CN106315775A - 铁碳微电解和芬顿联合工艺计量控制系统 - Google Patents

铁碳微电解和芬顿联合工艺计量控制系统 Download PDF

Info

Publication number
CN106315775A
CN106315775A CN201610987052.1A CN201610987052A CN106315775A CN 106315775 A CN106315775 A CN 106315775A CN 201610987052 A CN201610987052 A CN 201610987052A CN 106315775 A CN106315775 A CN 106315775A
Authority
CN
China
Prior art keywords
fenton
electromagnetic flowmeter
pipeline
iron
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610987052.1A
Other languages
English (en)
Inventor
陈金毅
李晶
何欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201610987052.1A priority Critical patent/CN106315775A/zh
Publication of CN106315775A publication Critical patent/CN106315775A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种铁碳微电解和芬顿联合工艺计量控制系统,包括反应系统、控制装置、硫酸储罐、硫酸泵、H2O2储罐、第一电磁流量计、第二电磁流量计、调节阀以及铁在线检测装置,其中,反应系统包括Fe‑C反应系统、Fenton反应系统和第一管道,硫酸储罐通过第二管道与Fe‑C反应系统连通,H2O2储罐通过第三管道与Fenton反应系统连通,第二管道上安装有第一电磁流量计以及调节阀,第三管道上安装有第二电磁流量计,铁在线检测装置包括探测仪以及探头,控制装置与探测仪、第一电磁流量计和第二电磁流量计电连接。本发明提出的计量控制系统,实现了自动控制Fe2+和H2O2的比例,提高了污染物处理效率。

Description

铁碳微电解和芬顿联合工艺计量控制系统
技术领域
本发明涉及污水处理技术领域,尤其涉及一种铁碳微电解和芬顿联合工艺计量控制系统。
背景技术
铁碳微电解(Fe-C)和Fenton工艺是用于高浓度有机废水处理的常见方法。Fe-C微电解法是利用金属腐蚀原理,利用Fe和C形成原电池对废水进行微电解。Fenton法是利用Fe2+和H2O2反映生成氧化性极强的羟基自由基(·OH)氧化分解废水中的有机物。两种工艺原理不同,各有所长。在污水成分过于复杂时,单一的Fe-C或Fenton都无法达到出水水质要求,可将两种工艺进行串联使用。
Fe-C工艺进水最佳pH为2~3,经过微电解反应后,pH会上升1个单位左右,而Fenton反应进水最佳pH值为3~4,因此从对进水水质的要求来说,高浓度有机废水经调节池调节进入Fe-C工艺后,其出水pH正好适宜作为Fenton工艺的进水.此外,Fe-C微电解的过程中,铁会以Fe2+的形式溶出,使得Fe-C工艺出水中Fe2+含量增加,正好可以作为Fenton反应的铁源,因此常常将(Fe-C)和Fenton工艺联合使用。
但在Fenton反应中,Fe2+的量和H2O2的量不足或过量都对Fenton反应的效率存在较大影响。当H2O2浓度过高时,过量的H2O2不但不能通过分解产生更多的自由基,反而在反应的一开始就把Fe2+迅速氧化成Fe3+,使氧化在Fe3+的催化下进行,既消耗了H2O2又抑制了羟基自由基的产生。因此在Fenton反应中需要严格控制Fe2+和H2O2的比例来提高投加药剂的使用效率,提高污染物处理效率,降低运营成本。但在目前的Fe-C、Fenton联合处理工艺中,并没有严格精确控制Fe2+和H2O2的比例,造成了Fenton工艺阶段反应的不可控性,这主要是由于整个反应过程中的Fe2+来自于填料中铁的溶出,难以精确控制。此外,Fe-C工艺段的工艺条件全靠人工控制,并且没有一个具体的指标衡量,全靠工人积累的经验进行估计和调控,对人工要求较高,若铁碳工艺过程中,pH或停留时间控制不当,导致铁溶出过多,不仅导致填料和H2O2的浪费,也会增加出水色度,导致出水色度不达标。
发明内容
本发明的主要目的在于提供一种铁碳微电解和Fenton联合工艺计量控制系统,旨在自动控制Fe2+和H2O2的比例,以提高污染物处理效率。
为实现上述目的,本发明提供一种铁碳微电解和芬顿联合工艺计量控制系统,其特征在于,包括反应系统、控制装置、硫酸储罐、硫酸泵、H2O2储罐、第一电磁流量计、第二电磁流量计、调节阀以及铁在线检测装置,其中,
所述反应系统包括Fe-C反应系统、Fenton反应系统以及连通所述Fe-C反应系统和Fenton反应系统的第一管道,所述硫酸储罐通过第二管道与Fe-C反应系统连通,所述H2O2储罐通过第三管道与Fenton反应系统连通,所述第二管道上安装有第一电磁流量计以及调节阀,所述第三管道上安装有第二电磁流量计,所述铁在线检测装置包括探测仪以及安装于所述第一管道内的探头,所述控制装置与探测仪、第一电磁流量计和第二电磁流量计电连接。
优选地,所述调节阀为电动调节阀,该电动调节阀还与所述控制装置电连接。
优选地,所述铁碳微电解和芬顿联合工艺计量控制系统还包括分别安装于所述第二管道和第三管道上的硫酸泵和H2O2泵。
优选地,所述控制装置为PID控制器。
本发明提出的铁碳微电解和芬顿联合工艺计量控制系统的有益效果是:
1.能够自动根据H2O2的投加量控制其他药剂的加入量和反应条件,实现了水处理的智能化;
2.能精准控制Fenton系统中的Fe2+:H2O2的比例,使得成本最高的H2O2药剂充分反应,提高Fenton反应的效率,保障出水达标,同时降低了运营成本;
3.防止了Fe-C反应过量,导致Fe-C填料无谓的消耗,降低了Fe-C填料的使用成本,并防止了过量铁离子的溶出导致出水铁离子浓度过高,色度超标的问题;
4.在人工根据出水要求调节H2O2的投加量后,其他部分工作全部由系统自行完成,降低了人工劳动强度和对工人的要求。
附图说明
图1为本发明铁碳微电解和芬顿联合工艺计量控制系统的结构示意图。
图中,10:Fe-C反应系统,20:Fenton反应系统,30:控制装置,40:硫酸储罐,41:硫酸泵,42:第一电磁流量计,43:调节阀,50:H2O2储罐,51:H2O2泵,52:第二电磁流量计,60:铁在线检测装置。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1,图1为本发明铁碳微电解和芬顿联合工艺计量控制系统的结构示意图。
本优选实施例中,一种铁碳微电解和芬顿联合工艺计量控制系统,包括反应系统、控制装置30、硫酸储罐40、H2O2储罐50、第一电磁流量计42、第二电磁流量计52、调节阀43以及铁在线检测装置60,其中,
反应系统包括Fe-C反应系统10、Fenton反应系统20以及连通Fe-C反应系统10和Fenton反应系统20的第一管道,硫酸储罐40通过第二管道与Fe-C反应系统10连通,H2O2储罐50通过第三管道与Fenton反应系统20连通,第二管道上安装有第一电磁流量计42以及调节阀43,第三管道上安装有第二电磁流量计52,铁在线检测装置60包括探测仪以及安装于第一管道内的探头,控制装置30与探测仪、第一电磁流量计42和第二电磁流量计52电连接。
探测仪与探头通过电线连接。进一步地,调节阀43为电动调节阀43,该电动调节阀43还与控制装置30电连接,从而实现了对硫酸调节的自动控制。
进一步地,本铁碳微电解和芬顿联合工艺计量控制系统还包括分别安装于第二管道和第三管道上的硫酸泵41和H2O2泵51。控制装置30为PID控制器,从而提高了控制精度。
在实际废水处理过程中,常常遇到水质波动的问题。若遇废水COD突然大幅升高,为确保出水达标,需要增加H2O2的投加量,同时Fe-C反应的工艺也需要做相应的调整。在此种情况下,水处理工作人员可以增加H2O2的投加量,具体H2O2的实时流量通过H2O2电磁流量计进行计量。另一方面,第一管道上安装铁在线检测装置60的探头,用于测定进入Fenton系统的Fe2+的浓度。H2O2电磁流量计和铁在线检测装置60将数据传输给控制装置30。控制装置30另一端连有第二管道上的第一电磁流量计42和调节阀43。控制装置30内预设有所处理废水对应的Fe2+浓度和H2O2流量的比值范围(在废水流量和投加H2O2浓度固定的情况下,该数值可以计算得出)。第二电磁流量计52和铁在线检测装置60将数据传输给控制装置30,当Fe2+:H2O2的比值高于设定范围值时,控制装置30调节第二管道上的第一电磁流量计42和电动调节阀43以降低H2SO4的投加量,此时,Fe-C系统中pH值相对升高,Fe2+溶出速率降低,进入Fenton系统中Fe2+的浓度也随之降低,使得Fe2+:H2O2的比值回到正常范围。同样的,当Fe2 +:H2O2的比值低于设定范围值时,控制装置30调节第二管道上的第一电磁流量计42和调节阀43以增加H2SO4的投加量,此时,Fe-C系统中pH值相对降低,Fe2+溶出速率升高,进入Fenton系统中Fe2+的浓度也随之升高,使得Fe2+:H2O2的比值回到正常范围。
本发明提出的铁碳微电解和芬顿联合工艺计量控制系统的有益效果是:
1.能够自动根据H2O2的投加量控制其他药剂的加入量和反应条件,实现了水处理的智能化;
2.能精准控制Fenton系统中的Fe2+:H2O2的比例,提高Fenton反应的效率,使得成本最高的H2O2药剂充分反应,保障出水达标,同时降低了运营成本;
3.防止了Fe-C反应过量,导致Fe-C填料无谓的消耗,降低了Fe-C填料的使用成本,并防止了过量铁离子的溶出导致出水铁离子浓度过高,色度超标的问题;
4.在人工根据出水要求调节H2O2的投加量后,其他部分工作全部由系统自行完成,降低了人工劳动强度和对工人的要求。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (4)

1.一种铁碳微电解和芬顿联合工艺计量控制系统,其特征在于,包括反应系统、控制装置、硫酸储罐、H2O2储罐、第一电磁流量计、第二电磁流量计、调节阀以及铁在线检测装置,其中,
所述反应系统包括Fe-C反应系统、Fenton反应系统以及连通所述Fe-C反应系统和Fenton反应系统的第一管道,所述硫酸储罐通过第二管道与Fe-C反应系统连通,所述H2O2储罐通过第三管道与Fenton反应系统连通,所述第二管道上安装有第一电磁流量计以及调节阀,所述第三管道上安装有第二电磁流量计,所述铁在线检测装置包括探测仪以及安装于所述第一管道内的探头,所述控制装置与探测仪、第一电磁流量计和第二电磁流量计电连接。
2.如权利要求1所述的铁碳微电解和芬顿联合工艺计量控制系统,其特征在于,所述调节阀为电动调节阀,该电动调节阀还与所述控制装置电连接。
3.如权利要求1所述的铁碳微电解和芬顿联合工艺计量控制系统,其特征在于,还包括分别安装于所述第二管道和第三管道上的硫酸泵和H2O2泵。
4.如权利要求1所述的铁碳微电解和芬顿联合工艺计量控制系统,其特征在于,所述控制装置为PID控制器。
CN201610987052.1A 2016-11-09 2016-11-09 铁碳微电解和芬顿联合工艺计量控制系统 Pending CN106315775A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610987052.1A CN106315775A (zh) 2016-11-09 2016-11-09 铁碳微电解和芬顿联合工艺计量控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610987052.1A CN106315775A (zh) 2016-11-09 2016-11-09 铁碳微电解和芬顿联合工艺计量控制系统

Publications (1)

Publication Number Publication Date
CN106315775A true CN106315775A (zh) 2017-01-11

Family

ID=57817240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610987052.1A Pending CN106315775A (zh) 2016-11-09 2016-11-09 铁碳微电解和芬顿联合工艺计量控制系统

Country Status (1)

Country Link
CN (1) CN106315775A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110862179A (zh) * 2019-12-19 2020-03-06 锦科绿色科技(苏州)有限公司 水处理系统与控制工作站

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202643482U (zh) * 2012-05-05 2013-01-02 合肥志宇环保科技有限公司 废水的芬顿、铁碳微电解联合催化氧化反应装置
CN203545820U (zh) * 2013-11-20 2014-04-16 山东省环境保护科学研究设计院 一种联锁控制的模块式芬顿试剂处理废水装置
CN105174413A (zh) * 2015-09-28 2015-12-23 河海大学 一种铁废弃物回用于芬顿技术的方法及其水处理装置
CN105540959A (zh) * 2016-02-05 2016-05-04 蓝星环境工程有限公司 一种微电解和芬顿技术集成的反应器及废水处理方法
CN105884075A (zh) * 2015-05-15 2016-08-24 宁波青云环保科技有限公司 一种喷漆废水处理装置
CN206219282U (zh) * 2016-11-09 2017-06-06 武汉工程大学 铁碳微电解和芬顿联合工艺计量控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202643482U (zh) * 2012-05-05 2013-01-02 合肥志宇环保科技有限公司 废水的芬顿、铁碳微电解联合催化氧化反应装置
CN203545820U (zh) * 2013-11-20 2014-04-16 山东省环境保护科学研究设计院 一种联锁控制的模块式芬顿试剂处理废水装置
CN105884075A (zh) * 2015-05-15 2016-08-24 宁波青云环保科技有限公司 一种喷漆废水处理装置
CN105174413A (zh) * 2015-09-28 2015-12-23 河海大学 一种铁废弃物回用于芬顿技术的方法及其水处理装置
CN105540959A (zh) * 2016-02-05 2016-05-04 蓝星环境工程有限公司 一种微电解和芬顿技术集成的反应器及废水处理方法
CN206219282U (zh) * 2016-11-09 2017-06-06 武汉工程大学 铁碳微电解和芬顿联合工艺计量控制系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110862179A (zh) * 2019-12-19 2020-03-06 锦科绿色科技(苏州)有限公司 水处理系统与控制工作站

Similar Documents

Publication Publication Date Title
US10807882B2 (en) Process and device for the treatment of a fluid containing a contaminant
CA2534040C (en) Methods and systems for improved dosing of a chemical treatment, such as chlorine dioxide, into a fluid stream, such as a wastewater stream
CA2620824C (en) Denitrification process and system
JP5420467B2 (ja) 凝集剤注入量決定装置および凝集剤注入量制御システム
CN102531131A (zh) 控制絮凝剂投加量的系统及方法
CN111039395A (zh) 一种精准曝气控制方法及系统
CN101302041B (zh) 一种发电机内冷却水处理、净化装置及方法
CN106277227A (zh) 一种利用电化学pH调节装置和芬顿试剂处理废水的方法
CN106315775A (zh) 铁碳微电解和芬顿联合工艺计量控制系统
CN206219282U (zh) 铁碳微电解和芬顿联合工艺计量控制系统
CN201914961U (zh) 按需加氯控制系统
CN111410280A (zh) 一种基于共用低量程余氯仪的二次供水智能补加氯方法
KR20070060314A (ko) 과산화수소-ct제어유닛을 이용한 고도산화공정의자동제어장치 및 제어방법
CA2202361C (en) Fluid treatment system
CN213680038U (zh) 一种基于智能仪表的循环水自动控制系统
KR100373513B1 (ko) 오존소비속도상수를 이용한 오존공정과 고도산화공정의자동제어장치 및 방법
CN203324722U (zh) 一种钢丝酸洗磷化废水处理系统自动控制装置
JP2013022505A (ja) 凝集剤注入量決定装置及び凝集剤注入量制御システム
KR100373511B1 (ko) 순간오존요구량을 이용한 오존공정과 고도산화공정의자동제어장치 및 방법
JP2002292362A (ja) 比抵抗調整水製造装置
JP7423433B2 (ja) 被処理水の水質測定方法、被処理水の水質制御方法、被処理水の水質測定装置、及び被処理水の水質制御システム
CN215403634U (zh) 一种改进型除磷剂投加系统
CN211664777U (zh) 基于多路水源进水可按比例勾兑原水的配水井
CN106830116B (zh) 用于酸性废水亚铁离子超标预警预测装置及其方法
KR20040038457A (ko) 총유기탄소를 이용한 오존공정과 고도산화공정의자동제어장치 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170111

RJ01 Rejection of invention patent application after publication