CN106340888B - 基于佳点集量子粒子群算法的交直流系统无功优化方法 - Google Patents

基于佳点集量子粒子群算法的交直流系统无功优化方法 Download PDF

Info

Publication number
CN106340888B
CN106340888B CN201610827139.2A CN201610827139A CN106340888B CN 106340888 B CN106340888 B CN 106340888B CN 201610827139 A CN201610827139 A CN 201610827139A CN 106340888 B CN106340888 B CN 106340888B
Authority
CN
China
Prior art keywords
voltage
value
limit
particle
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610827139.2A
Other languages
English (en)
Other versions
CN106340888A (zh
Inventor
黄道姗
蔡振才
黄霆
李海坤
苏清梅
吴丹岳
林因
刘智煖
张健
蔡冰君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING TSINGSOFT INNOVATION TECHNOLOGY Co Ltd
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
State Grid Fujian Electric Power Co Ltd
Original Assignee
BEIJING TSINGSOFT INNOVATION TECHNOLOGY Co Ltd
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
State Grid Fujian Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING TSINGSOFT INNOVATION TECHNOLOGY Co Ltd, State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd, State Grid Fujian Electric Power Co Ltd filed Critical BEIJING TSINGSOFT INNOVATION TECHNOLOGY Co Ltd
Priority to CN201610827139.2A priority Critical patent/CN106340888B/zh
Publication of CN106340888A publication Critical patent/CN106340888A/zh
Application granted granted Critical
Publication of CN106340888B publication Critical patent/CN106340888B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明涉及一种基于佳点集量子粒子群算法的交直流系统无功优化方法,包括以下步骤:步骤S1:建立交直流系统无功优化模型;步骤S2:对量子遗传算法进行改进;步骤S3:使用改进后的量子遗传算法对交直流系统无功优化模型进行求解。本发明对QPSO进行改进,解决了其容易陷入局部最优,导致早熟收敛的问题。

Description

基于佳点集量子粒子群算法的交直流系统无功优化方法
技术领域
本发明涉及一种基于佳点集量子粒子群算法的交直流系统无功优化方法。
背景技术
随着直流输电技术的发展,交直流混合电力系统在在我国“西电东送,全国联网”战略中发挥了重要作用。在南方电网西电东送通道中,直流线路输电能力约占整个通道的60%。然而直流换流站会吸收大量无功功率,对交流系统的无功分布及电压波动产生很大影响,因此对交直流混合输电系统进行无功优化,通过维持无功平衡,实现对电压的控制很有必要。
无功优化是非线性规划问题,采用的方法包含单纯形法、内点法、动态规划法等,然而这些常规方法存在离散变量的归整问题,易陷入局部最优以及产生“维数灾”。为弥补传统方法的不足,遗传算法、模拟退火算法和粒子群优化算法启发式算法逐渐被引入到无功优化领域。量子粒子群算法(QPSO)是受量子力学的启发,将量子进化算法(QEA)融合到粒子群优化(PSO)算法中,该算法的模型认为粒子具有量子行为,并以DELTA势阱为基础。然而QPSO其依赖于对初始参数的选择,容易陷入局部最优,导致早熟收敛。
发明内容
有鉴于此,本发明的目的在于提供一种基于佳点集量子粒子群算法的交直流系统无功优化方法,对QPSO进行改进,解决了其容易陷入局部最优,导致早熟收敛的问题。
为实现上述目的,本发明采用如下技术方案:一种基于佳点集量子粒子群算法的交直流系统无功优化方法,其特征在于,包括以下步骤:
步骤S1:建立交直流系统无功优化模型;
步骤S2:对量子遗传算法进行改进;
步骤S3:使用改进后的量子遗传算法对交直流系统无功优化模型进行求解。
进一步的,所述步骤S1的具体步骤如下:
步骤S11:建立目标函数
其中,f为目标值,minf指使目标值最小,PLoss为系统网损值,式中的第二和第三项分别为电压和发电机无功出力的偏移值,λ1、λ2分别为电压和发电机无功越界的罚系数,N1、N2分别为PQ节点数和发电机节点数,分别电压和发电机无功的基准值,Ui和Qi分别为电压和发电机无功的实际值,Uimin、Uimax分别为电压的下限和上限,Qimin、Qimax分别是发电机无功的下限和上限;
系统网损值PLoss既包含交流系统的网损PLoss(AC),也包含直流线路的损耗值PLoss(DC),计算方法如下式:
PLoss=PLoss(AC)+PLoss(DC) (2)
PLoss(DC)=ΣId 2Rd (4)
其中,Gij为连接节点i,j的电导,Ui、Uj分别为节点i,j的电压,θij为节点i,j的相角差;
步骤S12:等式约束
其中,Pli、Qli为节点i的有功和无功负荷,Qci为无功补偿功率,Bij为i、j节点之间的电纳;
步骤S13:不等式约束
控制变量约束方程:
Ugimin≤Ugi≤Ugimax (7)
Qcimin≤Qci≤Qcimax (8)
Timin≤Ti≤Timax (9)
Udimin≤Udi≤Udimax (10)
Idimin≤Idi≤Idimax (11)
Pdimin≤Pdi≤Pdimax (12)
其中,Ugimax、Ugimin、Ugi分别为发电机节点的电压上限、电压下限及实际电压值,Qcimax、Qcimin、Qci分别为节点i的补偿容量上限、补偿容量下限及实际补偿容量,Timax、Timin、Ti分别为变压器的变比上限、变比下限及实际变比值,Udimax、Udimin、Udi分别为控制电压型换流器的电压上限、电压下限及实际电压值,Idimax、Idimin、Idi分别为控制电流型换流器的电流上限、电流下限及实际电流值,Pdimax、Pdimin、Pdi分别为控制功率型换流器的功率上限、功率下限及实际功率值;
状态变量约束方程:
Qgimin≤Qgi≤Qgimax (13)
Uimin≤Ui≤Uimax (14)
Tcvimin≤Tcvi≤Tcvimax (15)
其中,Qgimax、Qgimin、Qgi分别为发电机节点的无功上限、无功下限及实际发出无功值,Uimax、Uimin、Ui分别为PQ节点的电压上限、电压下限及实际电压值,Tcvimax、Tcvimin、Tcvi分别为换流变压器的变比上限、变比下限及实际变比值。
进一步的,所述步骤S2的具体步骤如下:
步骤S21:佳点集初始化;
步骤S22:量子位幅角增量更新
Δθij(t+1)=wΔθij(t)+c1r1(Δθ1)+c2r2(Δθg) (16)
θij(t+1)=θij(t)+Δθij(t+1) (17)
其中:c1和c2分别为个体和全局的学习因子,r1和r2为区间[0,1]内的随机数,w为混沌时间序列数映射到[0.1,0.9]区间上的数值,θ为量子比特的相位,Δθ1为当前个体与个体之间的角度差,Δθg为当前个体与全局最优之间的角度差,Δθ1与Δθg的公式如下:
步骤S23:佳点集交叉操作
选取两个粒子θi和θj作为父代,设θi=(θi1i2,…,θis),θj=(θj1j2,…,θjs),θi和θj共同确定了一个有界闭区间
D是R上的超长方体,即
父代个体通过佳点集交叉产生子代个体,子代个体通过切割父代个体确定的超长方体获得新的基因片段,然后重组产生;
步骤S24:变异操作
使用量子非门实现变异操作,过程如下:
令变异概率为pm,每个粒子在(0,1)之间设定一个随机数Nmdi,若Nmdi<pm,则用量子非门兑换两个概率幅,该粒子的自身最优位置和转向角仍保持不变。
进一步的,所述步骤S3的具体步骤如下:
步骤S31:初始化改进后的量子遗传算法的有关参数,包括种群规模、变量个数、迭代次数及解空间范围;
步骤S32:应用佳点集理论对种群幅角进行初始化,生成交直流系统的变压器变比、无功补偿容量、发电机端电压;
步骤S33:将每个粒子代入交直流系统无功化模型,计算得到状态变量值,包括各节点电压及网损;
步骤S34:利用适应度函数对每个粒子的初始位置进行评价,计算出每个粒子位置的适应值;若粒子目前的位置优于自身记忆的最优位置,则用目前位置替换;若目前全局最优位置优于到目前为止搜索到的最优位置,则用全局最优位置替换;
步骤S35:根据公式(16)和公式(17)更新粒子位置;
步骤S36:对粒子进行交叉变异操作;
步骤S37:判断是否达到最大代数,如果满足,则计算结束,否则将个体重新进行步骤S33操作。
本发明与现有技术相比具有以下有益效果:本发明运用佳点集构造初始化量子位置的初始角度,提高量子初始位置的遍历性;在算法中引入佳点集交叉操作以及变异算子增加了种群的多样性,避免了早熟收敛的现象。
附图说明
图1是本发明的方法总流程图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
请参照图1,本发明提供一种基于佳点集量子粒子群算法的交直流系统无功优化方法,其特征在于,包括以下步骤:
步骤S1:建立交直流系统无功优化模型;具体步骤如下:
步骤S11:建立目标函数
其中,f为目标值,minf指使目标值最小,PLoss为系统网损值,式中的第二和第三项分别为电压和发电机无功出力的偏移值,λ1、λ2分别为电压和发电机无功越界的罚系数,N1、N2分别为PQ节点数和发电机节点数,分别电压和发电机无功的基准值,Ui和Qi分别为电压和发电机无功的实际值,Uimin、Uimax分别为电压的下限和上限,Qimin、Qimax分别是发电机无功的下限和上限;
系统网损值PLoss既包含交流系统的网损PLoss(AC),也包含直流线路的损耗值PLoss(DC),计算方法如下式:
PLoss=PLoss(AC)+PLoss(DC) (2)
PLoss(DC)=∑Id 2Rd (4)
其中,Gij为连接节点i,j的电导,Ui、Uj分别为节点i,j的电压,θij为节点i,j的相角差;
步骤S12:等式约束
等式约束即为潮流方程,其中,Pli、Qli为节点i的有功和无功负荷,Qci为无功补偿功率,Bij为i、j节点之间的电纳;
步骤S13:不等式约束
不等式约束主要包含控制变量和状态变量的上下限,控制变量包含发电机节点电压、无功补偿点补偿容量、可调变压器变比、控制电压型换流器电压、控制电流型换流器电流、控制功率型换流器功率,状态变量包含发电机无功出力、各节点电压、支路无功潮流、换流器变压器的变比等。
控制变量约束方程:
Ugimin≤Ugi≤Ugimax (7)
Qcimin≤Qci≤Qcimax (8)
Timin≤Ti≤Timax (9)
Udimin≤Udi≤Udimax (10)
Idimin≤Idi≤Idimax (11)
Pdimin≤Pdi≤Pdimax (12)
其中,Ugimax、Ugimin、Ugi分别为发电机节点的电压上限、电压下限及实际电压值,Qcimax、Qcimin、Qci分别为节点i的补偿容量上限、补偿容量下限及实际补偿容量,Timax、Timin、Ti分别为变压器的变比上限、变比下限及实际变比值,Udimax、Udimin、Udi分别为控制电压型换流器的电压上限、电压下限及实际电压值,Idimax、Idimin、Idi分别为控制电流型换流器的电流上限、电流下限及实际电流值,Pdimax、Pdimin、Pdi分别为控制功率型换流器的功率上限、功率下限及实际功率值;
状态变量约束方程:
Qgimin≤Qgi≤Qgimax (13)
Uimin≤Ui≤Uimax (14)
Tcvimin≤Tcvi≤Tcvimax (15)
其中,Qgimax、Qgimin、Qgi分别为发电机节点的无功上限、无功下限及实际发出无功值,Uimax、Uimin、Ui分别为PQ节点的电压上限、电压下限及实际电压值,Tcvimax、Tcvimin、Tcvi分别为换流变压器的变比上限、变比下限及实际变比值。
步骤S2:对量子遗传算法进行改进;具体步骤如下:
步骤S21:佳点集初始化
佳点集最初由华罗庚等提出,其基本定义构造为:设Gs是S维欧式空间的单位立方体,即x∈Gs,x=(x1,x2,x3,…xs),其中0≤xi≤1,i=1,2,…s,Gs中的点r=(r1,r2,r3,…rs),令r∈Gs,形为Pn(k)={({r1k},…,{rsk}),k=1,2,…,n}的偏差满足其中C(r,ε)是只与r,ε(ε>0)有关的常数,则称Pn(k)为佳点集,r为佳点。佳点集误差的阶只与n有关,而与空间的维数无关,对无功优化这种高维的近似计算具有很高的优越性。
生成二维初始种群时,在相同的取点个数下,佳点集法取点比随机法取点更为均匀。因此,将Gs上佳点映射到目标求解空间,使初始种群更具有遍历性,从而更好的达到全局寻优的目的。
步骤S22:量子位幅角增量更新
Δθij(t+1)=wΔθij(t)+c1r1(Δθ1)+c2r2(Δθg) (16)
θij(t+1)=θij(t)+Δθij(t+1) (17)
其中:c1和c2分别为个体和全局的学习因子(或称加速因子),r1和r2为区间[0,1]内的随机数,w为混沌时间序列数映射到[0.1,0.9]区间上的数值,θ为量子比特的相位,Δθ1为当前个体与个体之间的角度差,Δθg为当前个体与全局最优之间的角度差,Δθ1与Δθg的公式如下:
步骤S23:佳点集交叉操作
粒子群中如果一个粒子当前的位置,该粒子的当前最优值和粒子群的当前最优值三者一致,该粒子会因为它以前的速度和惯性因子不为零而远离最佳位置导致算法不能收敛;如果以前的速度非常接近零,粒子一旦赶上了粒子群的当前最佳粒子,种群多样性就慢慢丧失,所有的粒子将会集聚到相同位置并停止移动,粒子群优化出现停滞状态,却仍没有搜索到满意解。本发明引入佳点集交叉操作以避免搜索陷入局部最优。
选取两个粒子θi和θj作为父代,设θi=(θi1i2,…,θis),θj=(θj1j2,…,θjs),θi和θj共同确定了一个有界闭区间
D是R上的超长方体,即
父代个体通过佳点集交叉产生子代个体,子代个体通过切割父代个体确定的超长方体获得新的基因片段,然后重组产生。
步骤S24:变异操作
使用量子非门实现变异操作,过程如下:
令变异概率为pm,每个粒子在(0,1)之间设定一个随机数Nmdi,若Nmdi<pm,则用量子非门兑换两个概率幅,该粒子的自身最优位置和转向角仍保持不变。
步骤S3:使用改进后的量子遗传算法对交直流系统无功优化模型进行求解;具体步骤如下:
步骤S31:初始化改进后的量子遗传算法的有关参数,包括种群规模、变量个数、迭代次数及解空间范围;
步骤S32:应用佳点集理论对种群幅角进行初始化,生成交直流系统的变压器变比、无功补偿容量、发电机端电压;
步骤S33:将每个粒子代入交直流系统无功化模型,计算得到状态变量值,包括各节点电压及网损;
步骤S34:利用适应度函数对每个粒子的初始位置进行评价,计算出每个粒子位置的适应值;若粒子目前的位置优于自身记忆的最优位置,则用目前位置替换;若目前全局最优位置优于到目前为止搜索到的最优位置,则用全局最优位置替换;
步骤S35:根据公式(16)和公式(17)更新粒子位置;
步骤S36:对粒子进行交叉变异操作;
步骤S37:判断是否达到最大代数,如果满足,则计算结束,否则将个体重新进行步骤S33操作。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (2)

1.一种基于佳点集量子粒子群算法的交直流系统无功优化方法,其特征在于,包括以下步骤:
步骤S1:建立交直流系统无功优化模型;
步骤S2:对量子遗传算法进行改进;
步骤S3:使用改进后的量子遗传算法对交直流系统无功优化模型进行求解;
所述步骤S1的具体步骤如下:
步骤S11:建立目标函数
其中,f为目标值,minf指使目标值最小,PLoss为系统网损值,式中的第二和第三项分别为电压和发电机无功出力的偏移值,λ1、λ2分别为电压和发电机无功越界的罚系数,N1、N2分别为PQ节点数和发电机节点数,分别电压和发电机无功的基准值,Ui和Qi分别为电压和发电机无功的实际值,Uimin、Uimax分别为电压的下限和上限,Qimin、Qimax分别是发电机无功的下限和上限;
系统网损值PLoss既包含交流系统的网损PLoss(AC),也包含直流线路的损耗值PLoss(DC),计算方法如下式:
PLoss=PLoss(AC)+PLoss(DC) (2)
PLoss(DC)=∑Id 2Rd (4)
其中,Gij为连接节点i,j的电导,Ui、Uj分别为节点i,j的电压,θij为节点i,j的相角差;
步骤S12:等式约束
其中,Pli、Qli为节点i的有功和无功负荷,Qci为无功补偿功率,Bij为i、j节点之间的电纳;
步骤S13:不等式约束
控制变量约束方程:
Ugimin≤Ugi≤Ugimax (7)
Qcimin≤Qci≤Qcimax (8)
Timin≤Ti≤Timax (9)
Udimin≤Udi≤Udimax (10)
Idimin≤Idi≤Idimax (11)
Pdimin≤Pdi≤Pdimax (12)
其中,Ugimax、Ugimin、Ugi分别为发电机节点的电压上限、电压下限及实际电压值,Qcimax、Qcimin、Qci分别为节点i的补偿容量上限、补偿容量下限及实际补偿容量,Timax、Timin、Ti分别为变压器的变比上限、变比下限及实际变比值,Udimax、Udimin、Udi分别为控制电压型换流器的电压上限、电压下限及实际电压值,Idimax、Idimin、Idi分别为控制电流型换流器的电流上限、电流下限及实际电流值,Pdimax、Pdimin、Pdi分别为控制功率型换流器的功率上限、功率下限及实际功率值;
状态变量约束方程:
Qgimin≤Qgi≤Qgimax (13)
Uimin≤Ui≤Uimax (14)
Tcvimin≤Tcvi≤Tcvimax (15)
其中,Qgimax、Qgimin、Qgi分别为发电机节点的无功上限、无功下限及实际发出无功值,Uimax、Uimin、Ui分别为PQ节点的电压上限、电压下限及实际电压值,Tcvimax、Tcvimin、Tcvi分别为换流变压器的变比上限、变比下限及实际变比值;
所述步骤S2的具体步骤如下:
步骤S21:佳点集初始化;
步骤S22:量子位幅角增量更新
Δθij(t+1)=wΔθij(t)+c1r1(Δθ1)+c2r2(Δθg) (16)
θij(t+1)=θij(t)+Δθij(t+1) (17)
其中:c1和c2分别为个体和全局的学习因子,r1和r2为区间[0,1]内的随机数,w为混沌时间序列数映射到[0.1,0.9]区间上的数值,θ为量子比特的相位,Δθ1为当前个体与个体之间的角度差,Δθg为当前个体与全局最优之间的角度差,Δθ1与Δθg的公式如下:
步骤S23:佳点集交叉操作
选取两个粒子θi和θj作为父代,设θi=(θi1i2,…,θis),θj=(θj1j2,…,θjs),θi和θj共同确定了一个有界闭区间
D是R上的超长方体,即
父代个体通过佳点集交叉产生子代个体,子代个体通过切割父代个体确定的超长方体获得新的基因片段,然后重组产生;
步骤S24:变异操作
使用量子非门实现变异操作,过程如下:
令变异概率为pm,每个粒子在(0,1)之间设定一个随机数Nmdi,若Nmdi<pm,则用量子非门兑换两个概率幅,该粒子的自身最优位置和转向角仍保持不变。
2.根据权利要求1所述的基于佳点集量子粒子群算法的交直流系统无功优化方法,其特征在于:所述步骤S3的具体步骤如下:
步骤S31:初始化改进后的量子遗传算法的有关参数,包括种群规模、变量个数、迭代次数及解空间范围;
步骤S32:应用佳点集理论对种群幅角进行初始化,生成交直流系统的变压器变比、无功补偿容量、发电机端电压;
步骤S33:将每个粒子代入交直流系统无功化模型,计算得到状态变量值,包括各节点电压及网损;
步骤S34:利用适应度函数对每个粒子的初始位置进行评价,计算出每个粒子位置的适应值;若粒子目前的位置优于自身记忆的最优位置,则用目前位置替换;若目前全局最优位置优于到目前为止搜索到的最优位置,则用全局最优位置替换;
步骤S35:根据公式(16)和公式(17)更新粒子位置;
步骤S36:对粒子进行交叉变异操作;
步骤S37:判断是否达到最大代数,如果满足,则计算结束,否则将个体重新进行步骤S33操作。
CN201610827139.2A 2016-09-18 2016-09-18 基于佳点集量子粒子群算法的交直流系统无功优化方法 Active CN106340888B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610827139.2A CN106340888B (zh) 2016-09-18 2016-09-18 基于佳点集量子粒子群算法的交直流系统无功优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610827139.2A CN106340888B (zh) 2016-09-18 2016-09-18 基于佳点集量子粒子群算法的交直流系统无功优化方法

Publications (2)

Publication Number Publication Date
CN106340888A CN106340888A (zh) 2017-01-18
CN106340888B true CN106340888B (zh) 2019-01-25

Family

ID=57840025

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610827139.2A Active CN106340888B (zh) 2016-09-18 2016-09-18 基于佳点集量子粒子群算法的交直流系统无功优化方法

Country Status (1)

Country Link
CN (1) CN106340888B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106919041A (zh) * 2017-01-23 2017-07-04 长春工业大学 一种基于改进的量子遗传算法的扇形磨片排序方法
CN106849191B (zh) * 2017-03-23 2019-08-16 广东工业大学 一种基于粒子群算法的交直流智能家庭微网运行方法
CN107123991B (zh) * 2017-05-17 2020-02-14 华北水利水电大学 基于模糊粒子群算法的动态电压恢复器控制方法及装置
CN108988314A (zh) * 2018-06-14 2018-12-11 中国电力科学研究院有限公司 一种基于智能优化算法的电网优化控制方法及系统
CN109193690A (zh) * 2018-09-27 2019-01-11 沈阳工程学院 一种特高压交直流混合输电系统的无功优化方法
CN110751082B (zh) * 2019-10-17 2023-12-12 烟台艾易新能源有限公司 一种智能家庭娱乐系统手势指令识别方法
CN111401792A (zh) * 2020-04-16 2020-07-10 三峡大学 一种基于极限梯度提升决策树的动态安全评估方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723721A (zh) * 2012-05-31 2012-10-10 西南交通大学 基于个体最优位置自适应变异扰动粒子群算法的电力系统无功优化方法
CN105186556B (zh) * 2015-08-20 2017-11-14 国家电网公司 基于改进免疫粒子群算法的大型光伏电站无功优化方法
CN105119292A (zh) * 2015-09-23 2015-12-02 国网山东省电力公司东营供电公司 基于预测和粒子群算法的多目标电压无功滚动优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于佳点集交叉的粒子群算法;王为为等;《计算机技术与发展》;20091231;第32-35页

Also Published As

Publication number Publication date
CN106340888A (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
CN106340888B (zh) 基于佳点集量子粒子群算法的交直流系统无功优化方法
Wong et al. Optimal placement and sizing of battery energy storage system for losses reduction using whale optimization algorithm
CN105321003B (zh) 一种含vsc-hvdc的交直流系统多目标潮流优化方法
CN103746374B (zh) 含多微网配电网的合环控制方法
Ma et al. Reactive power optimization in power system based on improved niche genetic algorithm
CN109995075A (zh) 一种含分布式电源的主动配电网动态重构方法
CN110504691A (zh) 一种计及vsc控制方式的交直流配电网最优潮流计算方法
CN113285485B (zh) 长、短及多时间尺度下配电网源网荷储多端协同调压方法
CN105449675A (zh) 优化分布式能源接入点和接入比例的电力网络重构方法
CN111490542B (zh) 一种多端柔性多状态开关的选址定容方法
CN109038545A (zh) 一种基于差分进化入侵杂草算法的配电网重构方法
CN109617049A (zh) 一种风电汇集区的upfc配置方法
CN103730900A (zh) 电力系统多时间尺度的省地县一体化无功优化方法
CN105896565B (zh) 基于比重变异粒子群算法的配电网无功优化方法
Vanitila et al. Differential Evolution algorithm based Weighted Additive FGA approach for optimal power flow using muti-type FACTS devices
CN106451504A (zh) 一种混合储能系统配置成本的控制方法及装置
CN108734349A (zh) 基于改进遗传算法的分布式电源选址定容优化方法及系统
CN109449994A (zh) 一种含柔性互联装置的主动配电网的功率调控方法
CN110148936B (zh) 有源配电网中柔性多状态开关与分布式电源的协调规划方法
CN109586313B (zh) 无功优化的高效内点求解方法
Sarda et al. Optimal location of multi-types of FACTS devices using genetic algorithm
CN109390971B (zh) 一种基于门当户对遗传算法的配电网多目标主动重构方法
CN109193634B (zh) 基于多端柔性直流的海岛电网运行优化方法及系统
Nikam A novel hybrid approach for optimal reactive power dispatch under unbalanced conditions
Rao et al. Application of ACSA to solve single/multi objective OPF problem with FACTS devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant