CN106377263A - 一种基于超极化气体磁共振测量肺部气血交换功能的方法 - Google Patents

一种基于超极化气体磁共振测量肺部气血交换功能的方法 Download PDF

Info

Publication number
CN106377263A
CN106377263A CN201611116611.8A CN201611116611A CN106377263A CN 106377263 A CN106377263 A CN 106377263A CN 201611116611 A CN201611116611 A CN 201611116611A CN 106377263 A CN106377263 A CN 106377263A
Authority
CN
China
Prior art keywords
hyperpolarized gas
gas
signal
gaseous
normalization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611116611.8A
Other languages
English (en)
Inventor
周欣
李海东
张智颖
韩叶清
孙献平
叶朝辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Physics and Mathematics of CAS
Original Assignee
Wuhan Institute of Physics and Mathematics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Physics and Mathematics of CAS filed Critical Wuhan Institute of Physics and Mathematics of CAS
Priority to CN201611116611.8A priority Critical patent/CN106377263A/zh
Publication of CN106377263A publication Critical patent/CN106377263A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0813Measurement of pulmonary parameters by tracers, e.g. radioactive tracers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了一种基于超极化气体磁共振测量肺部气血交换功能的方法,受试者吸入超极化气体并屏气;一次屏气中重复气态超极化气体信号采样过程n1次,得到自归一化的动力学过程数据SN_i(n);将饱和脉冲的中心频率更改为溶解态超极化气体的共振频率的负数,重复采样得到自归一化的对照信号SNC_i(n);将SN_i(n)和SNC_i(n)进行一一对应的校准,得到校准后的自归一化信号FN;通过最小二乘法提取肺泡的宏观气体交换常数T。本发明该方法能无侵入性、无电离辐射地实现肺泡气体交换功能的定量测量,具有临床推广应用的潜能。

Description

一种基于超极化气体磁共振测量肺部气血交换功能的方法
技术领域
本发明属于磁共振成像和波谱领域,具体涉及一种基于超极化气体磁共振测量肺部气血交换功能的方法。适用于超极化造影剂129Xe,3He,83Kr,13C功能成像。
背景技术
129Xe气体经过自旋交换光泵后得到超极化129Xe,其磁共振灵敏度比热平衡状态下可以提高10000倍以上,同时其在生物组织和血液中具有良好的溶解度和化学位移敏感性。因此,其可以克服肺部空腔结构导致的组织密度低的缺点实现肺部磁共振成像并被广泛用于肺部结构和气血功能研究中,是当前唯一一种能无侵入性、无电离辐射地实现微观结构和气血交换功能定量测量的影像手段,有望在不远的将来在临床中大规模推广应用。
超极化129Xe气体探测肺部气血交换功能主要基于超极化129Xe气体进入肺部会分布在肺组织、血液和肺泡内,并分别产生不同化学位移的磁共振信号,处于三种状态的129Xe原子处于动态平衡,该平衡被证实可以用来测量肺部的气血交换功能。该技术自出现以来被广泛应用于肺部疾病的定量、可视化研究中,并应用于多种肺部疾病的研究中。
当前利用超极化129Xe测量肺部气血交换功能领域,主要集中在肺泡气血交换时间常数的测量。肺泡气血交换时间常数可以反映肺泡组织气血交换的效率,然而临床大部分的肺部疾病如肺气肿、慢阻肺等,其气血交换功能变化不仅与其肺泡组织的变化相关也和肺泡的表面体积比等因素相关,因此单一的气血交换时间常数难以满足肺部疾病的气血交换功能测量。因此,发展一种能用于肺泡整体气血交换功能测量的方法对肺部疾病临床的早期诊断是十分必要的。
针对本发明应用背景的已有相关文章和专利的技术方案如下:
1)数据的采集方式。每次吸入超极化气体屏气过程中施加一组饱和脉冲,得到一个饱和时间点的数据,这种方法可以获得肺部超极化气体的动力学过程,但是由于每个饱和时间点都需要一次超极化气体的吸气,一方面浪费气体,另一方面需要每次采样前采集参考信号进行校准[李海东.超极化~(129)Xe动物肺部磁共振成像[D].中国科学院研究生院(武汉物理与数学研究所),2015;张智颖.动物肺部气血交换的超极化~(129)Xe磁共振研究[D].中国科学院研究生院(武汉物理与数学研究所),2016.],很难在临床应用中推广。
2)溶解态超极化信号的饱和方式。方式A-通常在饱和脉冲后加入等待时间,通过改变等待时间获得气血交换时间常数[Kai Ruppert,et,al.,MagnetReson Med 2000,44:349-357],该参数可以在微观层面间接地反应肺泡的交换速率,但不能直观地获得肺泡宏观的气体交换效率。方式B-在饱和脉冲后加入等待时间,通过改变饱和脉冲和等待时间的个数获得肺部的气体交换功能,这种方法因为有等待时间的存在,因此只能得到宏观和微观结合的肺泡气体交换效率[张智颖.动物肺部气血交换的超极化~(129)Xe磁共振研究[D].中国科学院研究生院(武汉物理与数学研究所),2016.],不能精准的定量评估肺泡的宏观气血交换效率。
发明内容
本发明的目的是在于针对现有技术存在的上述问题,提出一种基于超极化气体磁共振测量肺部气血交换功能的方法,在吸入超极化气体后单次屏气时间内,通过连续施加饱和脉冲,获得肺部超极化气体的动力学过程,然后通过自归一化的方法对动力学数据进行拟合提取,得到肺泡宏观的气体交换效率参数。实现肺泡整体气血交换功能的的定量测量,为肺部疾病的早期诊断提供新方法。本发明只需单次屏气即可完成肺泡交换功能的测量,不需要对肺泡信号进行校准,简单易行,在临床应用中具有巨大潜力。
为实现上述目的,本发明采用以下技术方法:
一种基于超极化气体磁共振测量肺部气血交换功能的方法,包括以下步骤:
步骤1、受试者吸入超极化气体并屏气,
步骤2、在一次屏气中重复气态超极化气体信号采样n1次,得到气态超极化气体信号随气态超极化气体信号采样重复次数i变化的数据Si(n),其中i≤n1,将Si(n)进行自归一化处理,得到自归一化的动力学过程数据SN_i(n);
气态超极化气体信号采样包括以下步骤:
连续施加n个中心频率在溶解态超极化气体的共振频率,且施加时间为t秒的饱和脉冲,然后再施加一个中心频率为0ppm的激发脉冲,获得单次气态超极化气体信号采样的气态超极化气体信号S(n);
步骤3、将步骤2中的饱和脉冲的中心频率更改为溶解态超极化气体的共振频率的负数,重复步骤2,得到自归一化的对照信号SNC_i(n);
步骤4、将自归一化的动力学过程数据SN_i(n)和自归一化后的对照信号SNC_i(n)进行一一对应的校准,得到校准后的自归一化信号FN
步骤5、将校准后的自归一化信号FN代入以下公式通过最小二乘法提取肺泡的宏观气体交换常数T,
FN=exp(-i*n*t/T)
其中,t为饱和脉冲的施加时间,i为气态Xe信号采样重复次数,其中i≤n1,且为整数。
如上所述的饱和脉冲为高斯型,施加时间为3ms;所述的激发脉冲为方波,翻转角小于5°,施加时间为1ms。
如上所述的步骤5中将自归一化的动力学过程数据SN_i(n)和自归一化后的对照信号SNC_i(n)进行一一对应的校准即为将气态超极化气体信号采样重复次数i对应的自归一化的动力学过程数据SN_i(n)和自归一化后的对照信号SNC_i(n)相除。
如上所述的受试者为人或者实验动物;所述的超极化气体为129Xe或3He或83Kr。
本发明与现有技术相比,具有以下优点:
1、本方法首次实现了单次屏气内基于超极化气体定量测量肺泡整体的气体利用效率,需要气体量少,成本低廉,将有利于临床应用;
2、本方法通过间接测量的方式可以实现肺泡气体交换常数的测量,对超极化气体的极化度要求不高,十分适合临床应用;
3、本方法通过连续不间断地施加饱和脉冲的方法获得精确的肺泡对气体的利用效率信息,进而对肺泡壁组织的气体交换功能进行定量评估。该不仅可以实现宏观的肺泡气体交换常数测量,结合磁共振成像技术还可以实现肺部局部的肺泡气体交换常数测量,有利于肺部疾病的早期定量、可视化诊断;
4、本方法采用多次归一化和对照采样的方法消除实验中可能引入的误差项,获得准确的反映肺泡气体交换速率的数据。
附图说明
图1为本发明的流程图。
图2为本发明的射频脉冲时序图。
图3为实例中健康受试者的气血交换功能动力学过程。
图4为实例中肺部疾病受试者的气血交换功能动力学过程。
具体实施方式
依据本发明所述技术方案选取具体实施例、并结合附图1-4对本发明的技术方案做进一步的详细说明:
实施例1:
一种基于超极化气体磁共振测量肺部气血交换功能的方法,包括以下步骤:
步骤1、受试者吸入超极化气体并屏气,
步骤2、在一次屏气中重复气态超极化气体信号采样n1次,得到气态超极化气体信号随气态超极化气体信号采样重复次数i变化的数据Si(n),其中i≤n1,将Si(n)进行自归一化处理,得到自归一化的动力学过程数据SN_i(n);
气态超极化气体信号采样包括以下步骤:
连续施加n个中心频率在溶解态超极化气体的共振频率,且施加时间为t秒的饱和脉冲,然后再施加一个中心频率为0ppm的激发脉冲,获得单次气态超极化气体信号采样的气态超极化气体信号S(n);
步骤3、将步骤2中的饱和脉冲的中心频率更改为溶解态超极化气体的共振频率的负数,重复步骤2,得到自归一化的对照信号SNC_i(n);
步骤4、将自归一化的动力学过程数据SN_i(n)和自归一化后的对照信号SNC_i(n)进行一一对应的校准,得到校准后的自归一化信号FN
步骤5、将校准后的自归一化信号FN代入以下公式通过最小二乘法提取肺泡的宏观气体交换常数T,
FN=exp(-i*n*t/T)
其中,t为饱和脉冲的施加时间,i为气态Xe信号采样重复次数,其中i≤n1,且为整数。
如上所述的饱和脉冲为高斯型,施加时间为3ms;所述的激发脉冲为方波,翻转角小于5°,施加时间为1ms。
如上所述的步骤5中将自归一化的动力学过程数据SN_i(n)和自归一化后的对照信号SNC_i(n)进行一一对应的校准即为将气态超极化气体信号采样重复次数i对应的自归一化的动力学过程数据SN_i(n)和自归一化后的对照信号SNC_i(n)相除。
如上所述的受试者为人或者实验动物;所述的超极化气体为129Xe或3He或83Kr。
实施例2:
一种基于超极化气体磁共振测量肺部气血交换功能的方法,包括以下步骤:
步骤1,受试者吸入超极化129Xe气体并屏气。其中受试者可以是人。
步骤2,在一次屏气中重复气态超极化气体(Xe)信号采样n1次,得到气态Xe信号随气态超极化气体(Xe)信号采样重复次数i变化的数据Si(n),其中i≤n1,然后将Si(n)进行自归一化处理,得到自归一化的动力学过程数据SN_i(n);
气态超极化气体(Xe)信号采样过程包括以下步骤:
连续施加n(本实施例中n=50)个中心频率在溶解态超极化气体(在肺组织和血液中的Xe)的共振频率(本实施例中为200ppm),且施加时间为t秒的饱和脉冲(本实施例中选用的饱和脉冲施加时间为3ms,形状为高斯),然后再施加一个中心频率为0ppm的激发脉冲(本实施例中选用的激发脉冲施加时间为1ms,形状为方波,翻转角小于5°),获得单次气态超极化气体(Xe)信号采样的气态超极化气体信号S(n);
步骤3,将步骤2中的饱和脉冲的中心频率更改为溶解态超极化气体(在肺组织和血液中的Xe)的共振频率的负数(本实施例中为-200ppm),其他条件保持一致重复步骤2,最终得到自归一化的对照信号SNC_i(n),其中i≤n1;
步骤4,将自归一化的动力学过程数据SN_i(n)和自归一化后的对照信号SNC_i(n)进行一一对应的校准,即将气态超极化气体信号采样重复次数i对应的自归一化的动力学过程数据SN_i(n)和自归一化后的对照信号SNC_i(n)相除,得到校准后的自归一化信号FN,以消除纵向弛豫、射频脉冲偏共振等影响;
步骤5,将校准后的自归一化信号FN代入以下公式提取肺泡的宏观气体交换常数T,
FN=exp(-i*n*t/T)
其中,t为饱和脉冲的施加时间,i为气态Xe信号采样重复次数,其中i≤n1,且为整数。通过最小二乘法进行拟合获得肺泡的宏观气体交换常数T。
利用本实施例的方法获得健康受试者和患有肺部疾病气体交换功能异常的受试者的肺部动力学数据分别如图3和图4所示。健康受试者的归一化后的肺部超极化气体信号随饱和时间的衰减更快,经过拟合得到健康受试者的交换常数为0.6秒,患有肺部疾病的受试者肺部交换常数为1.1秒。从受试者的肺部气体交换常数可以直观地知道健康受试者的肺部气体交换功能更好。
本文中所描述的具体实施例仅仅是对本发明精神做举例说明,本发明所属技术领域的技术人员可以对所述的具体实施例做各种各样的修改或补充,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种基于超极化气体磁共振测量肺部气血交换功能的方法,其特征在于,包括以下步骤:
步骤1、受试者吸入超极化气体并屏气,
步骤2、在一次屏气中重复气态超极化气体信号采样n1次,得到气态超极化气体信号随气态超极化气体信号采样重复次数i变化的数据Si(n),其中i≤n1,将Si(n)进行自归一化处理,得到自归一化的动力学过程数据SN_i(n);
气态超极化气体信号采样包括以下步骤:
连续施加n个中心频率在溶解态超极化气体的共振频率,且施加时间为t秒的饱和脉冲,然后再施加一个中心频率为0ppm的激发脉冲,获得单次气态超极化气体信号采样的气态超极化气体信号S(n);
步骤3、将步骤2中的饱和脉冲的中心频率更改为溶解态超极化气体的共振频率的负数,重复步骤2,得到自归一化的对照信号SNC_i(n);
步骤4、将自归一化的动力学过程数据SN_i(n)和自归一化后的对照信号SNC_i(n)进行一一对应的校准,得到校准后的自归一化信号FN
步骤5、将校准后的自归一化信号FN代入以下公式通过最小二乘法提取肺泡的宏观气体交换常数T,
FN=exp(-i*n*t/T)
其中,t为饱和脉冲的施加时间,i为气态Xe信号采样重复次数,其中i≤n1,且为整数。
2.根据权利要求1所述的一种基于超极化气体磁共振测量肺部气血交换功能的方法,其特征在于,所述的饱和脉冲为高斯型,施加时间为3ms;所述的激发脉冲为方波,翻转角小于5°,施加时间为1ms。
3.根据权利要求1所述的一种基于超极化气体磁共振测量肺部气血交换功能的方法,其特征在于,所述的步骤5中将自归一化的动力学过程数据SN_i(n)和自归一化后的对照信号SNC_i(n)进行一一对应的校准即为将气态超极化气体信号采样重复次数i对应的自归一化的动力学过程数据SN_i(n)和自归一化后的对照信号SNC_i(n)相除。
4.根据权利要求1所述的一种基于超极化气体磁共振测量肺部气血交换功能的方法,其特征在于,所述的受试者为人或者实验动物;所述的超极化气体为129Xe或3He或83Kr。
CN201611116611.8A 2016-12-07 2016-12-07 一种基于超极化气体磁共振测量肺部气血交换功能的方法 Pending CN106377263A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611116611.8A CN106377263A (zh) 2016-12-07 2016-12-07 一种基于超极化气体磁共振测量肺部气血交换功能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611116611.8A CN106377263A (zh) 2016-12-07 2016-12-07 一种基于超极化气体磁共振测量肺部气血交换功能的方法

Publications (1)

Publication Number Publication Date
CN106377263A true CN106377263A (zh) 2017-02-08

Family

ID=57959630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611116611.8A Pending CN106377263A (zh) 2016-12-07 2016-12-07 一种基于超极化气体磁共振测量肺部气血交换功能的方法

Country Status (1)

Country Link
CN (1) CN106377263A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152769A (zh) * 2017-12-22 2018-06-12 中国科学院武汉物理与数学研究所 一种基于超极化气体波谱的角度和t1同时测量方法
CN111505039A (zh) * 2020-04-30 2020-08-07 中国科学院精密测量科学与技术创新研究院 基于饱和能量非均匀分布的Xe分子探针浓度快速定量测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020198449A1 (en) * 2001-02-08 2002-12-26 The Trustees Of The University Of Pennsylvania Quantitative pulmonary imaging
CN1745314A (zh) * 2002-09-06 2006-03-08 医疗物理有限公司 利用极化129Xe的NMR信号进行肺部生理机能和/或功能的体内评估的方法
US20130046484A1 (en) * 2011-08-19 2013-02-21 Yulin Chang Data processing for hyperpolarized xenon magnetic resonance in the lung
CN104027113A (zh) * 2014-07-01 2014-09-10 中国科学院武汉物理与数学研究所 一种基于先验知识和稀疏采样的肺部快速磁共振成像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020198449A1 (en) * 2001-02-08 2002-12-26 The Trustees Of The University Of Pennsylvania Quantitative pulmonary imaging
CN1745314A (zh) * 2002-09-06 2006-03-08 医疗物理有限公司 利用极化129Xe的NMR信号进行肺部生理机能和/或功能的体内评估的方法
US20130046484A1 (en) * 2011-08-19 2013-02-21 Yulin Chang Data processing for hyperpolarized xenon magnetic resonance in the lung
CN104027113A (zh) * 2014-07-01 2014-09-10 中国科学院武汉物理与数学研究所 一种基于先验知识和稀疏采样的肺部快速磁共振成像方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李海东: "超极化129Xe动物肺部磁共振成像", 《中国博士学位论文全文数据库医药卫生科技辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152769A (zh) * 2017-12-22 2018-06-12 中国科学院武汉物理与数学研究所 一种基于超极化气体波谱的角度和t1同时测量方法
CN111505039A (zh) * 2020-04-30 2020-08-07 中国科学院精密测量科学与技术创新研究院 基于饱和能量非均匀分布的Xe分子探针浓度快速定量测量方法
CN111505039B (zh) * 2020-04-30 2022-03-15 中国科学院精密测量科学与技术创新研究院 基于饱和能量非均匀分布的Xe分子探针浓度定量测量方法

Similar Documents

Publication Publication Date Title
JP6557710B2 (ja) 核磁気共鳴(nmr)フィンガープリンティング
EP2744406B1 (en) Magnetic resonance method and system for quantifying hepatic fat in humans
JP6050126B2 (ja) 核スピン系の縦及び横緩和時間の同時及び動的決定
JPH0595933A (ja) 核磁気共鳴イメージング方法
CN104379057A (zh) 磁共振成像装置
US10247799B2 (en) System and method for sensitivity-enhanced multi-echo chemical exchange saturation transfer (MECEST) magentic resonance imaging
US10605877B2 (en) System and method for chemical exchange saturation transfer (CEST) magnetic resonance fingerprinting
CN106249183B (zh) 一种基于谱像一体化的超极化氙气磁共振方法
RU2727551C2 (ru) Система и способ определения количества магнитных частиц
CN106377263A (zh) 一种基于超极化气体磁共振测量肺部气血交换功能的方法
CN109350076A (zh) 基于超宽带微波s21参数的血糖浓度检测方法
US10330760B2 (en) System and method for assessing T2-relaxation times with improved accuracy
CN108020565A (zh) 基于神经网络算法的血糖浓度检测方法
JPH04506162A (ja) パルスシーケンスを設定する方法
CN105433912B (zh) 一种磁纳米实时非侵入式温度测量方法
CN104155621B (zh) 一种准确测量静磁场b0分布的方法
CN107205699A (zh) 用于无创地检查至少血液成分的部分的装置和方法以及装置的应用
US6507749B1 (en) Method and apparatus for tracking the motion of fluid and determining a velocity spectrum thereof from MR data acquired in a single cycle
CN106659420A (zh) 磁共振成像装置
CN102024090A (zh) 一种乙肝指标数据处理装置、检测设备及检测系统
CN105738397B (zh) 化合物中季碳纵向驰豫时间(t1)的分析方法
CN108107391A (zh) 一种单体素定域一维高分辨同核去耦谱方法
CN108152769B (zh) 一种气体波谱的角度和弛豫时间常数t1同时测量方法
KR20110010442A (ko) 생체신호 검측시스템 및 그 방법
Tkac et al. On the quantification of low concentration metabolites by 1H NMR spectroscopy in the human brain at 7 Tesla

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170208

RJ01 Rejection of invention patent application after publication