CN106383962B - 一种热压成型平面编织复合材料的残余热应力估算方法 - Google Patents

一种热压成型平面编织复合材料的残余热应力估算方法 Download PDF

Info

Publication number
CN106383962B
CN106383962B CN201610873579.1A CN201610873579A CN106383962B CN 106383962 B CN106383962 B CN 106383962B CN 201610873579 A CN201610873579 A CN 201610873579A CN 106383962 B CN106383962 B CN 106383962B
Authority
CN
China
Prior art keywords
plane
lamina
thermal stress
woven composite
knitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610873579.1A
Other languages
English (en)
Other versions
CN106383962A (zh
Inventor
熊峻江
万傲霜
刘牧东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Foamtech Nano Material Co Ltd
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201610873579.1A priority Critical patent/CN106383962B/zh
Publication of CN106383962A publication Critical patent/CN106383962A/zh
Application granted granted Critical
Publication of CN106383962B publication Critical patent/CN106383962B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供一种热压成型平面编织复合材料的残余热应力估算方法。首先,输入组分材料的基本力学性能和体积含量,同时,输入平面编织布胞体单元的几何尺寸;采用细观力学分析方法,计算平面编织单层板的经向和纬向弹性模量;然后,考虑平面编织单层板的编织布与基体之间的热变形,计算平面编织单层板的经向和纬向热膨胀系数;最后,考虑平面编织层合板的编织层与基体层之间的热变形,计算平面编织复合材料层合板的经向和纬向残余热应力。本发明仅需要少量的组分材料性能以及平面编织形状尺寸参数,就能简便、合理地估算平面编织复合材料层合板的残余热应力,具有重要学术意义和工程应用价值。

Description

一种热压成型平面编织复合材料的残余热应力估算方法
技术领域
本发明涉及一种热压成型平面编织复合材料的残余热应力估算方法,属于复合材料技术领域。
背景技术
树脂基复合材料在热压成型过程中,由于基体和纤维的热膨胀系数不同,会导致成型后复合材料残余热应力的出现,残余热应力的存在会对复合材料的力学性能产生显著影响,基体中的残余拉应力和纤维中的残余压应力会导致承受拉伸载荷作用的复合材料提前进入屈服状态,降低复合材料抗拉强度。多年来,人们通过实验、数值模拟和解析法对复合材料残余热应力问题进行了深入研究,通过实验手段直接测量平面编织复合材料残余热应力成本较高,且测试过程中易受到很多偶然因素的影响,测量精度很差;有限元数值模拟方法需要建立复杂的有限元模型,建模复杂,计算量大,效率低,且计算精度难以保证,因此,本发明运用细观力学分析方法,建立平面编织复合材料层合板残余热应力的解析解,仅需要少量的组分材料性能以及平面编织形状尺寸参数,就能简便、合理地估算平面编织复合材料层合板的残余热应力,因此,本发明具有重要学术意义和工程应用价值。
发明内容
1、目的:本发明的目的是提供一种热压成型平面编织复合材料的残余热应力估算方法,可简便而合理地估算热压成型平面编织复合材料层合板的宏观残余热应力。
2、技术方案:本发明提供一种热压成型平面编织复合材料的残余热应力估算方法,该方法具体步骤如下:
步骤一、输入组分材料(即基体和纤维)的基本力学性能:弹性模量E1和E2、泊松比μ1和μ2、热膨胀系数β1和β2、单层板的基体体积含量V1,其中下标1表示基体,下标2表示纤维。
步骤二、输入平面编织布胞体单元(见图1)的几何尺寸:经向和纬向纤维束的波长D1和D2、截面积S1和S2、经向和纬向纤维束的间距b1和b2
步骤三、根据细观力学分析方法,由步骤一的基本力学性能和步骤二的几何尺寸,分别计算平面编织单层板的经向和纬向弹性模量EL和ET
式中,Q1和Q2为与胞体单元尺寸有关的中间变量。
步骤四、考虑平面编织单层板的编织布与基体之间的热变形,分别计算平面编织单层板的经向和纬向热膨胀系数βL和βT
步骤五、考虑平面编织层合板的编织层与基体层之间的热变形,分别计算平面编织复合材料层合板的经向和纬向残余热应力qL和qT
式中,ΔT为平面编织复合材料热压成型过程中的温度变化量。
3、优点及功效:本发明是一种热压成型平面编织复合材料的残余热应力估算方法,其特点是仅需要少量的组分材料性能以及平面编织形状尺寸参数,就能简便、合理地估算平面编织复合材料层合板的残余热应力,具有简便、实用等优点。
附图说明
图1为平面编织布胞体单元示意图。
图2为本发明流程框图。
图中符号说明如下:
图1中的D1和D2分别为经向和纬向纤维束的波长,b1和b2分别为经向和纬向纤维束的间距。
具体实施方式
图1为本发明所述方法的流程框图,具体实施方式如下:
步骤一、输入组分材料(即基体和纤维)的基本力学性能:弹性模量E1和E2、泊松比μ1和μ2、热膨胀系数β1和β2、单层板的基体体积含量V1,其中下标1表示基体,下标2表示纤维。
步骤二、输入平面编织布胞体单元(见图1)的几何尺寸:经向和纬向纤维束的波长D1和D2、截面积S1和S2、经向和纬向纤维束的间距b1和b2
步骤三、根据细观力学分析方法,由步骤一的基本力学性能和步骤二的几何尺寸,分别计算平面编织单层板的经向和纬向弹性模量EL和ET
式中,Q1和Q2为与胞体单元尺寸有关的中间变量。
步骤四、考虑平面编织单层板的编织布与基体之间的热变形,分别计算平面编织单层板的经向和纬向热膨胀系数βL和βT
步骤五、考虑平面编织层合板的编织层与基体层之间的热变形,分别计算平面编织复合材料层合板的经向和纬向残余热应力qL和qT
式中,ΔT为平面编织复合材料热压成型过程中的温度变化量。

Claims (1)

1.一种热压成型平面编织复合材料的残余热应力估算方法,该方法具体步骤如下:
步骤一、输入基体和纤维的基本力学性能:弹性模量E1和E2、泊松比μ1和μ2、热膨胀系数β1和β2、单层板的基体体积含量V1,其中下标1表示基体,下标2表示纤维;
步骤二、输入平面编织布胞体单元的几何尺寸:经向和纬向纤维束的波长D1和D2、截面积S1和S2、经向和纬向纤维束的间距b1和b2
步骤三、根据细观力学分析方法,由步骤一的基本力学性能和步骤二的几何尺寸,分别计算平面编织单层板的经向和纬向弹性模量EL和ET
式中,Q1和Q2为与胞体单元尺寸有关的中间变量;
步骤四、考虑平面编织单层板的编织布与基体之间的热变形,分别计算平面编织单层板的经向和纬向热膨胀系数βL和βT
步骤五、考虑平面编织层合板的编织层与基体层之间的热变形,分别计算平面编织复合材料层合板的经向和纬向残余热应力qL和qT
式中,ΔT为平面编织复合材料热压成型过程中的温度变化量。
CN201610873579.1A 2016-09-30 2016-09-30 一种热压成型平面编织复合材料的残余热应力估算方法 Active CN106383962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610873579.1A CN106383962B (zh) 2016-09-30 2016-09-30 一种热压成型平面编织复合材料的残余热应力估算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610873579.1A CN106383962B (zh) 2016-09-30 2016-09-30 一种热压成型平面编织复合材料的残余热应力估算方法

Publications (2)

Publication Number Publication Date
CN106383962A CN106383962A (zh) 2017-02-08
CN106383962B true CN106383962B (zh) 2019-06-28

Family

ID=57937207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610873579.1A Active CN106383962B (zh) 2016-09-30 2016-09-30 一种热压成型平面编织复合材料的残余热应力估算方法

Country Status (1)

Country Link
CN (1) CN106383962B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112818579B (zh) * 2021-02-05 2022-10-11 重庆科技学院 一种基于多参数耦合的设备热应力场高效检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332327A (ja) * 2005-05-26 2006-12-07 Matsushita Electric Works Ltd 半導体装置およびその製造方法
CN103473440A (zh) * 2013-08-20 2013-12-25 北京航空航天大学 一种预测平面编织复合材料残余热应力的新方法
CN104020254A (zh) * 2014-05-20 2014-09-03 北京航空航天大学 一种测定复合材料剩余强度与剩余寿命的应变控制方法
CN104794299A (zh) * 2015-04-29 2015-07-22 西北工业大学 一种复合材料干涉配合接头应力分布计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332327A (ja) * 2005-05-26 2006-12-07 Matsushita Electric Works Ltd 半導体装置およびその製造方法
CN103473440A (zh) * 2013-08-20 2013-12-25 北京航空航天大学 一种预测平面编织复合材料残余热应力的新方法
CN104020254A (zh) * 2014-05-20 2014-09-03 北京航空航天大学 一种测定复合材料剩余强度与剩余寿命的应变控制方法
CN104794299A (zh) * 2015-04-29 2015-07-22 西北工业大学 一种复合材料干涉配合接头应力分布计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"复合材料疲劳定寿方法研究";王三平;《直升机技术》;20001231(第4期);1-7

Also Published As

Publication number Publication date
CN106383962A (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
Ding et al. A three-dimensional thermo-viscoelastic analysis of process-induced residual stress in composite laminates
Ding et al. A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence
Adumitroaie et al. Stiffness and strength prediction for plain weave textile reinforced composites
Rajabi et al. Deep-drawing of thermoplastic metal-composite structures: Experimental investigations, statistical analyses and finite element modeling
Wang et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite
CN108287970B (zh) 基于二维正交各向异性复合材料板的热模态对结构参数的灵敏度分析方法
Li et al. Stochastic thermal buckling analysis of laminated plates using perturbation technique
Capdevielle et al. A multifiber beam model coupling torsional warping and damage for reinforced concrete structures
Dadej et al. Isostrain elastoplastic model for prediction of static strength and fatigue life of fiber metal laminates
Xu et al. Two-scale micromechanical modeling of the time dependent relaxation modulus of plain weave polymer matrix composites
Zhou et al. Towards an understanding of variations in the buckling of tailored variable angle tow composite plates
CN106383962B (zh) 一种热压成型平面编织复合材料的残余热应力估算方法
CN103455712B (zh) 一种三轴向编织复合材料格栅力学模量的预测方法
Feng et al. Mechanical behavior of glass panels supported by clamping joints in cable net facades
Ashir et al. A statistical approach for the fabrication of adaptive pleated fiber reinforced plastics
CN103473440A (zh) 一种预测平面编织复合材料残余热应力的新方法
Dong A parametric study on the process-induced deformation of composite T-stiffener structures
Mesogitis et al. Stochastic simulation of the influence of fibre path variability on the formation of residual stress and shape distortion
Jokinen et al. Analysis of cracked lap shear testing of tungsten-CFRP hybrid laminates
Oz Computational examination of the effect of voids on the mechanical response of composites with emphasize on the cure hardening behavior
Mao et al. A three-dimensional viscoelastic analysis of thermoplastic resin matrix composite laminates during hot stamping
Abe et al. Micromechanical modeling for the evaluation of elastic moduli of woven composites
Zhou et al. Effects of Stacking Sequence and Impactor Diameter on Impact Damage of Glass Fiber Reinforced Aluminum Alloy Laminate.
Quadrini et al. Numerical simulation of open-cell aluminum foams under compression
Lu et al. A study of the residual stress and its influence on tensile behaviors of fiber-reinforced SiC/Al composite

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210323

Address after: 100191 building 66-111, 14 Huayuan North Road, Haidian District, Beijing

Patentee after: Beijing mubangren Technology Co.,Ltd.

Address before: 100191 No. 37, Haidian District, Beijing, Xueyuan Road

Patentee before: BEIHANG University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240222

Address after: 451100 north side of Yanhe Road, Hezhuang Town, Xinzheng City, Zhengzhou City, Henan Province

Patentee after: ZHENGZHOU FOAMTECH NANO MATERIAL Co.,Ltd.

Country or region after: China

Address before: 100191 building 66-111, 14 Huayuan North Road, Haidian District, Beijing

Patentee before: Beijing mubangren Technology Co.,Ltd.

Country or region before: China