CN106403510A - 一种对流共微波传热方式在减压干燥中的应用 - Google Patents

一种对流共微波传热方式在减压干燥中的应用 Download PDF

Info

Publication number
CN106403510A
CN106403510A CN201510451765.1A CN201510451765A CN106403510A CN 106403510 A CN106403510 A CN 106403510A CN 201510451765 A CN201510451765 A CN 201510451765A CN 106403510 A CN106403510 A CN 106403510A
Authority
CN
China
Prior art keywords
cavity
drying
microwave
valve
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510451765.1A
Other languages
English (en)
Other versions
CN106403510B (zh
Inventor
黄宇声
刘冠萍
徐卓
张栩颜
陈勇
贤英越
陈苑君
易燕群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Wuzhou Pharmaceutical Group Co Ltd
Original Assignee
Guangxi Wuzhou Pharmaceutical Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Wuzhou Pharmaceutical Group Co Ltd filed Critical Guangxi Wuzhou Pharmaceutical Group Co Ltd
Priority to CN201510451765.1A priority Critical patent/CN106403510B/zh
Publication of CN106403510A publication Critical patent/CN106403510A/zh
Application granted granted Critical
Publication of CN106403510B publication Critical patent/CN106403510B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种对流共微波传热方式在物料减压干燥过程中的应用。具体涉及在采用目前新兴的减压-微波干燥装置干燥物料过程中,在启动微波传热、保证干燥腔内真空度在30~5000Pa的范围内,均匀通入适量饱和蒸汽,蒸汽与微波协同作用,一方面利用微波作用使物料内部水分子运动加剧、水分子从物料内部挤出到表面,另一方面由蒸汽以对流方式提供足够的显热以平衡这些水分由液态转化成气态所吸收的潜热,再利用蒸汽减压膨胀释放出的动能,摆脱表面张力的束缚迅速将水气推离物料表面从而达到缩短干燥时间的目的。

Description

一种对流共微波传热方式在减压干燥中的应用
技术领域
本发明涉及干燥技术及其应用领域,具体涉及一种物料的对流共微波加热的减压干燥方法。
背景技术
物料的干燥方法一般有常压干燥、喷雾干燥以及减压干燥,本发明涉及其中的减压干燥法。
减压干燥法是目前比较流行的干燥方法,通过降低压力(大气压力以101325Pa为基准),水分子由液态转化成汽态所需的潜热也大大降低,对于热敏性物质,或不容易干燥的样品,例如流膏或其他块状样品,使用减压干燥法可以有效缩短干燥时间,同时保证物料干燥后的品质。因此,对于需要干燥时间较长、热敏性高的物料,用减压干燥是较佳的选择。与常压干燥法相比,减压干燥法虽然可大大缩短了干燥时间,但仍有压挤的空间,如流浸膏使用一般箱式减压干燥法干燥,通常也需要24-48小时才能得到水分低于5%的块状物;链带式减压干燥法也可以大大缩短干燥时间,但它是以牺牲物理空间为代价,如相同时间内要获得同样的产量,其设备外型尺寸远比箱式干燥法大,且内部结构繁杂,清洁不便,极不利应用于洁净生产。
中国专利申请03117185.0(公开号为CN 1431443A)公开了一种膏状物的干燥方法,将膏状物放置在减压加热罐内,并让膏状物从罐体的上部经筛板上的筛孔挤出、成条状药膏后,垂直通过罐体中部缓缓降至罐体下部,进行动态连续干燥。该干燥法主要利用对流方式进行热交换,以成倍增加待干燥膏状物的比表面积的方法,使膏状物中更多、甚至成数量级的水分子同时均匀地获得潜热而气化,从而达到缩短干燥时间的目的。
专利申请号201010271537.3“真空干燥设备”,提出了一种改进后的真空干燥设备,特征是具有空气循环系统、气体补充装置以及破真空装置。该发明专利也公开一种干燥方法,间接提示发明该装置的出发点是利用部分破坏真空的方法,即往箱体里充填少量空气,以克服“在真空下稀薄气体会出现热能传到不均匀现象,从而使待干燥物品温度上升不连续,出现受热不均匀的现象”。
实验用小型箱式减压干燥设备多利用热辐射方式来完成热传递,物料的加热过程是由表及里,因减压状态下空气稀薄,难以形成对流导热,热传递效率并不高;生产用箱式减压干燥设备多安装盘管或板层加热装置,物料加热主要靠热传导方式,加热过程是从接触底部向上;两种方式都可以令水分子运动加剧,但无法很好的解决运动中的水分子由液态转气态所需潜热的连续、及时迅速供给问题;减压微波干燥法是利用物料中水分子的介质损耗系数大可优先吸收微波能的特点,使水偶极分子产生高频往复运动,产生“内摩擦热”而使物料内外被同时加热、同时升温,水分子因而迅速汽化,能效高,这无疑也是一种解决方法。
发明内容
本发明的目的是提供一种物料的蒸汽共微波加热的减压干燥方法,其特征在于,该方法包括以下步骤:
1)将物料放入减压干燥设备腔体内的板层上,关门、关闭连接腔体的所有阀门,密闭腔体;抽真空使腔体真空度下降至0.1Pa~100Pa
2)启动微波发生装置,将干燥腔体温度升至45-95℃;
3)保持抽气阀门不关闭,在继续抽气的同时,打开对侧腔体外的蒸汽阀门,通入蒸汽并调整通量使腔体平均真空度稳定在50-5000Pa;
4)水分测定仪显示水分降至10%~20%时,关闭微波发生器,其他操作条件不变;
5)水分测定仪显示水分降至1%~5%时,关闭蒸汽阀门,打开同侧腔体上的气体阀门,通入气体并调整通量使腔体平均真空度稳定在50-5000Pa;
6)保持1小时,关闭抽气阀,待压力平衡后,结束干燥操作。
优选地,所述减压干燥设备配备微波加热装置,可采用微波加热方式对物料进行加热,腔体一侧接通抽气开关阀,其对侧腔体接通蒸汽开关阀及空气开关阀。
优选地,所述物料为无挥发性的流膏;或含游离水的固体颗粒;或块状物、动植物性材料。
优选地,所述无挥发性的流膏,50℃时相对密度为1.05-1.50。
优选地,减压干燥中步骤3)中所述蒸汽为水饱和蒸汽,绝对压力为0.10M Pa-0.60M Pa。
优选地,减压干燥中步骤5)所述气体为空气、氮气或氩气,绝对压力在0.10M Pa-0.60MPa。
发明人经过大量的研究,发现饱和蒸汽内含的显热比干热空气大得多,可提供足够让水分子由液态转为气态所需的汽化潜热,无需额外安装热泵对空气进行加热;同时,蒸汽减压膨胀时释放出的动能,足可以克服表面张力束缚而把水汽推离物料表面,无需额外安装气体循环装置但又收到异曲同工之妙;另外,通过操作控制,在通入饱和蒸汽的同时又持续抽气,使腔体又维持在相对稳定的高负压状态,大为降低水的沸点;再者,水、汽是动态混合体,用蒸汽代替干热空气作为传热介质,物料在无氧条件下不易变质,物料也不可能无限制的吸收过度热量而结焦,保留了物料的良好外观与优良品质,又继承了便于洁净生产的优势;最后,用空气赶走少量水汽,以完成整个干燥过程。
本发明提供的液态物料的减压蒸汽干燥方法具有以下优点:
1、充分发微波加热方式与热对流方式传热的长处
本发明在减压干燥过程中,一方面利用微波把能量直接传热到物料内部,水分子获得能量后活动加剧,另一方面,动态地注入水饱和蒸汽,与物料表面的水分子交换能量后,加速汽化;
2、巧妙利用蒸汽减压时释放出的动能
蒸汽瞬间减压时释放出动能,这些动能刚好又可以利用于推动已经汽化的水分子的排放,加速水分的蒸发,缩短干燥时间。本发明提供的减压干燥方法,微波传热与对流传热两种热传递方式的优劣充分互补,使物料干燥时间大为缩短,为减压干燥法提出新理念。
3、干燥时间短。与现有箱式真空干燥技术相比,原干燥时间需要24-72小时,本发明干燥只需5-15小时即可达到相同的干燥效果,使原每1.5-3天只能生产一批提高为每天能生产一批,效率提高50%以上。与现有箱式减压干燥技术相比,本发明巧妙地利用了蒸汽换热、并用其释放的动能加速推送水气。在实际应用中,达到相同的干燥品质,干燥效率提高50%以上,有显著的经济效益;另外,该发明便于推广应用于洁净生产,可预期有明显的社会效益。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1:贝母流浸膏的减压干燥方法
1、将50Kg相对密度为1.15(50℃)的贝母流浸膏至减压干燥设备腔体内的托盘上,关门并关闭连接腔体的所有阀门,密闭腔体,抽真空使腔体真空度下降至20Pa
2、启动微波发生装置,将腔体温度升至45℃;
3、保持抽气阀门不关闭,在继续抽气的同时,打开对侧腔体外的蒸汽阀门,通入蒸汽并调整通量使腔体平均真空度稳定在5000Pa;
4、水分测定仪显示水分降至15%时,关闭微波发生器,其他操作条件不变;
5、水分测定仪显示水分降至1%时,关闭蒸汽阀门,打开同侧腔体上的气体阀门,通入气体并调整通量使腔体平均真空度稳定在50Pa;
6、保持1小时,关闭抽气阀,待压力平衡后,结束干燥。
实施例2:蔗糖流膏的减压干燥方法
1、将50Kg相对密度为1.45(50℃)的蔗糖流膏放入减压干燥设备腔体内的托盘上,关门并关闭连接腔体的所有阀门,密闭腔体,抽真空使腔体真空度下降至20Pa;
2、启动微波发生装置,将腔体温度升至95℃;
3、保持抽气阀门不关闭,在继续抽气的同时,打开对侧腔体外的蒸汽阀门,通入蒸汽并调整通量使腔体平均真空度稳定在1000Pa;
4、当水分测定仪显示水分降至20%时,关闭微波发生器,其他操作条件不变;
5、当水分测定仪显示水分继续降至5%时,关闭蒸汽阀门,打开同侧腔体上的气体阀门,通入气体并调整通量使腔体平均真空度稳定在500Pa;
6、保持1小时,关闭抽气阀,待压力平衡后,结束干燥。
实施例3:中药饮片的减压干燥方法
1、将50Kg的鲜黄芪切成短段平铺(厚度为5cm)在减压干燥设备腔体内的托盘上,关门并关闭连接腔体的所有阀门,密闭腔体,抽真空使腔体真空度下降至20Pa;
2、启动微波发生装置,将腔体温度升至75℃;
3、保持抽气阀门不关闭,在继续抽气的同时,打开对侧腔体外的蒸汽阀门,通入蒸汽并调整通量使腔体平均真空度稳定在1500Pa;
4、当水分测定仪显示水分降至20%时,关闭微波发生器,其他操作条件不变;
5、当水分测定仪显示水分继续降至3%时,关闭蒸汽阀门,打开同侧腔体上的气体阀门,通入气体并调整通量使腔体平均真空度稳定在2500Pa;
6、保持1小时,关闭抽气阀,待压力平衡后,结束干燥。
对比例1:贝母流浸膏的减压干燥方法
1、将50Kg相对密度为1.15(50℃)的贝母流浸膏至减压干燥设备腔体内的托盘上,关门并关闭连接腔体的所有阀门,密闭腔体,抽真空使腔体真空度下降至20Pa
2、启动微波发生装置,将腔体温度升至45℃;
3、保持抽气阀门不关闭,在继续抽气的同时,调整使腔体平均真空度稳定在5000Pa;
4、水分测定仪显示水分降至15%时,关闭微波发生器,调整使腔体平均真空度稳定在5000Pa;
5、保持5小时,关闭抽气阀,待压力平衡后,结束干燥。
对比例2:蔗糖流膏的减压干燥方法
1、将50Kg相对密度为1.45(50℃)的蔗糖流膏放入减压干燥设备腔体内的托盘上,关门并关闭连接腔体的所有阀门,密闭腔体,抽真空使腔体真空度下降至20Pa;
2、启动微波发生装置,将腔体温度升至95℃;
3、保持抽气阀门不关闭,在继续抽气的同时,调整使腔体平均真空度稳定在1000Pa;
4、当水分测定仪显示水分降至20%时,关闭微波发生器,调整使腔体平均真空度稳定在50Pa;
5、保持5小时,关闭抽气阀,待压力平衡后,结束干燥。
对比例3:中药饮片的减压干燥方法
1、将50Kg的鲜黄芪切成短段平铺(厚度为5cm)在减压干燥设备腔体内的托盘上,关门并关闭连接腔体的所有阀门,密闭腔体,抽真空使腔体真空度下降至20Pa;
2、启动微波发生装置,将腔体温度升至75℃;
3、保持抽气阀门不关闭,在继续抽气的同时,调整使腔体平均真空度稳定在1500Pa;
4、当水分测定仪显示水分降至20%时,关闭微波发生器,,调整使腔体平均真空度稳定在2500Pa;
5、保持5小时,关闭抽气阀,待压力平衡后,结束干燥。
实验例:干燥时间及干燥后物料品质分析结果比较
将实施例及对比例的减压干燥时间及干燥后物料品质情况进行分析汇总、比较,结果见表1:
表1:物料干燥时间及品质分析汇总表
水分(%) 干燥时间(h)
实施例1 0.75 10
实施例2 1.7 15
实施例3 1.2 5
对比例1 14.7 36
对比例2 18.9 72
对比例3 19.5 24
注:水分按《中华人民共和国药典》2010年版一部附录ⅨH第一法(烘干法)检测
上表结果显示:本发明可用于工业化大生产,且操控性好;其中实施例1、2、3与对比例1、2、3的待干燥物料完全相同,但本发明制备的干燥品水分显著低于对比例;虽然纯微波干燥也可以做到,但对水分低于10%的物料通常很容易被烧毁。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (6)

1.一种对流共微波传热方式在物料减压干燥过程中的应用,其特征在于,该方法包括以下步骤:
1)将物料放入减压干燥设备腔体内的板层上,关门、关闭连接腔体的所有阀门,密闭腔体,抽真空使腔体真空度下降至0.1Pa~100Pa ;
2)启动微波发生装置,将干燥腔体温度升至45-95℃;
3)保持抽气阀门不关闭,在继续抽气的同时,打开对侧腔体外的蒸汽阀门,通入蒸汽并调整通量使腔体平均真空度稳定在50-5000Pa;
4)水分测定仪显示水分降至10%~20%时,关闭微波发生器,其他操作条件不变;
5)水分测定仪显示水分降至1%~5%时,关闭蒸汽阀门,打开同侧腔体上的气体阀门,通入气体并调整通量使腔体平均真空度稳定在50-5000Pa;
6)保持1小时,关闭抽气阀,待压力平衡后,结束干燥操作。
2.根据权利要求1)所述,其特征在于,所述减压干燥设备配备微波发生装置,可采用微波加热方式对物料进行加热,腔体一侧接通抽气开关阀,其对侧腔体接通蒸汽开关阀及空气开关阀。
3.根据权利要求1所述方法,其特征在于,所述物料为无挥发性的流膏;或含游离水的固体颗粒;或块状物、动植物性材料。
4.根据权利要求2所述方法,其特征在于,所述无挥发性的流膏,50℃时相对密度为1.05-1.50。
5.根据权利要求1所述方法,其特征在于,步骤3)中所述蒸汽为水饱和蒸汽,绝对压力为0.10M Pa-0.60M Pa。
6.根据权利要求1所述方法,其特征在于,步骤5)所述气体为空气、氮气或氩气,绝对压力在0.10M Pa-0.60M Pa。
CN201510451765.1A 2015-07-29 2015-07-29 一种对流共微波传热方式在减压干燥中的应用 Active CN106403510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510451765.1A CN106403510B (zh) 2015-07-29 2015-07-29 一种对流共微波传热方式在减压干燥中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510451765.1A CN106403510B (zh) 2015-07-29 2015-07-29 一种对流共微波传热方式在减压干燥中的应用

Publications (2)

Publication Number Publication Date
CN106403510A true CN106403510A (zh) 2017-02-15
CN106403510B CN106403510B (zh) 2019-02-19

Family

ID=58009332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510451765.1A Active CN106403510B (zh) 2015-07-29 2015-07-29 一种对流共微波传热方式在减压干燥中的应用

Country Status (1)

Country Link
CN (1) CN106403510B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108244690A (zh) * 2017-12-30 2018-07-06 广州昊然微波设备有限公司 一种烟草膨化生产工艺
CN109682172A (zh) * 2019-01-10 2019-04-26 寇宗辉 一种湿热微波烘干木材的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196357A (ja) * 1992-01-10 1993-08-06 Hitachi Ltd 真空マイクロ波加熱乾燥装置
JPH09318264A (ja) * 1996-03-28 1997-12-12 Shunichi Yagi 被乾燥物の乾燥方法とその装置
CN1431443A (zh) * 2003-01-17 2003-07-23 高庆凌 膏状物的干燥方法及其动态真空干燥机
CN1490582A (zh) * 2003-08-28 2004-04-21 东南大学 对流式真空冷冻干燥装置
CN101957127A (zh) * 2010-09-03 2011-01-26 昆山康和电子科技有限公司 真空干燥设备
CN102048764A (zh) * 2009-11-05 2011-05-11 天津天士力现代中药资源有限公司 微波干燥技术在中药浸膏领域的应用
CN102519225A (zh) * 2011-12-27 2012-06-27 广西梧州制药(集团)股份有限公司 一种中药浸膏的真空干燥方法
CN202709669U (zh) * 2012-07-11 2013-01-30 海南卫康制药(潜山)有限公司 液氮冷冻微波加热真空干燥机
CN102512466B (zh) * 2011-12-27 2013-08-21 广西梧州制药(集团)股份有限公司 一种三七总皂苷冻干粉针及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196357A (ja) * 1992-01-10 1993-08-06 Hitachi Ltd 真空マイクロ波加熱乾燥装置
JPH09318264A (ja) * 1996-03-28 1997-12-12 Shunichi Yagi 被乾燥物の乾燥方法とその装置
CN1431443A (zh) * 2003-01-17 2003-07-23 高庆凌 膏状物的干燥方法及其动态真空干燥机
CN1490582A (zh) * 2003-08-28 2004-04-21 东南大学 对流式真空冷冻干燥装置
CN102048764A (zh) * 2009-11-05 2011-05-11 天津天士力现代中药资源有限公司 微波干燥技术在中药浸膏领域的应用
CN101957127A (zh) * 2010-09-03 2011-01-26 昆山康和电子科技有限公司 真空干燥设备
CN102519225A (zh) * 2011-12-27 2012-06-27 广西梧州制药(集团)股份有限公司 一种中药浸膏的真空干燥方法
CN102512466B (zh) * 2011-12-27 2013-08-21 广西梧州制药(集团)股份有限公司 一种三七总皂苷冻干粉针及其制备方法
CN202709669U (zh) * 2012-07-11 2013-01-30 海南卫康制药(潜山)有限公司 液氮冷冻微波加热真空干燥机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108244690A (zh) * 2017-12-30 2018-07-06 广州昊然微波设备有限公司 一种烟草膨化生产工艺
CN108244690B (zh) * 2017-12-30 2020-09-08 广州昊然微波设备有限公司 一种烟草膨化生产工艺
CN109682172A (zh) * 2019-01-10 2019-04-26 寇宗辉 一种湿热微波烘干木材的方法

Also Published As

Publication number Publication date
CN106403510B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
CN107166897B (zh) 一种真空脉动干燥茯苓的方法与装置
US4251923A (en) Method for drying water-containing substances
US8282788B2 (en) Extraction apparatus and method of extracting essential oils, essence, and pigments from odorous raw material by microwave heating under sub-critical conditions
CN103461556A (zh) 玫瑰花蕾低温烘干、有效成分回收生产工艺及其生产设备
JP2007085600A (ja) 減圧低温乾燥装置
CN106403510A (zh) 一种对流共微波传热方式在减压干燥中的应用
CN103256789A (zh) 冷冻状颗粒物料用的干燥装置及其干燥方法
CN105387691A (zh) 一种控制木材皱缩的干燥方法
CN102538423A (zh) 一种微波真空干燥机
CN106403514B (zh) 对流传热方式在物料减压干燥过程中的应用
CN106106435A (zh) 一种香菇原位标本制作方法
KR20080006649U (ko) 식품의 진공분말 제조장치
KR100801562B1 (ko) 복합 가열형 분무식 동결건조기
CN202403494U (zh) 一种低温真空干燥设备
CN106016975A (zh) 一种箱体式的干燥装置
CN204555567U (zh) 一种新型真空干燥设备
CN1032447C (zh) 真空远红外热流干燥机
KR20090119518A (ko) 가변압력을 이용한 건조기 및 이를 이용한 건조방법
CN202501728U (zh) 一种微波真空干燥机
RU2302740C1 (ru) Установка для сушки растительных материалов
JP2000292056A (ja) プレス乾燥方法とこの方法に使用するプレス乾燥装置
CN203116436U (zh) 一种卧式多室沸腾床干燥装置
CN205619701U (zh) 一种真空冷冻干燥机
JP2002248641A (ja) 加熱加圧成形材のプレス圧縮方法とこの方法に使用するプレス装置
CN1593163A (zh) 真空微波脱水装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant