CN106380663B - 一种高温耐磨uhmwpe/pi复合材料制备方法 - Google Patents

一种高温耐磨uhmwpe/pi复合材料制备方法 Download PDF

Info

Publication number
CN106380663B
CN106380663B CN201610800566.1A CN201610800566A CN106380663B CN 106380663 B CN106380663 B CN 106380663B CN 201610800566 A CN201610800566 A CN 201610800566A CN 106380663 B CN106380663 B CN 106380663B
Authority
CN
China
Prior art keywords
temperature
uhmwpe
ldpe
composite material
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610800566.1A
Other languages
English (en)
Other versions
CN106380663A (zh
Inventor
段海涛
陈松
李健
魏雷
程冰雪
刘炼
贾丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN INST OF MATERIAL PROTECTION
Original Assignee
WUHAN INST OF MATERIAL PROTECTION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN INST OF MATERIAL PROTECTION filed Critical WUHAN INST OF MATERIAL PROTECTION
Priority to CN201610800566.1A priority Critical patent/CN106380663B/zh
Publication of CN106380663A publication Critical patent/CN106380663A/zh
Application granted granted Critical
Publication of CN106380663B publication Critical patent/CN106380663B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5808Measuring, controlling or regulating pressure or compressing force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5816Measuring, controlling or regulating temperature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Prostheses (AREA)

Abstract

本发明公开了一种高温耐磨UHMWPE/PI复合材料制备方法。组分主要包含基体材料UHMWPE、增强材料PI和相容剂MAH‑g‑LDPE。增强材料PI的质量百分比为20~50 wt%,基体材料UHMWPE和相容剂MAH‑g‑LDPE的总质量百分比为50~80 wt%。本发明制备的复合材料的优势在于:PI与UHMWPE在都熔融的状态下实现共混复合,因此具有良好的界面结合性能;通过加入MAH‑g‑LDPE作为相容剂,进一步增强基础相与增强相的界面粘接能力,使得PI能够很好的分散在UHMWPE基体中。本发明在制备过程中,无需采用有机溶剂,且制备的复合材料无毒,是一种绿色环保的制备方法。

Description

一种高温耐磨UHMWPE/PI复合材料制备方法
技术领域
本发明属于高温摩擦学材料领域,特别涉及一种高温耐磨材料及其制备技术,具体是UHMWPE/PI复合材料制备方法。
背景技术
随着UHMWPE在摩擦材料领域的广泛使用,人们受益于它的优良性能的同时,也受限于其抗磨粒磨损能力和耐热性能的不足。为了提高UHMWPE的耐高温和耐磨性能,目前国内外主要使用的方法是用Al2O3、MnO2、玻璃微珠、SiO2等陶瓷材料和Ag、Co、Cr、Mo等金属材料填充UHMWPE。使用填充改性的方法来提高UHMWPE的耐热与耐磨性能,是利用了填料具有比UHMWPE更为优异的耐热性和耐磨性。但根据国内外研究,无机材料与有机材料之间非常差的界面相容性,会造成填料在UHMWPE基体中分散不均匀,导致复合材料的界面缺陷。当复合材料在磨损过程中受到摩擦力的剪切作用时,界面缺陷容易导致两相分离,从而产生微裂纹,影响材料的机械物理性能,也会降低其使用寿命。PI在高温、高压和高速等苛刻环境下具有优异的减磨抗磨性能和良好的机械性能等特点,理论上是一种用来改性UHMWPE的理想材料,但国内外目前尚未发现关于UHMWPE/PI复合材料的报道。
发明内容
本发明所解决的技术问题是改善UHMWPE的耐热与耐磨损性能,利用耐高温与耐磨损性能优异的PI与UHMWPE共混,旨在提供一种UHMWPE/PI复合材料的制备方法,所制备的材料在尽量保持UHMWPE强度和韧性的基础上,可以在高于UHMWPE热变形的温度下(约84℃)使用,且具备比UHMWPE更低的摩擦系数和更小的磨损量。
本发明为实现上述目的所采用的技术方案为:一种UHMWPE/PI复合材料,其原料中PI粉料的含量为20~50 wt%、UHMWPE粉料与相容剂的总含量为50~80 wt%。相容剂为马来酸酐接枝低密度聚乙烯(MAH-g-LDPE),其含量为三种聚合物总质量的0.2~8.0 wt%。
其中,PI粉料为均苯型的热塑性聚酰亚胺,分子结构中的苯环结构具有很强的刚性,酰亚胺环的C=O与苯环形成π-π共轭,进一步增强了分子结构的刚性,使其具有非常优异的耐热性能。PI的分子结构式为:
其中,相容剂MAH-g-LDPE是通过化学反应在LDPE分子上接枝数个马来酸酐分子而成,接枝率为8~10%。其分子结构中接枝的马来酸酐具有可再反应性和强极性,可使其与PI具有良好的相容性;LDPE主链具有柔韧性与非极性,使其与UHMWPE具有很好的相容性。MAH-g-LDPE的分子结构式为:
高温耐磨UHMWPE/PI复合材料的制备,包括以下步骤:
(1) 称取基体材料超高分子量聚乙烯UHMWPE、增强材料聚酰亚胺PI、相容剂马来酸酐接枝低密度聚乙烯MAH-g-LDPE粉料,然后通过机械混合方式使三者均匀分散至宏观上看不到分离相,机械混合时间为45~60 min;
(2) 将所得含有相容剂马来酸酐接枝低密度聚乙烯MAH-g-LDPE的UHMWPE/PI共混粉料置于40~60℃烘箱中烘干2~3 h;
(3) 取出烘干料后将其倒入预先清理好的模具中,并放置于热压机中,在50~90MPa压力下预压三次,每次保压1~3 min;
(4) 预压过程完成后卸载,进一步地设置控温仪控制所述热压机的温度以1~5℃/min升高到110~150℃,并保温20~40 min;
(5) 继续设置控温仪控制所述热压机的温度以1~5℃/ min升温至340~360℃,继续保温3~6 h;
(6) 保温结束后将所述热压机压力升高至10~20 MPa,待温度冷却至190~250℃时加压至20~50 MPa,待温度冷却至130~190℃时加压至50~90 MPa,待温度冷却至90~130℃时加压至130~160 MPa;
(7) 自然冷却至室温后脱模,得块状高温耐磨UHMWPE/PI复合材料。
在实际应用中,可根据所需形状对热压制得的UHMWPE/PI复合材料进行切片和打磨。
本发明与现有技术对比的有益效果:
(1) 本发明制备的复合材料以PI作为改善UHMWPE耐高温性能和耐磨性能的增强材料,在两者都熔融的状态下实现共混复合,因此,与目前通用的金属或陶瓷填料等无机材料相比,其具有与UHMWPE更好的界面结合性能,通过加入MAH-g-LDPE作为相容剂,能够增强基础相与增强相的界面粘接能力,使得PI能够很好的分散在UHMWPE基体中;
(2) 本发明的UHMWPE/PI复合材料的制备方法,采用熔融共混法使UHMWPE与PI形成复合材料,本发明在制备UHMWPE/PI复合材料过程中,无需采用有机溶剂,且制备的复合材料无毒,不会对环境造成危害,是一种绿色环保的制备方法;
(3) 本发明制备得到的UHMWPE/PI共混体系。相对于纯UHMWPE,复合材料在100℃的环境温度下的摩擦系数最大减小了28.96%,磨损深度最大降低了54.66%,磨损宽度最大下降了26.39%;复合材料在相对滑动速度为5 m/s的高速摩擦状态下,摩擦系数最大减小了24.39%,磨损重量最大降低了79.03%,磨损高度最大下降了95.84%。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明进行具体描述,需要特别指出的是以下实施例只适用于对本发明的补充说明,不能理解为对权利要求范围的限制,属于该领域的技术熟练人员根据上述内容对本发明做出一些非本质性的调整。
实施例1:
称取重量百分比为20 wt%的聚酰亚胺(PI)、总重量百分比为80 wt%的超高分子量聚乙烯(UHMWPE)与马来酸酐接枝低密度聚乙烯(MAH-g-LDPE)粉料,然后通过机械混合方式使三者均匀分散至宏观上看不到分离相,机械混合时间为45~60 min;将所得含有相容剂(MAH-g-LDPE)的UHMWPE/PI共混粉料置于40~60℃烘箱中烘干2~3 h;取出烘干料后将其倒入预先清理好的模具中,在50~90 MPa压力下预压三次,每次保压1~3 min;预压过程完成后卸载,设置控温仪控制热压机以1~5℃/ min升高到110~150℃,保温20~40 min;继续升温至340~360℃,保温3~5 h;保温结束后将压力升高至10~20 MPa,待温度冷却至190~250℃时加压至20~50 MPa,待温度冷却至130~190℃时加压至50~90 MPa,待温度冷却至90~130℃时加压至130~160 MPa;自然冷却至室温后脱模,得块状高温耐磨UHMWPE/PI复合材料。
实施例2:
称取重量百分比为30 wt%的聚酰亚胺(PI)、总重量百分比为70 wt%的超高分子量聚乙烯(UHMWPE)与马来酸酐接枝低密度聚乙烯(MAH-g-LDPE)粉料,然后通过机械混合方式使三者均匀分散至宏观上看不到分离相,机械混合时间为45~60 min;将所得含有相容剂(MAH-g-LDPE)的UHMWPE/PI共混粉料置于40~60℃烘箱中烘干2~3 h;取出烘干料后将其倒入预先清理好的模具中,在50~90 MPa压力下预压三次,每次保压1~3 min;预压过程完成后卸载,设置控温仪控制热压机以1~5℃/ min升高到110~150℃,保温20~40 min;继续升温至340~360℃,保温3~5 h;保温结束后将压力升高至10~20 MPa,待温度冷却至190~250℃时加压至20~50 MPa,待温度冷却至130~190℃时加压至50~90 MPa,待温度冷却至90~130℃时加压至130~160 MPa;自然冷却至室温后脱模,得块状高温耐磨UHMWPE/PI复合材料。
实施例3:
称取重量百分比为40 wt%的聚酰亚胺(PI)、总重量百分比为60 wt%的超高分子量聚乙烯(UHMWPE)与马来酸酐接枝低密度聚乙烯(MAH-g-LDPE)粉料,然后通过机械混合方式使三者均匀分散至宏观上看不到分离相,机械混合时间为45~60 min;将所得含有相容剂(MAH-g-LDPE)的UHMWPE/PI共混粉料置于40~60℃烘箱中烘干2~3 h;取出烘干料后将其倒入预先清理好的模具中,在50~90 MPa压力下预压三次,每次保压1~3 min;预压过程完成后卸载,设置控温仪控制热压机以1~5℃/ min升高到110~150℃,保温20~40 min;继续升温至340~360℃,保温3~5 h;保温结束后将压力升高至10~20 MPa,待温度冷却至190~250℃时加压至20~50 MPa,待温度冷却至130~190℃时加压至50~90 MPa,待温度冷却至90~130℃时加压至130~160 MPa;自然冷却至室温后脱模,得块状高温耐磨UHMWPE/PI复合材料。
实施例4:
称取重量百分比为50 wt%的聚酰亚胺(PI)、总重量百分比为50 wt%的超高分子量聚乙烯(UHMWPE)与马来酸酐接枝低密度聚乙烯(MAH-g-LDPE)粉料,然后通过机械混合方式使三者均匀分散至宏观上看不到分离相,机械混合时间为45~60 min;将所得含有相容剂(MAH-g-LDPE)的UHMWPE/PI共混粉料置于40~60℃烘箱中烘干2~3 h;取出烘干料后将其倒入预先清理好的模具中,在50~90 MPa压力下预压三次,每次保压1~3 min;预压过程完成后卸载,设置控温仪控制热压机以1~5℃/ min升高到110~150℃,保温20~40 min;继续升温至340~360℃,保温3~5 h;保温结束后将压力升高至10~20 MPa,待温度冷却至190~250℃时加压至20~50 MPa,待温度冷却至130~190℃时加压至50~90 MPa,待温度冷却至90~130℃时加压至130~160 MPa;自然冷却至室温后脱模,得块状高温耐磨UHMWPE/PI复合材料。
将上述实施例1~4所制备的高温耐磨UHMWPE/PI复合材料以及UHMWPE的摩擦学性能进行对比,所得结果见下表。
100℃环境温度下的摩擦学试验是在高温往复摩擦磨损试验机上进行的,上试样为φ9.42 mm的GCr15球试样,下试样为20 mm×10 mm×7 mm的UHMWPE/PI复合材料方形试样,环境温度为100℃,载荷为50 N,往复频率为6 Hz,摩擦试验时间为1800 s,摩擦行程为8mm,空气介质。
5 m/s高速滑动状态下的摩擦学试验是在销-盘摩擦磨损试验机上进行的,上试样为φ50 mm×10 mm的ZCuSn10Pb1锡青铜圆盘试样,下试样为φ8 mm×17 mm的PI/UHMWPE复合材料销试样,载荷为30 N,相对滑动速度为5 m/s,摩擦试验时间为1800 s,旋转半径为21mm,空气介质。
从上表可以看出,随着复合材料中PI含量的增加,复合材料的摩擦系数与磨损量逐渐降低。本发明所制备的高温耐磨改性UHMWPE/PI复合材料在高温或高速工况下具有比UHMWPE优异的摩擦学性能。
将上述实施例1~4所制备的高温耐磨UHMWPE/PI复合材料以及UHMWPE的硬度与密度进行对比,所得结果见附图1。密度是采用电子天平称重,采用螺纹千分尺测量尺寸,然后经过计算得到。硬度是采用D型邵氏硬度计测量试样表面读数得到。

Claims (3)

1.一种高温耐磨UHMWPE/PI复合材料的制备方法,其特征在于,包括以下步骤:
(1) 称取基体材料超高分子量聚乙烯UHMWPE、增强材料聚酰亚胺PI、相容剂马来酸酐接枝低密度聚乙烯MAH-g-LDPE粉料,其中,PI的质量百分比为20-50 wt%,UHMWPE和MAH-g-LDPE的总质量百分比为50-80 wt%;然后通过机械混合方式使三者均匀分散,至宏观上看不到分离相,机械混合时间为45-60 min;
(2) 将所得含有相容剂马来酸酐接枝低密度聚乙烯MAH-g-LDPE的UHMWPE/PI共混粉料置于40-60℃烘箱中烘干2-3 h;
(3) 取出烘干料后并将其倒入预先清理好的模具中,并放置于热压机中,在50-90 MPa压力下预压三次,每次保压1-3 min;
(4) 预压过程完成后卸载,进一步地设置控温仪控制所述热压机的温度以1-5℃/min升高到110-150℃,并保温20-40 min;
(5) 继续设置控温仪控制所述热压机的温度以1-5℃/min升温至340-360℃,继续保温3-6 h;
(6) 保温结束后将所述热压机压力升高至10-20 MPa,待温度冷却至190-250℃时加压至20-50 MPa,待温度冷却至130-190℃时加压至50-90 MPa,待温度冷却至90-130℃时加压至130-160 MPa;
(7)自然冷却至室温后脱模,得块状高温耐磨UHMWPE/PI复合材料。
2.根据权利要求1所述的一种高温耐磨UHMWPE/PI复合材料的制备方法,其特征在于:使用MAH-g-LDPE作为基体材料UHMWPE与增强材料PI的相容剂。
3.根据权利要求1所述的一种高温耐磨UHMWPE/PI复合材料的制备方法,其特征在于:所述步骤(5)中,保温温度为340-360℃,在该保温过程中,基础料与增强料都为熔融状态。
CN201610800566.1A 2016-09-01 2016-09-01 一种高温耐磨uhmwpe/pi复合材料制备方法 Active CN106380663B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610800566.1A CN106380663B (zh) 2016-09-01 2016-09-01 一种高温耐磨uhmwpe/pi复合材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610800566.1A CN106380663B (zh) 2016-09-01 2016-09-01 一种高温耐磨uhmwpe/pi复合材料制备方法

Publications (2)

Publication Number Publication Date
CN106380663A CN106380663A (zh) 2017-02-08
CN106380663B true CN106380663B (zh) 2019-04-02

Family

ID=57938952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610800566.1A Active CN106380663B (zh) 2016-09-01 2016-09-01 一种高温耐磨uhmwpe/pi复合材料制备方法

Country Status (1)

Country Link
CN (1) CN106380663B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151856B (zh) * 2017-06-07 2018-05-11 郑州豫达纺织机械有限公司 一种有梭织机用塑料合金打梭棒及其制备方法
CN108976694A (zh) * 2018-08-10 2018-12-11 苏州郎旭志远科技有限公司 一种环保阻燃耐磨损的abs改性塑料及其制备方法
CN109608743B (zh) * 2018-12-19 2021-04-16 武汉材料保护研究所有限公司 一种减摩抗磨复合材料及制备方法
CN116178819A (zh) * 2023-02-02 2023-05-30 鹤山联塑实业发展有限公司 一种聚酰亚胺增强hdpe复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240092A (zh) * 2008-03-14 2008-08-13 株洲时代新材料科技股份有限公司 超高分子量聚乙烯低摩耐磨复合材料及其制备和用途
CN101386692A (zh) * 2008-10-27 2009-03-18 周恒勇 一种超高分子量聚乙烯高耐磨耐高温复合材料的制备方法
CN102382339A (zh) * 2011-09-14 2012-03-21 中国人民解放军海军工程大学 船舶艉轴承用低噪声纳米/高分子复合材料及其制备方法
CN104004255A (zh) * 2014-05-30 2014-08-27 河南科技大学 一种相变微胶囊/uhmwpe耐磨材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036175B2 (ja) * 1979-04-16 1985-08-19 オイレス工業株式会社 超高分子量ポリエチレン組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240092A (zh) * 2008-03-14 2008-08-13 株洲时代新材料科技股份有限公司 超高分子量聚乙烯低摩耐磨复合材料及其制备和用途
CN101386692A (zh) * 2008-10-27 2009-03-18 周恒勇 一种超高分子量聚乙烯高耐磨耐高温复合材料的制备方法
CN102382339A (zh) * 2011-09-14 2012-03-21 中国人民解放军海军工程大学 船舶艉轴承用低噪声纳米/高分子复合材料及其制备方法
CN104004255A (zh) * 2014-05-30 2014-08-27 河南科技大学 一种相变微胶囊/uhmwpe耐磨材料及其制备方法

Also Published As

Publication number Publication date
CN106380663A (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
CN106380663B (zh) 一种高温耐磨uhmwpe/pi复合材料制备方法
CN100463940C (zh) 桥梁支座滑移材料及其制备方法
CN109851989A (zh) 一种聚醚醚酮复合材料及其制备方法和应用
Yu et al. Fabrication and wear behaviors of graded Si3N4 ceramics by the combination of two-step sintering and β-Si3N4 seeds
Yuan et al. Microstructure and tribological behavior of NiAl/WC composites fabricated by thermal explosion reaction at 800 C
WO2012034262A1 (zh) 一种改性聚四氟乙烯树脂的耐磨材料
Shangguan et al. Tribological properties of lanthanum treated carbon fibers reinforced PTFE composite under dry sliding condition
CN109400197A (zh) 一种耐磨陶瓷复合材料及其制备方法
CN105524406B (zh) 耐低温耐磨peek/ptfe复合材料及其制备方法
Meng et al. The influence of several silicates on the fretting behavior of UHMWPE composites
CN105524407A (zh) 高耐热性peek复合材料及其制备方法
CN104031387B (zh) 一种自润滑聚酰亚胺弹性耐磨复合材料及制备方法
JP6169086B2 (ja) 熱可塑性成形材料、及び該熱可塑性成形材料から製造された改善された耐摩耗性を有する成形品
CN109705503A (zh) 一种含氟耐磨材料及其制备方法与应用
CN106543543A (zh) 一种耐磨耐高温高分子材料配方
CN106086718A (zh) 一种离合器铁基复合摩擦材料及其制备方法
KR20110131285A (ko) 공중합체 기반 폴리이미드로부터 제조된 물품 및 고온 유리 취급 응용에서의 그의 용도
CN110452435A (zh) 一种四苯基锡改性超高分子量聚乙烯的抗磨复合材料及其制备方法
CN107674351A (zh) 耐磨防尘区密封条ptfe树脂复合材料及其制备方法
Long et al. Wear and mechanical properties of Ekonol/G/MoS 2/PEEK composites
CN104831149A (zh) 一种Cu/AlMgB14复合材料及其制备方法
CN108003521A (zh) Ptfe复合材料及由其制成的活塞环
Duan et al. Comparative study of tribological properties of polyphenylene sulfide (PPS), polyethersulfone (PES), and polysulfone (PSU)
CN109400174A (zh) 一种氮化硅基高温抗磨减摩复合材料的制备方法
CN101857688A (zh) 改性超高分子量聚乙烯及在离心泵上的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant