车车门模型确定卸载工况下的车门下沉量DP
在本实施例中,用于车门下沉量分析的工况工包括三种:(1)车门自重下沉(自重工况);(2)在车门自重下沉的基础上,车门受到垂直向下的外力(外力工况);(3)撤去外力工况中的外力,仍保留车门自重的情况下,由于外力工况而导致的永久塑性变形(卸载工况)。因此,在确定以上例如卸载工况下的车门下沉量时,需要依照如图4所示的顺序依次加载车门自重、外力,随后卸载外力才能得到卸载工况下的车门下沉量。同样,在确定外力工况下的车门下沉量时,需要首先加载车门自重,然后加载外力才能得到外力工况下的车门下沉量。
以确定自重工况下的车门下沉量DG为例,首先在加载车门自重以前,记录车门上任意一点的位置;然后加载车门自重,当汽车车门模型在自重加载后进入稳定状态时,记录该点的新位置,两个位置在垂直方向上的差值即为在自重工况下的车门下沉量DG。其他两种工况的测量方法与此类似,在此不再赘述。
在本实施例中,如图3所示,步骤d包括:
步骤d1、当接收到下沉量贡献率计算触发指令时,计算单元分别确定车身模块、铰链模块和车门模块的下沉量贡献量;
车身模块10的下沉量贡献量为铰链模块20和车门模块30为刚性材料时的车门下沉量,铰链模块20的下沉量贡献量为车身模块10和车门模块30为刚性材料时的车门下沉量,车门模块30的下沉量贡献量为车身模块10和铰链模块20为刚性材料时的车门下沉量;
步骤d2、计算单元分别确定车身模块、铰链模块和车门模块的下沉量贡献率;
车身模块10的下沉量贡献率为车身模块的下沉量贡献量与车身模块、铰链模块和车门模块的下沉量贡献量三者之和的比值,铰链模块20的下沉量贡献率CPH为铰链模块的下沉量贡献量与车身模块、铰链模块和车门模块的下沉量贡献量三者之和的比值,车门模块30的下沉量贡献率为车门模块的下沉量贡献量与车身模块、铰链模块和车门模块的下沉量贡献量三者之和的比值。
在本实施例中,当需要确定其中一个模块的下沉量贡献量时,则需要排除另外两个模块对下沉量造成的影响,因此需要将另外两个模块设定为刚性材料,即在外力作用下不会发生变形的材料,而需要确定下沉量贡献量的模块则采用汽车车门模型中正常使用的材料,从而能够单独确定该模块对车门下沉量的贡献量,即对车门下沉量造成的影响。
在本实施例中,通过各个模块的下沉量贡献率来确定各个模块对车门下沉量造成的影响程度,可以理解的是,通过比较各个模块的下沉量贡献量也可实现对影响程度的确定,即下沉量贡献量最大的模块即为对车门下沉量造成的影响程度最大的模块。
与确定车门下沉量类似地,在确定各个模块的下沉量贡献量时,也需要在汽车车门模型的三种不同的工况下来确定。
其中,在步骤d1中,计算单元确定车身模块的下沉量贡献量包括:
步骤d11、计算单元根据汽车车门模型确定自重工况下的车门下沉量,在该汽车车门模型中,所述铰链模块和车门模块为刚性材料;
步骤d12、计算单元根据该汽车车门模型确定外力工况下的车门下沉量;
步骤d13、计算单元根据该汽车车门模型确定卸载工况下的车门下沉量,所述卸载工况下的车门下沉量为车身模块的下沉量贡献量;
计算单元确定铰链模块的下沉量贡献量包括:
步骤d14、计算单元根据汽车车门模型确定自重工况下的车门下沉量,在该汽车车门模型中,所述车身模块和车门模块为刚性材料;
步骤d15、计算单元根据该汽车车门模型确定外力工况下的车门下沉量;
步骤d16、计算单元根据该汽车车门模型确定卸载工况下的车门下沉量,所述卸载工况下的车门下沉量为铰链模块的下沉量贡献量;
计算单元确定车门模块的下沉量贡献量包括:
步骤d17、计算单元根据汽车车门模型确定自重工况下的车门下沉量,在该汽车车门模型中,所述车身模块和铰链模块为刚性材料;
步骤d18、计算单元根据该汽车车门模型确定外力工况下的车门下沉量;
步骤d19、计算单元根据该汽车车门模型确定卸载工况下的车门下沉量,所述卸载工况下的车门下沉量为车门模块的下沉量贡献量。
在以上计算单元确定各个模块的下沉量贡献量中,每个模块的计算顺序没有固定顺序,即步骤d14~d16可在步骤d17~d19之前或之后进行,步骤d11~d13可在步骤d14~d16之前或之后进行,以此类推。
本实施例的优化方法不仅从整体上判断汽车车门模型的下沉量,而且从每个模块对车门下沉量的影响程度判断对车门下沉量不符合标准要求造成最主要影响的模块,使得对车门模型的优化做到有的放矢,能够大量节省优化的步骤和时间,从而提高汽车车门模型的设计效率。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,而并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方案或变更,如特征的组合、分割或重复,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于下沉量贡献率的汽车车门的优化方法,其特征在于,包括:
步骤a、当识别到模型输入信息时,模型存储单元根据该模型输入信息建立汽车车门模型,所述汽车车门模型包括车身模块、铰链模块和车门模块;
步骤b、当接收到车门下沉量计算触发指令时,计算单元根据所述汽车车门模型确定车门下沉量;
步骤c、当从所述计算单元接收到车门下沉量时,比较单元判断所述车门下沉量是否小于阈值,如果是,则输出汽车车门合格的结果并且完成优化,如果否,则执行步骤d;
步骤d、当接收到下沉量贡献率计算触发指令时,计算单元根据所述汽车车门模型分别确定车身模块、铰链模块和车门模块的下沉量贡献率;
步骤e、当从所述计算单元接收到各个模块的下沉量贡献率时,比较单元确定和可视化输出下沉量贡献率最大的模块,修改所述下沉量贡献率最大的模块的模型输入信息,然后执行步骤a。
2.根据权利要求1所述的基于下沉量贡献率的汽车车门的优化方法,其特征在于,所述步骤d包括:
步骤d1、当接收到下沉量贡献率计算触发指令时,计算单元分别确定车身模块、铰链模块和车门模块的下沉量贡献量;
所述车身模块的下沉量贡献量为所述铰链模块和车门模块为刚性材料时的车门下沉量,所述铰链模块的下沉量贡献量为所述车身模块和车门模块为刚性材料时的车门下沉量,所述车门模块的下沉量贡献量为所述车身模块和铰链模块为刚性材料时的车门下沉量;
步骤d2、计算单元分别确定车身模块、铰链模块和车门模块的下沉量贡献率;
所述车身模块的下沉量贡献率为车身模块的下沉量贡献量与车身模块、铰链模块和车门模块的下沉量贡献量三者之和的比值,所述铰链模块的下沉量贡献率为铰链模块的下沉量贡献量与车身模块、铰链模块和车门模块的下沉量贡献量三者之和的比值,所述车门模块的下沉量贡献率为车门模块的下沉量贡献量与车身模块、铰链模块和车门模块的下沉量贡献量三者之和的比值。
3.根据权利要求2所述的基于下沉量贡献率的汽车车门的优化方法,其特征在于,在步骤d1中,计算单元确定车身模块的下沉量贡献量包括:
步骤d11、计算单元根据汽车车门模型确定自重工况下的车门下沉量,在该汽车车门模型中,所述铰链模块和车门模块为刚性材料;
步骤d12、计算单元根据该汽车车门模型确定外力工况下的车门下沉量;
步骤d13、计算单元根据该汽车车门模型确定卸载工况下的车门下沉量,所述卸载工况下的车门下沉量为车身模块的下沉量贡献量;
计算单元确定铰链模块的下沉量贡献量包括:
步骤d14、计算单元根据汽车车门模型确定自重工况下的车门下沉量,在该汽车车门模型中,所述车身模块和车门模块为刚性材料;
步骤d15、计算单元根据该汽车车门模型确定外力工况下的车门下沉量;
步骤d16、计算单元根据该汽车车门模型确定卸载工况下的车门下沉量,所述卸载工况下的车门下沉量为铰链模块的下沉量贡献量;
计算单元确定车门模块的下沉量贡献量包括:
步骤d17、计算单元根据汽车车门模型确定自重工况下的车门下沉量,在该汽车车门模型中,所述车身模块和铰链模块为刚性材料;
步骤d18、计算单元根据该汽车车门模型确定外力工况下的车门下沉量;
步骤d19、计算单元根据该汽车车门模型确定卸载工况下的车门下沉量,所述卸载工况下的车门下沉量为车门模块的下沉量贡献量。
4.根据权利要求1或2所述的基于下沉量贡献率的汽车车门的优化方法,其特征在于,所述步骤b包括:
步骤b1、当接收到车门下沉量计算触发指令时,计算单元根据所述汽车车门模型确定自重工况下的车门下沉量DG
步骤b2、计算单元根据所述汽车车门模型确定外力工况下的车门下沉量DF
步骤b3、计算单元根据所述汽车车门模型确定卸载工况下的车门下沉量DP
步骤b4、计算单元输出所述外力工况下的车门下沉量DF和卸载工况下的车门下沉量DP
5.根据权利要求1或2所述的基于下沉量贡献率的汽车车门的优化方法,其特征在于,所述模型输入信息包括:所述车身模块、铰链模块和车门模块的材料参数、形状参数、位置参数,以及加载至所述车门模块的力学参数。
CN201610885528.0A 2016-10-11 2016-10-11 一种基于下沉量贡献率的汽车车门的优化方法 Active CN106407595B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610885528.0A CN106407595B (zh) 2016-10-11 2016-10-11 一种基于下沉量贡献率的汽车车门的优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610885528.0A CN106407595B (zh) 2016-10-11 2016-10-11 一种基于下沉量贡献率的汽车车门的优化方法

Publications (2)

Publication Number Publication Date
CN106407595A true CN106407595A (zh) 2017-02-15
CN106407595B CN106407595B (zh) 2019-11-01

Family

ID=59228622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610885528.0A Active CN106407595B (zh) 2016-10-11 2016-10-11 一种基于下沉量贡献率的汽车车门的优化方法

Country Status (1)

Country Link
CN (1) CN106407595B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649879A (zh) * 2020-06-09 2020-09-11 安徽江淮汽车集团股份有限公司 车门气密性的检测方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130105077A1 (en) * 2011-10-27 2013-05-02 Whirlpool Corporation Method for forming a laminated part

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130105077A1 (en) * 2011-10-27 2013-05-02 Whirlpool Corporation Method for forming a laminated part

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ROSHAN N. MAHADULE ET AL: ""CAE Simulation of Door Sag/Set Using Subsystem Level Approach"", 《SAE TECHNICAL PAPER》 *
焦熙印 等: ""控制车门下沉的设计方法"", 《农业装备与车辆工程》 *
贺方平 等: ""Abaqus 在轿车车门下沉量分析中的应用"", 《计算机辅助工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649879A (zh) * 2020-06-09 2020-09-11 安徽江淮汽车集团股份有限公司 车门气密性的检测方法及装置
CN111649879B (zh) * 2020-06-09 2021-07-13 安徽江淮汽车集团股份有限公司 车门气密性的检测方法及装置

Also Published As

Publication number Publication date
CN106407595B (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
CN106644499B (zh) 电动汽车动力总成强度测试方法和系统
CN109886964A (zh) 电路板缺陷检测方法、装置及设备
CN103336992A (zh) 一种模糊神经网络学习算法
CN107644221A (zh) 基于参数压缩的卷积神经网络交通标志识别方法
CN112001110A (zh) 一种基于振动信号空间时时递归图卷积神经网络的结构损伤识别监测方法
Thirumalainambi et al. Training data requirement for a neural network to predict aerodynamic coefficients
CN102829967A (zh) 一种基于回归模型系数变化的时域故障识别方法
CN111353377A (zh) 一种基于深度学习的电梯乘客数检测方法
CN106407944A (zh) 一种基于多模态回归分析的水电机组空蚀信号特征提取方法
CN109800309A (zh) 课堂话语类型分类方法及装置
CN114861880B (zh) 基于空洞卷积神经网络的工业设备故障预测方法及装置
CN106407595A (zh) 一种基于下沉量贡献率的汽车车门的优化方法
CN110962828A (zh) 预测电动汽车制动压力的方法和设备
CN107133643A (zh) 基于多特征融合及特征选择的乐音信号分类方法
CN110223342A (zh) 一种基于深度神经网络的空间目标尺寸估计方法
CN113139549A (zh) 一种基于多任务学习的参数自适应全景分割方法
CN111666872B (zh) 一种数据不平衡下的高效行为识别方法
CN105372579A (zh) 一种快速有效的电路单元重要性测度方法
CN109598371B (zh) 一种飞行器载电子设备的温度预测方法及系统
CN110126846A (zh) 驾驶场景的表示方法、装置、系统和存储介质
CN106295043A (zh) 一种高斯径向基函数代理模型的参数确定方法
Aulich et al. Surrogate estimations of complete flow fields of fan stage designs via deep neural networks
CN104008378B (zh) 一种基于行为特征的乘客人数计量方法
CN113311364A (zh) 基于多核svm的永磁同步电机逆变器开路故障诊断方法
CN110378352A (zh) 复杂水下环境中高精度抗干扰二维滤波导航数据去噪方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant