CN106371313A - 一种时滞lpv系统有记忆h∞状态反馈控制器设计方法 - Google Patents

一种时滞lpv系统有记忆h∞状态反馈控制器设计方法 Download PDF

Info

Publication number
CN106371313A
CN106371313A CN201610842591.6A CN201610842591A CN106371313A CN 106371313 A CN106371313 A CN 106371313A CN 201610842591 A CN201610842591 A CN 201610842591A CN 106371313 A CN106371313 A CN 106371313A
Authority
CN
China
Prior art keywords
delta
overbar
gamma
matrix
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610842591.6A
Other languages
English (en)
Inventor
黄金杰
潘晓真
郝现志
李雪萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201610842591.6A priority Critical patent/CN106371313A/zh
Publication of CN106371313A publication Critical patent/CN106371313A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种时滞LPV系统有记忆H状态反馈控制器设计方法,包括以下步骤:对于存在状态时滞的线性参数变量系统,研究其有记忆的状态反馈控制器的H控制问题,重点在于控制器的设计,通过选择合适的李雅普诺夫函数,给出了有记忆状态反馈控制器存在且使闭环系统满足H性能指标的充要条件;采用线性矩阵不等式技术,将控制器存在的充要条件转化为凸优化问题,采用本发明设计的时滞LPV系统的有记忆H状态反馈控制器具有稳定性高、保守性低的特点,值得被广泛推广。

Description

一种时滞LPV系统有记忆H∞状态反馈控制器设计方法
技术领域
本发明涉及控制技术领域,具体是一种时滞LPV系统有记忆H状态反馈控制器设计方法。
背景技术
线性参数变量(LPV)系统是一种重要的时变系统,许多实际的非线性系统可以描述成时变参数的确定函数,而这些时变参数是可以实时可测的,针对上述系统已经有大量学者做出研究,由于时滞现象存在各种工程系统中,像通信系统、传送系统、化工过程系统、冶金过程系统、环境系统、电力系统等;而时滞的存在,使系统的性能恶化,甚至影响其稳定性,事实上,在对时滞系统的研究中,如果时滞很小是经常被忽略;但是,在很多系统中,一个小的时滞都有可能对整个系统造成很坏的影响,这就促使研究者们去寻求使小时滞系统达到稳定的方法;
目前,时滞线性参数变量(LPV)系统的状态反馈控制器的设计主要采用求解Riccati型方程、线性矩阵不等式(LMI)等来设计相应的控制器,绝大多数反馈控制率的实现都是采用无记忆状态反馈控制器,然而,对于无记忆状态反馈控制器由于未引入系统的过去状态信息,其控制不能影响时滞对系统的作用,基于以上文献,本文将有记忆状态反馈控制器带入时滞线性参数变量系统中,研究时滞线性参数变量系统有记忆状态反馈控制器的H控制问题,基于线性矩阵不等式方法,利用凸优化的思想,给出了有记忆状态反馈控制器存在且使闭环系统满足H 性能指标的充要条件。
发明内容
本发明的目的在于提供一种时滞LPV系统有记忆H状态反馈控制器设计方法,以解决上述背景技术中提出的问题;为实现上述目的,本发明提供如下技术方案:一种时滞LPV系统有记忆H状态反馈控制器设计方法,包括以下步骤:
考虑下面的时滞线性参数变量系统的状态空间模型:
x · ( t ) = A ( p ( t ) ) x ( t ) + A h ( p ( t ) ) x ( t - h ( p ( t ) ) ) + B ( p ( t ) ) u ( t ) + G ( p ( t ) ) w ( t )
z(t)=C(p(t))x(t)+Ch(p(t))x(t-h(p(t)))+D(p(t))u(t)
(1)
x(t)=φ(θ),θ∈[-h(p(0)),0] (2)
式中,x(t)∈Rn为状态变量,u(t)∈Rr为控制输入,w(t)∈Rp为扰动输入,z(t)∈Rm是控制信号的输出,φ(θ)给定的初始条件,假定系统矩阵和时变参数h(p(t))均为时变参数p(t)=[p1(t),p2(t),…,ps(t)]T的函数;且h(p(t))满足0<h(p(t))≤H<+∞,为了表述方便以后以p,pi(其中i=1,…,s)代替p(t),pi(t);
在发明中,假定参数pi及参数变化率均实时可测;
假设系统(1)的系数矩阵满足如下形式
A ( p ) = A 0 + Σ i = 1 s p i A i , A h ( p ) = A h 0 + Σ i = 1 s p i A h i
B ( p ) = B 0 + Σ i = 1 s p i B i , G ( p ) = G 0 + Σ i = 1 s p i G i
C ( p ) = C 0 + Σ i = 1 s p i C i , C h ( p ) = C h 0 + Σ i = 1 s p i C h i
D ( p ) = D 0 + Σ i = 1 s p i D i , h ( p ) = h 0 + Σ i = 1 s p i h i
式中,A0,Ah0,B0,G0,C0,Ch0,D0,h0,Ai,Ahi,Bi,Gi,Ci,Chi,Di,hi,i=1,…,s为常数矩阵;参数pi有界且其变化率有界,满足 i=1,…,s,式中p i 为已知常数;
定义超立方矩阵V和S,使得参数变量pi和参数变量的变化率在其中变化,
V = { ( δ 1 , δ 2 , ... δ N ) | δ i ∈ { p i ‾ , p i ‾ } } , S = { ( τ 1 , τ 2 , ... τ N ) | τ i ∈ { p i · ‾ , p i · ‾ } }
假定系统的状态是可以直接测量的,要求设计如下有记忆状态反馈控制器:
u(t)=K1(p(t))x(t)+K2(p(t))x(t-h(p(t))) (3)
其中,K1(p(t))和K2(p(t))是待求的依赖于参数的反馈矩阵, 使得闭环系统
x · ( t ) = A ‾ ( p ) x ( t ) + A h ‾ ( p ) x ( t - h ( p ) ) + G ( p ) w ( t ) z ( t ) = C ‾ ( p ) x ( t ) + C h ‾ ( p ) x ( t - h ( p ) ) - - - ( 4 )
其中,
A ‾ ( p ) = A ( p ) + B ( p ) K 1 ( p ) A h ‾ ( p ) = A h ( p ) + B ( p ) K 2 ( p ) C ‾ ( p ) = C ( p ) + D ( p ) K 1 ( p ) C h ‾ ( p ) = C h ( p ) + D ( p ) K 2 ( p ) - - - ( 5 )
本发明的目的是针对系统(1),通过设计有记忆状态反馈控制器使得闭环系统(4)渐进稳定,同时在零初始条件下,使其外部干扰输入w(t)到受控输出z(t)的传递函数Gwz(s)的H范数不超过给定常数γ,即:
其中,
作为本发明再进一步的方案:
定理1对系统(1),如果存在连续可微的对称正定矩阵P(p)和对称正定矩阵Q,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定;
A &OverBar; T ( p ) P ( p ) + P ( p ) A &OverBar; ( p ) + &Sigma; i = 1 s ( &tau; i &part; P &part; p i ) + Q * A &OverBar; h T ( p ) P ( p ) - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; p i ) &rsqb; Q < 0 - - - ( 6 )
定理2对系统(1)和给定的正常数γ,如果存在连续可微的对称正定矩阵P(p)和对称正定矩阵Q,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定且满足H指标;
A &OverBar; T ( p ) P ( p ) + P ( p ) A &OverBar; ( p ) + &Sigma; i = 1 s ( &tau; i &part; P &part; &rho; i ) + Q * * * A &OverBar; h T ( p ) P ( p ) - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; &rho; i ) &rsqb; Q * * G T ( p ) P ( p ) 0 - &gamma; I * C &OverBar; ( p ) C &OverBar; h ( p ) 0 - &gamma; I < 0 - - - ( 8 )
由于定理2提出的LMI不等式是无穷维的,现在提出可求解的条件;
定理3对系统(1)和给定的正常数γ,δi∈V如果存在连续可微的对称正定矩阵P0,Pi,i=1,…,s和对称正定矩阵Q,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定且满足H性能指标;
A &OverBar; T ( &delta; ) P ( &delta; ) + P ( &delta; ) A &OverBar; ( &delta; ) + &Sigma; i = 1 s ( &tau; i &part; P &part; &delta; i ) + Q * * * A &OverBar; h T ( &delta; ) P ( &delta; ) - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; &delta; i ) &rsqb; Q * * G T ( &delta; ) P ( &delta; ) 0 - &gamma; I * C &OverBar; ( &delta; ) C &OverBar; h ( &delta; ) 0 - &gamma; I < 0 - - - ( 9 )
&lsqb; &Xi; 1 ( * ) ( * ) ( * ) &Xi; 2 0 ( * ) ( * ) G i T P i 0 0 ( * ) D i K 1 i D i K 2 i 0 0 0 &rsqb; &le; 0 - - - ( 10 )
其中,
&Xi; 1 = A i T P i + K 1 i T B T ( &delta; ) P i + K 1 T ( &delta; ) B i T P i + K 1 i T B i T P ( &delta; ) + P i A i + P i B ( &delta; ) K 1 i + P i B i K 1 ( &delta; ) + P ( &delta; ) B i K 1 i
&Xi; 2 = A h i T P i + K 2 i T B T ( &delta; ) P i + K 2 T ( &delta; ) B i T P i + K 2 i T B i T P ( &delta; )
P(δ)>0
(11)
从定理3中可以看出,条件(9)中存在Lyapunov函数矩阵P(δ)与闭环系统矩阵乘积项,为解决这一问题,引入附加矩阵来解耦,从而得到新的性能准则;
定理4对系统(1)和给定的正常数γ,如果存在连续可微的对称正定矩阵P(δ)、对称正定矩阵Q和矩阵W,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定且满足H指标;
- ( W + W T ) * * * * * A &OverBar; T ( &delta; ) W + P ( &delta; ) - P ( &delta; ) + &Sigma; i = 1 s ( &tau; i &part; P &part; &delta; i ) + Q * * * * A &OverBar; h T ( &delta; ) W 0 - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; &delta; i ) &rsqb; Q * * * G T ( &delta; ) W 0 0 - &gamma; I * * 0 C &OverBar; ( &delta; ) C &OverBar; h ( &delta; ) 0 - &gamma; I * W 0 0 0 0 - P ( &delta; ) < 0 - - - ( 12 )
- ( W + W T ) * * * * * * 0 - ( W + W T ) * * * * * - P ( &delta; ) + K 1 i T B i T W A i T W + K 1 T ( &delta; ) B i T W + K 1 i T B T ( &delta; ) W - P i - P ( &delta; ) * * * * 0 A h i T ( &delta; ) W + K 2 T ( &delta; ) B i T W + K 2 i T B T ( &delta; ) W 0 0 * * * 0 G i T ( &delta; ) W 0 0 0 * * 0 0 - D i K 1 i - D i K 2 i 0 0 * W 0 0 0 0 0 - P ( &delta; ) &le; 0 - - - ( 13 )
通过引入附加矩阵W,定理4消除了Lyapunov函数与系统矩阵之间的耦合,这种特性使得将该条件用于系统的分析和综合时,更易于数值实现;
基于上面定理,得到有记忆状态反馈控制器的设计如下:
定理5对系统(1)和给定的正常数γ,如果存在连续可微的对称矩阵X0,U1,U2,Xi,U1i,U2i和的对称正定矩阵Y以及一般矩阵N,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定且满足H性能指标;
- ( N + N T ) * * * * * N T A T ( &delta; ) + U 1 T ( &delta; ) B T ( &delta; ) + X ( &delta; ) X ( &tau; ) - X 0 + Y - X ( &delta; ) * * * * N T A h T ( &delta; ) + U 2 T ( &delta; ) B T ( &delta; ) 0 - &delta; ( &tau; ) Y * * * G T ( &delta; ) 0 0 - &gamma; I * * 0 C ( &delta; ) N + D ( &delta; ) U 1 ( &delta; ) C h ( &delta; ) N + D ( &delta; ) U 2 ( &delta; ) 0 - &gamma; I * N T 0 0 0 0 - X ( &delta; ) < 0 - - - ( 17 )
- ( N + N T ) * * * * * * 0 - ( N + N T ) * * * * * - X ( &delta; ) + U 1 i T B i T - X i + N T A i T + U 1 T ( &delta; ) B i T + U 1 i T B T ( &delta; ) - X ( &delta; ) * * * * 0 N T A h i T + U 2 T ( &delta; ) B i T + U 2 i T B T ( &delta; ) 0 0 * * * 0 G i T 0 0 0 * * 0 0 - D i U 1 i - D i U 2 i 0 0 * N T 0 0 0 0 0 - X ( &delta; ) &le; 0 - - - ( 18 )
若上述不等式存在可行解,则所求的的状态反馈的增益矩阵为:
K1(ρ)=U1(ρ)N-1,K2(ρ)=U2(ρ)N-1 (19)
由于式(18)不是严格地不等式,因此在式(18)上加上这样就得到了合适的求解条件。
附图说明
图为时滞LPV系统的有记忆H状态反馈控制器设计方法的流程示意图
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例;基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围;
图为本发明中的时滞LPV系统的有记忆H状态反馈控制器设计方法的流程示意图,如图所示,本发明中,一种时滞LPV系统有记忆H状态反馈控制器设计方法,包括以下步骤:
考虑下面的时滞线性参数变量系统的状态空间模型:
x &CenterDot; ( t ) = A ( p ( t ) ) x ( t ) + A h ( p ( t ) ) x ( t - h ( p ( t ) ) ) + B ( p ( t ) ) u ( t ) + G ( p ( t ) ) w ( t )
z(t)=C(p(t))x(t)+Ch(p(t))x(t-h(p(t)))+D(p(t))u(t)
(1)
x(t)=φ(θ),θ∈[-h(p(0)),0]
(2)
式中,x(t)∈Rn为状态变量,u(t)∈Rr为控制输入,w(t)∈Rp为扰动输入, z(t)∈Rm是控制信号的输出,φ(θ)给定的初始条件,假定系统矩阵和时变参数h(p(t))均为时变参数p(t)=[p1(t),p2(t),…,ps(t)]T的函数,且h(p(t))满足0<h(p(t))≤H<+∞,为了表述方便以后以p,pi(其中i=1,…,s)代替p(t),pi(t);
在发明中,假定参数pi及参数变化率均实时可测;假设系统(1)的系数矩阵满足如下形式
A ( p ) = A 0 + &Sigma; i = 1 s p i A i , A h ( p ) = A h 0 + &Sigma; i = 1 s p i A h i
B ( p ) = B 0 + &Sigma; i = 1 s p i B i , G ( p ) = G 0 + &Sigma; i = 1 s p i G i
C ( p ) = C 0 + &Sigma; i = 1 s p i C i , C h ( p ) = C h 0 + &Sigma; i = 1 s p i C h i
D ( p ) = D 0 + &Sigma; i = 1 s p i D i , h ( p ) = h 0 + &Sigma; i = 1 s p i h i
式中,A0,Ah0,B0,G0,C0,Ch0,D0,h0,Ai,Ahi,Bi,Gi,Ci,Chi,Di,hi,i=1,…,s为常数矩阵;参数pi有界且其变化率有界,满足 i=1,…,s,式中p i 为已知常数;
定义超立方矩阵V和S,使得参数变量pi和参数变量的变化率在其中变化,
V = { ( &delta; 1 , &delta; 2 , ... &delta; N ) | &delta; i &Element; { p i &OverBar; , p i &OverBar; } } , S = { ( &tau; 1 , &tau; 2 , ... &tau; N ) | &tau; i &Element; { p i &CenterDot; &OverBar; , p i &CenterDot; &OverBar; } }
假定系统的状态是可以直接测量的,要求设计如下有记忆状态反馈控制器:
u(t)=K1(p(t))x(t)+K2(p(t))x(t-h(p(t))) (3)
其中,K1(p(t))和K2(p(t))是待求的依赖于参数的反馈矩阵, 使得闭环系统
x &CenterDot; ( t ) = A &OverBar; ( p ) x ( t ) + A h &OverBar; ( p ) x ( t - h ( p ) ) + G ( p ) w ( t ) z ( t ) = C &OverBar; ( p ) x ( t ) + C h &OverBar; ( p ) x ( t - h ( p ) ) - - - ( 4 )
其中,
A &OverBar; ( p ) = A ( p ) + B ( p ) K 1 ( p ) A h &OverBar; ( p ) = A h ( p ) + B ( p ) K 2 ( p ) C &OverBar; ( p ) = C ( p ) + D ( p ) K 1 ( p ) C h &OverBar; ( p ) = C h ( p ) + D ( p ) K 2 ( p ) - - - ( 5 )
本发明的目的是针对系统(1),通过设计有记忆状态反馈控制器使得闭环系统(4)渐进稳定,同时在零初始条件下,使其外部干扰输入w(t)到受控输出z(t)的传递函数Gwz(s)的H范数不超过给定常数γ,即:
其中,
定理1对系统(1),如果存在连续可微的对称正定矩阵P(p)和对称正定矩阵Q,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定;
A &OverBar; T ( p ) P ( p ) + P ( p ) A &OverBar; ( p ) + &Sigma; i = 1 s ( &tau; i &part; P &part; p i ) + Q * A &OverBar; h T ( p ) P ( p ) - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; p i ) &rsqb; Q < 0 - - - ( 6 )
定理2对系统(1)和给定的正常数γ,如果存在连续可微的对称正定矩阵P(p)和对称正
定矩阵Q,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定且满足H指标;
A &OverBar; T ( p ) P ( p ) + P ( p ) A &OverBar; ( p ) + &Sigma; i = 1 s ( &tau; i &part; P &part; &rho; i ) + Q * * * A &OverBar; h T ( p ) P ( p ) - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; &rho; i ) &rsqb; Q * * G T ( p ) P ( p ) 0 - &gamma; I * C &OverBar; ( p ) C &OverBar; h ( p ) 0 - &gamma; I < 0 - - - ( 8 )
由于定理2提出的LMI不等式是无穷维的,现在提出可求解的条件;
定理3对系统(1)和给定的正常数γ,δi∈V如果存在连续可微的对称正定矩阵P0,Pi,i=1,…,s和对称正定矩阵Q,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定且满足H性能指标;
A &OverBar; T ( &delta; ) P ( &delta; ) + P ( &delta; ) A &OverBar; ( &delta; ) + &Sigma; i = 1 s ( &tau; i &part; P &part; &delta; i ) + Q * * * A &OverBar; h T ( &delta; ) P ( &delta; ) - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; &delta; i ) &rsqb; Q * * G T ( &delta; ) P ( &delta; ) 0 - &gamma; I * C &OverBar; ( &delta; ) C &OverBar; h ( &delta; ) 0 - &gamma; I < 0 - - - ( 9 )
&lsqb; &Xi; 1 ( * ) ( * ) ( * ) &Xi; 2 0 ( * ) ( * ) G i T P i 0 0 ( * ) D i K 1 i D i K 2 i 0 0 0 &rsqb; &le; 0 - - - ( 10 )
其中,
&Xi; 1 = A i T P i + K 1 i T B T ( &delta; ) P i + K 1 T ( &delta; ) B i T P i + K 1 i T B i T P ( &delta; ) + P i A i + P i B ( &delta; ) K 1 i + P i B i K 1 ( &delta; ) + P ( &delta; ) B i K 1 i
&Xi; 2 = A h i T P i + K 2 i T B T ( &delta; ) P i + K 2 T ( &delta; ) B i T P i + K 2 i T B i T P ( &delta; )
P(δ)>0
(11)
从定理3中可以看出,条件(9)中存在Lyapunov函数矩阵P(δ)与闭环系统矩阵乘积项,为解决这一问题,引入附加矩阵来解耦,从而得到新的性能准则[19]
定理4对系统(1)和给定的正常数γ,如果存在连续可微的对称正定矩阵P(δ)、对称正定矩阵Q和矩阵W,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定且满足H指标;
- ( W + W T ) * * * * * A &OverBar; T ( &delta; ) W + P ( &delta; ) - P ( &delta; ) + &Sigma; i = 1 s ( &tau; i &part; P &part; &delta; i ) + Q * * * * A &OverBar; h T ( &delta; ) W 0 - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; &delta; i ) &rsqb; Q * * * G T ( &delta; ) W 0 0 - &gamma; I * * 0 C &OverBar; ( &delta; ) C &OverBar; h ( &delta; ) 0 - &gamma; I * W 0 0 0 0 - P ( &delta; ) < 0 - - - ( 12 )
- ( W + W T ) * * * * * * 0 - ( W + W T ) * * * * * - P ( &delta; ) + K 1 i T B i T W A i T W + K 1 T ( &delta; ) B i T W + K 1 i T B T ( &delta; ) W - P i - P ( &delta; ) * * * * 0 A h i T ( &delta; ) W + K 2 T ( &delta; ) B i T W + K 2 i T B T ( &delta; ) W 0 0 * * * 0 G i T ( &delta; ) W 0 0 0 * * 0 0 - D i K 1 i - D i K 2 i 0 0 * W 0 0 0 0 0 - P ( &delta; ) &le; 0 - - - ( 13 )
通过引入附加矩阵W,定理4消除了Lyapunov函数与系统矩阵之间的耦合,这种特性使得将该条件用于系统的分析和综合时,更易于数值实现;
基于上面定理,得到有记忆状态反馈控制器的设计如下:
定理5对系统(1)和给定的正常数γ,如果存在连续可微的对称矩阵X0,U1,U2,Xi,U1i,U2i和的对称正定矩阵Y以及一般矩阵N,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定且满足H性能指标;
- ( N + N T ) * * * * * N T A T ( &delta; ) + U 1 T ( &delta; ) B T ( &delta; ) + X ( &delta; ) X ( &tau; ) - X 0 + Y - X ( &delta; ) * * * * N T A h T ( &delta; ) + U 2 T ( &delta; ) B T ( &delta; ) 0 - &delta; ( &tau; ) Y * * * G T ( &delta; ) 0 0 - &gamma; I * * 0 C ( &delta; ) N + D ( &delta; ) U 1 ( &delta; ) C h ( &delta; ) N + D ( &delta; ) U 2 ( &delta; ) 0 - &gamma; I * N T 0 0 0 0 - X ( &delta; ) < 0 - - - ( 17 )
- ( N + N T ) * * * * * * 0 - ( N + N T ) * * * * * - X ( &delta; ) + U 1 i T B i T - X i + N T A i T + U 1 T ( &delta; ) B i T + U 1 i T B T ( &delta; ) - X ( &delta; ) * * * * 0 N T A h i T + U 2 T ( &delta; ) B i T + U 2 i T B T ( &delta; ) 0 0 * * * 0 G i T 0 0 0 * * 0 0 - D i U 1 i - D i U 2 i 0 0 * N T 0 0 0 0 0 - X ( &delta; ) &le; 0
( 18 )
若上述不等式存在可行解,则所求的的状态反馈的增益矩阵为:
K1(ρ)=U1(ρ)N-1,K2(ρ)=U2(ρ)N-1 (19)
由于式(18)不是严格地不等式,因此在式(18)上加上这样就得到了合适的求解条件;
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明;因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内,不应将权利要求中的任何附图标记视为限制所涉及的权利要求;
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (5)

1.一种时滞LPV系统有记忆H状态反馈控制器设计方法,其特征在于,包括以下步骤:考虑下面的时滞线性参数变量系统的状态空间模型:
x &CenterDot; ( t ) = A ( p ( t ) ) x ( t ) + A h ( p ( t ) ) x ( t - h ( p ( t ) ) ) + B ( p ( t ) ) u ( t ) + G ( p ( t ) ) w ( t )
z(t)=C(p(t))x(t)+Ch(p(t))x(t-h(p(t)))+D(p(t))u(t)
(1)
x(t)=φ(θ),θ∈[-h(p(0)),0] (2)
式中,x(t)∈Rn为状态变量,u(t)∈Rr为控制输入,w(t)∈Rp为扰动输入,z(t)∈Rm是控制信号的输出,φ(θ)给定的初始条件,假定系统矩阵和时变参数h(p(t))均为时变参数p(t)=[p1(t),p2(t),…,ps(t)]T的函数;且h(p(t))满足0<h(p(t))≤H<+∞,为了表述方便以后以p,pi(其中i=1,…,s)代替p(t),pi(t);
在发明中,假定参数pi及参数变化率均实时可测;假设系统(1)的系数矩阵满足如下形式
A ( p ) = A 0 + &Sigma; i = 1 s p i A i , A h ( p ) = A h 0 + &Sigma; i = 1 s p i A h i
B ( p ) = B 0 + &Sigma; i = 1 s p i B i , G ( p ) = G 0 + &Sigma; i = 1 s p i G i
C ( p ) = C 0 + &Sigma; i = 1 s p i C i , C h ( p ) = C h 0 + &Sigma; i = 1 s p i C h i
D ( p ) = D 0 + &Sigma; i = 1 s p i D i , h ( p ) = h 0 + &Sigma; i = 1 s p i h i
式中,A0,Ah0,B0,G0,C0,Ch0,D0,h0,Ai,Ahi,Bi,Gi,Ci,Chi,Di,hi,i=1,…,s为常数矩阵,参数pi有界且其变化率有界,满足 式中为已知常数;
定义超立方矩阵V和S,使得参数变量pi和参数变量的变化率在其中变化;
V = { ( &delta; 1 , &delta; 2 , . . . &delta; N ) | &delta; i &Element; { p i &OverBar; , p i &OverBar; } } , S = { ( &tau; 1 , &tau; 2 , . . . &tau; N ) | &tau; i &Element; { p . i &OverBar; , p i . &OverBar; } }
假定系统的状态是可以直接测量的,要求设计如下有记忆状态反馈控制器:
u(t)=K1(p(t))x(t)+K2(p(t))x(t-h(p(t))) (3)
其中,K1(p(t))和K2(p(t))是待求的依赖于参数的反馈矩阵, 使得闭环系统
x &CenterDot; ( t ) = A &OverBar; ( p ) x ( t ) + A h &OverBar; ( p ) x ( t - h ( p ) ) + G ( p ) w ( t ) z ( t ) = C &OverBar; ( p ) x ( t ) + C h &OverBar; ( p ) x ( t - h ( p ) ) - - - ( 4 )
其中,
A &OverBar; ( p ) = A ( p ) + B ( p ) K 1 ( p ) A h &OverBar; ( p ) = A h ( p ) + B ( p ) K 2 ( p ) C &OverBar; ( p ) = C ( p ) + D ( p ) K 1 ( p ) C h &OverBar; ( p ) = C h ( p ) + D ( p ) K 2 ( p ) - - - ( 5 )
本发明的目的是针对系统(1),通过设计有记忆状态反馈控制器使得闭环系统(4)渐进稳定,同时在零初始条件下,使其外部干扰输入w(t)到受控输出z(t)的传递函数Gwz(s)的H范数不超过给定常数γ,即:
其中,
2.根据权利要求1所述的时滞LPV系统有记忆H∞状态反馈控制器设计方法,其特征在于:
定义1(投影定理):给定一个对称矩阵Π∈Rn×n加上两个适合的n列矩阵R和S,存在一个矩阵W使得线性矩阵不等式Π+RTWTS+STWR<0与如下线性不等式等价式中,NR和NS分别为R和S的直交补;
定义2(Schur补定理):假定矩阵F(P)的分块表示为
F ( P ) = F 11 ( P ) F 12 ( P ) F 21 ( P ) F 22 ( P )
则一下三个结论是等价的:
(1)F(P)>0
F 11 ( P ) > 0 , F 22 ( P ) - F 21 ( P ) F 11 - 1 ( P ) F 12 ( P ) > 0 - - - ( 2 )
F 22 ( P ) > 0 , F 11 ( P ) - F 2 ( P ) F 22 - 1 ( P ) F 21 ( P ) > 0 - - - ( 3 )
引理1对于系统如果存在对称矩阵P1,…,Pk,使得对所有的p(t),AT(p)P(p)+P(p)A(p)<0,P(p)>0,AT iPi+PiAi≥0i=1,…,k,则系统是二次稳定的,且V(xt,p)=xT(t)P(p(t))x(t)是一个参数依赖的Lyapunov函数;
定理1对系统(1),如果存在连续可微的对称正定矩阵P(p)和对称正定矩阵Q,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定;
A &OverBar; T ( p ) P ( p ) + P ( p ) A &OverBar; ( p ) + &Sigma; i = 1 s ( &tau; i &part; P &part; p i ) + Q * A &OverBar; h T ( p ) P ( p ) - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; p i ) &rsqb; Q < 0 - - - ( 6 )
证明:为了研究系统(1)的H特性,令φ(θ)=0,考虑下列的Lyapunov泛函:
V ( x t , p ) = x T ( t ) P ( p ( t ) ) x ( t ) + &Integral; t - h ( p ( t ) ) t x T ( &xi; ) Q x ( &xi; ) d &xi; - - - ( 7 )
λ P :=minλmin(P(p)),由此可知V(xt,p)是有界的;其中,
d V d t = dx T d t P ( p ( t ) ) x ( t ) + x T ( t ) P ( p ( t ) ) d x d t + x T ( t ) d P d t x ( t ) + + x T ( t ) Q x ( t ) - ( 1 - d h d t ) - x T ( t - h ( p ( t ) ) ) Q x ( t - h ( p ( t ) ) ) = x T ( t ) x T ( t - h ( p ( t ) ) ) &times; A &OverBar; T P + P A &OverBar; + P &CenterDot; + Q ( * ) A &OverBar; h T P ( - 1 + h &CenterDot; ) Q &times; x ( t ) x ( t - h ( p ( t ) ) ) &le; 0
最后一个不等式来自于公式(6),所以定理1得证;
定理2对系统(1)和给定的正常数γ,如果存在连续可微的对称正定矩阵P(p)和对称正
定矩阵Q,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定且满足H指标;
A &OverBar; T ( p ) P ( p ) + P ( p ) A &OverBar; ( p ) + &Sigma; i = 1 s ( &tau; i &part; P &part; &rho; i ) + Q * * * A &OverBar; h T ( p ) P ( p ) - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; &rho; i ) &rsqb; Q * * G T ( p ) P ( p ) 0 - &gamma; I * C &OverBar; ( p ) C &OverBar; h ( p ) 0 - &gamma; I < 0 - - - ( 8 )
证明:从顶部的2×2的矩阵中和定理1,我们知道时滞线性参数系统是渐近稳定的,在零初始条件下,考虑到对于任意非零外部扰动w(t)利用Lyapunov函数(7)和初始条件可导出:
J &infin; = &Integral; 0 &infin; &lsqb; &gamma; - 1 z T ( t ) z ( t ) - &gamma;w T ( t ) w ( t ) + V &CenterDot; ( x ( t ) ) &rsqb; d t - V ( x ( t ) ) &le; &Integral; 0 &infin; &lsqb; &gamma; - 1 z T ( t ) z ( t ) - &gamma;w T ( t ) w ( t ) + V &CenterDot; ( x ( t ) ) &rsqb; d t
由于
d V d t = dx T d t P ( p ( t ) ) x ( t ) + x T ( t ) P ( p ( t ) ) d x d t + x T ( t ) d P d t x ( t ) + x T ( t ) Q x ( t ) - ( 1 - d h d t ) x T ( t - h ( p ( t ) ) ) Q x ( t - h ( p ( t ) ) ) = x T ( t ) x T ( t - h ( p ( t ) ) ) w T ( t ) &times; A &OverBar; T P + P A &OverBar; + P &CenterDot; + Q ( * ) ( * ) A &OverBar; h T P ( - 1 + h &CenterDot; ) Q ( * ) G T P 0 0 x ( t ) x ( t - h ( p ( t ) ) ) w ( t ) &gamma; - 1 z T ( t ) z ( t ) - &gamma;w T ( t ) w ( t ) = x T ( t ) x T ( t - h ( p ( t ) ) ) w T ( t ) &gamma; - 1 C &OverBar; T C &OverBar; ( * ) ( * ) &gamma; - 1 C &OverBar; h T C &OverBar; &gamma; - 1 C &OverBar; h T C h &OverBar; ( * ) 0 0 - &gamma; I x ( t ) x ( t - h ( p ( t ) ) ) w ( t )
根据矩阵Schur补引理,矩阵不等式(8)等价于
A &OverBar; T P + P A &OverBar; + P &CenterDot; + Q + &gamma; - 1 C &OverBar; T C &OverBar; ( * ) ( * ) A &OverBar; h T P + &gamma; - 1 C &OverBar; h T C &OverBar; ( - 1 + h &CenterDot; ) Q + &gamma; - 1 C &OverBar; h T C h &OverBar; ( * ) G T P 0 - &gamma; I < 0
J &infin; &le; &Integral; 0 &infin; &lsqb; &gamma; - 1 z T ( t ) z ( t ) - &gamma;w T ( t ) w ( t ) + V &CenterDot; ( x ( t ) ) &rsqb; d t = &Integral; 0 &infin; x T ( t ) x T ( t - h ( p ( t ) ) ) w ( t ) T &times; A &OverBar; T P + P A &OverBar; + P &CenterDot; + Q + &gamma; - 1 C &OverBar; T C &OverBar; ( * ) ( * ) A &OverBar; h T P + &gamma; - 1 C &OverBar; h T C &OverBar; ( - 1 + h &CenterDot; ) Q + &gamma; - 1 C &OverBar; h T C h &OverBar; ( * ) G T P 0 - &gamma; I &times; x ( t ) x ( t - h ( p ( t ) ) ) w ( t ) < 0
定理2得证。
3.根据权利要求1所述的时滞LPV系统有记忆H∞状态反馈控制器设计方法,其特征在于,所述步骤2中,提出的LMI不等式是无穷维的,现在提出可求解的条件:
定理3对系统(1)和给定的正常数γ,δi∈V如果存在连续可微的对称正定矩阵P0,Pi,i=1,…,s和对称正定矩阵Q,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定且满足H性能指标;
A &OverBar; T ( &delta; ) P ( &delta; ) + P ( &delta; ) A &OverBar; ( &delta; ) + &Sigma; i = 1 s ( &tau; i &part; P &part; &delta; i ) + Q * * * A &OverBar; h T ( &delta; ) P ( &delta; ) - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; &delta; i ) &rsqb; Q * * G T ( &delta; ) P ( &delta; ) 0 - &gamma; I * C &OverBar; ( &delta; ) C &OverBar; h ( &delta; ) 0 - &gamma; I < 0 - - - ( 9 )
&lsqb; &Xi; 1 ( * ) ( * ) ( * ) &Xi; 2 0 ( * ) ( * ) G i T P i 0 0 ( * ) D i K 1 i D i K 2 i 0 0 0 &rsqb; &le; 0 - - - ( 10 )
其中,
&Xi; 1 = A i T P i + K 1 i T B T ( &delta; ) P i + K 1 T ( &delta; ) B i T P i + K 1 i T B i T P ( &delta; ) + P i A i + P i B ( &delta; ) K 1 i + P i B i K 1 ( &delta; ) + P ( &delta; ) B i K 1 i &Xi; 2 = A h i T P i + K 2 i T B T ( &delta; ) P i + K 2 T ( &delta; ) B i T P i + K 2 i T B i T P ( &delta; ) P ( &delta; ) > 0 - - - ( 11 )
证明:因为二次函数在超立方体上负定的充要条件是二次函数在超立方体上的所有点都负定,即,式(8)推出式(9);进一步根据引理1可由式(9)推出式(10)。
4.根据权利要求1所述的时滞LPV系统有记忆H∞状态反馈控制器设计方法,其特征在于,所述步骤3中,条件(9)中存在Lyapunov函数矩阵P(δ)与闭环系统矩阵乘积项,为解决这一问题,引入附加矩阵来解耦,从而得到新的性能准则:
定理4对系统(1)和给定的正常数γ,如果存在连续可微的对称正定矩阵P(δ)、对称正定矩阵Q和矩阵W,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定且满足H指标;
- ( W + W T ) * * * * * A &OverBar; T ( &delta; ) W + P ( &delta; ) - P ( &delta; ) + &Sigma; i = 1 s ( &tau; i &part; P &part; &delta; i ) + Q * * * * A &OverBar; h T ( &delta; ) W 0 - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; &delta; i ) &rsqb; Q * * * G T ( &delta; ) W 0 0 - &gamma; I * * 0 C &OverBar; ( &delta; ) C &OverBar; h ( &delta; ) 0 - &gamma; I * W 0 0 0 0 - P ( &delta; ) < 0 - - - ( 12 )
- ( W + W T ) * * * * * * 0 - ( W + W T ) * * * * * - P ( &delta; ) + K 1 i T B i T W A i T W + K 1 T ( &delta; ) B i T W + K 1 i T B T ( &delta; ) W - P i - P ( &delta; ) * * * * 0 A h i T ( &delta; ) W + K 2 T ( &delta; ) B i T W + K 2 i T B T ( &delta; ) W 0 0 * * * 0 G i T ( &delta; ) W 0 0 0 * * 0 0 - D i K 1 i - D i K 2 i 0 0 * W 0 0 0 0 0 - P ( &delta; ) < 0 - - - ( 13 )
证明:应用投影定理,不等式(12)等价于下式:
0 * * * * * P ( &delta; ) - P ( &delta; ) + &Sigma; i = 1 s ( &tau; i &part; P &part; &delta; i ) + Q * * * * 0 0 - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; &delta; i ) &rsqb; Q * * * 0 0 0 - &gamma; I * * 0 C &OverBar; ( &delta; ) C h ( &delta; ) 0 - &gamma; I * 0 0 0 0 0 - P ( &delta; ) + - I A &OverBar; T ( &delta; ) A &OverBar; h T ( &delta; ) G T ( &delta; ) 0 I T W I 0 0 0 0 0 + I 0 0 0 0 0 T W T ( * ) - I A &OverBar; T ( &delta; ) A &OverBar; h T ( &delta; ) G T ( &delta; ) 0 I < 0 - - - ( 14 )
而[I 0 0 0 0 0]和的零空间分别为故投影条件产生
A &OverBar; T ( &delta; ) P ( &delta; ) + P ( p ) A &OverBar; ( &delta; ) - P ( &delta; ) + &Sigma; i = 1 s ( &tau; i &part; P &part; &delta; i ) + Q * * * * A &OverBar; h T ( &delta; ) P ( &delta; ) - &lsqb; 1 - &Sigma; i = 1 s ( &tau; i &part; h &part; &delta; i ) &rsqb; Q * * * G T ( &delta; ) P ( &delta; ) 0 - &gamma; I * * C &OverBar; ( &delta; ) C &OverBar; h ( &delta; ) 0 - &gamma; I * P ( &delta; ) 0 0 0 - P ( &delta; ) < 0 - - - ( 16 )
由Schur补引理,可知式(12)等价于定理3的式(9);同理可证得可知式(13)等价于定理3的式(10),因此定理4的条件就是定理3的充分条件,定理得证;
通过引入附加矩阵W,定理4消除了Lyapunov函数与系统矩阵之间的耦合,这种特性使得将该条件用于系统的分析和综合时,更易于数值实现。
5.根据权利要求1所述的时滞LPV系统有记忆H∞状态反馈控制器设计方法,其特征在于:基于上面定理,得到有记忆状态反馈控制器的设计如下:
定理5对系统(1)和给定的正常数γ,如果存在连续可微的对称矩阵X0,U1,U2,Xi,U1i,U2i和的对称正定矩阵Y以及一般矩阵N,使得下面的不等式对于所有参数变化轨迹成立,则闭环系统(4)参数二次稳定且满足H性能指标;
- ( N + N T ) * * * * * N T A T ( &delta; ) + U 1 T ( &delta; ) B T ( &delta; ) + X ( &delta; ) X ( &tau; ) - X 0 + Y - X ( &delta; ) * * * * N T A h T ( &delta; ) + U 2 T ( &delta; ) B T ( &delta; ) 0 - &delta; ( &tau; ) Y * * * G T ( &delta; ) 0 0 - &gamma; I * * 0 C ( &delta; ) N + D ( &delta; ) U 1 ( &delta; ) C h ( &delta; ) N + D ( &delta; ) U 2 ( &delta; ) 0 - &gamma; I * N T 0 0 0 0 - X ( &delta; ) < 0 - - - ( 17 )
- ( N + N T ) * * * * * * 0 - ( N + N T ) * * * * * - X ( &delta; ) + U 1 i T B i T - X i + N T A i T + U 1 T ( &delta; ) B i T + U 1 i T B T ( &delta; ) - X ( &delta; ) * * * * 0 N T A h i T + U 2 T ( &delta; ) B i T + U 2 i T B T ( &delta; ) 0 0 * * * 0 G i T 0 0 0 * * 0 0 - D i U 1 i - D i U 2 i 0 0 * N T 0 0 0 0 0 - X ( &delta; ) &le; 0 - - - ( 18 )
若上述不等式存在可行解,则所求的的状态反馈的增益矩阵为:
K1(ρ)=U1(ρ)N-1,K2(ρ)=U2(ρ)N-1 (19)
证明:用d i[a-1g W-1 W-1 W]对式(12),用d i[a-1g W-1 W-1 W-1 W]对式(13)进行全等变换,并且定义Y=W-TQW-1,X(δ)=W-TP(δ)W-1,U1i=K1iW-1,U1i=K1iW-1,U1(δ)=K1(δ)W-1,U2i=K2iW-1,U2(δ)=K2(δ)W-1,N=W-1则式(12)和(13)分别等价于式(17)和(18);由于式(18)不是严格地不等式,因此在式(18)上加上这样就得到了合适的求解条件。
CN201610842591.6A 2016-09-22 2016-09-22 一种时滞lpv系统有记忆h∞状态反馈控制器设计方法 Pending CN106371313A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610842591.6A CN106371313A (zh) 2016-09-22 2016-09-22 一种时滞lpv系统有记忆h∞状态反馈控制器设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610842591.6A CN106371313A (zh) 2016-09-22 2016-09-22 一种时滞lpv系统有记忆h∞状态反馈控制器设计方法

Publications (1)

Publication Number Publication Date
CN106371313A true CN106371313A (zh) 2017-02-01

Family

ID=57896989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610842591.6A Pending CN106371313A (zh) 2016-09-22 2016-09-22 一种时滞lpv系统有记忆h∞状态反馈控制器设计方法

Country Status (1)

Country Link
CN (1) CN106371313A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106970526A (zh) * 2017-02-21 2017-07-21 河南理工大学 一种基于凸组合法的时变时滞系统的反馈控制器设计方法
CN107069712A (zh) * 2017-04-01 2017-08-18 华北电力大学 基于李雅普诺夫的电力系统临界切除时间计算系统及方法
CN107272416A (zh) * 2017-07-26 2017-10-20 江南大学 一类线性参数变化系统动态量化h∞控制方法
CN109991849A (zh) * 2019-04-03 2019-07-09 哈尔滨理工大学 一种时滞lpv系统有记忆h∞输出反馈控制器设计方法
CN109992004A (zh) * 2019-05-08 2019-07-09 哈尔滨理工大学 一种lpv系统异步切换状态反馈控制器设计方法
CN111158241A (zh) * 2020-01-15 2020-05-15 哈尔滨工程大学 具有不确定时滞的线性奇异系统的时滞相关h∞控制方法
CN112186780A (zh) * 2020-09-24 2021-01-05 河南理工大学 基于区间时滞影响下不确定电力系统的镇定器的设计方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106970526A (zh) * 2017-02-21 2017-07-21 河南理工大学 一种基于凸组合法的时变时滞系统的反馈控制器设计方法
CN107069712A (zh) * 2017-04-01 2017-08-18 华北电力大学 基于李雅普诺夫的电力系统临界切除时间计算系统及方法
CN107272416A (zh) * 2017-07-26 2017-10-20 江南大学 一类线性参数变化系统动态量化h∞控制方法
CN109991849A (zh) * 2019-04-03 2019-07-09 哈尔滨理工大学 一种时滞lpv系统有记忆h∞输出反馈控制器设计方法
CN109992004A (zh) * 2019-05-08 2019-07-09 哈尔滨理工大学 一种lpv系统异步切换状态反馈控制器设计方法
CN109992004B (zh) * 2019-05-08 2022-04-22 哈尔滨理工大学 一种lpv系统异步切换状态反馈控制器设计方法
CN111158241A (zh) * 2020-01-15 2020-05-15 哈尔滨工程大学 具有不确定时滞的线性奇异系统的时滞相关h∞控制方法
CN111158241B (zh) * 2020-01-15 2022-07-15 哈尔滨工程大学 具有不确定时滞的线性奇异系统的时滞相关h∞控制方法
CN112186780A (zh) * 2020-09-24 2021-01-05 河南理工大学 基于区间时滞影响下不确定电力系统的镇定器的设计方法

Similar Documents

Publication Publication Date Title
CN106371313A (zh) 一种时滞lpv系统有记忆h∞状态反馈控制器设计方法
CN109212974B (zh) 区间时变时滞系统的鲁棒模糊预测容错控制方法
CN103064282B (zh) 非线性参数变化模型辨识方法(npv)
Zouari et al. Neural network controller design for fractional-order systems with input nonlinearities and asymmetric time-varying Pseudo-state constraints
Ghaffari et al. Robust model predictive control of a class of uncertain nonlinear systems with application to typical CSTR problems
CN103309238B (zh) 基于离散增量式分布阶pi控制器的控制方法
CN101813916B (zh) 非线性生产过程的自适应预测函数控制方法
CN105138006A (zh) 一种时滞非线性多智能体系统的协同追踪控制方法
CN106325075B (zh) 一类时滞线性参数变化离散系统的h∞控制方法
Zappavigna et al. Stabilization of continuous-time switched linear positive systems
Shi et al. Adaptive fuzzy control for feedback linearizable MIMO nonlinear systems with prescribed performance
CN106094511A (zh) 一种时滞lpv系统的鲁棒h∞状态反馈控制器的设计方法
CN107193210A (zh) 一种非线性系统的自适应学习预设性能控制方法
CN104345640A (zh) 一种输入受限时电机伺服系统渐进跟踪控制方法和系统
Gao et al. Synthesis of multiple model switching controllers using H∞ theory for systems with large uncertainties
CN103454921B (zh) 飞行控制系统非线性跟踪控制器设计的正切线性化方法
CN102323754A (zh) 一种基于区域极点配置的鲁棒增益调度控制方法
CN102566418B (zh) 一种无需物理参数的倒立摆自适应滑模控制方法
CN104571166A (zh) 基于控制器参数的变风量空调系统性能评估方法
Song et al. Adaptive dynamic programming: single and multiple controllers
CN103558761B (zh) 一种具有控制器输入饱和的非线性化学反应循环不确定时滞系统的控制方法
Rajhans et al. Two alternate approaches for characterization of the terminal region for continuous time quasi-infinite horizon NMPC
Zhu et al. Adaptive neural network dynamic event‐triggered control for strong interconnected stochastic nonlinear systems with output constraint
Gao et al. D‐FNN based modeling and BP neural network decoupling control of PVC stripping process
Saini et al. Cascade-PID control of a nonlinear chemical process.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170201