CN106311133A - 固体净化剂及其制备方法 - Google Patents

固体净化剂及其制备方法 Download PDF

Info

Publication number
CN106311133A
CN106311133A CN201510354408.3A CN201510354408A CN106311133A CN 106311133 A CN106311133 A CN 106311133A CN 201510354408 A CN201510354408 A CN 201510354408A CN 106311133 A CN106311133 A CN 106311133A
Authority
CN
China
Prior art keywords
salt
zinc
mixed solution
hours
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510354408.3A
Other languages
English (en)
Other versions
CN106311133B (zh
Inventor
陈松
黄文氢
张颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Original Assignee
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Beijing Research Institute of Chemical Industry, China Petroleum and Chemical Corp filed Critical Sinopec Beijing Research Institute of Chemical Industry
Priority to CN201510354408.3A priority Critical patent/CN106311133B/zh
Publication of CN106311133A publication Critical patent/CN106311133A/zh
Application granted granted Critical
Publication of CN106311133B publication Critical patent/CN106311133B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种固体净化剂及其制备方法。该固体净化剂,以质量百分比计,包括:作为载体的分子筛,90.0-98.5%,优选为92.0-97.0%;锌盐,0.5-2.5%,优选1.0-2.0%;碱金属盐,0.5-5%,优选1.0-4.0%;和碱土金属盐,0.5-2.5%,优选1.0-2.0%。本发明提供的固体净化剂可用于吸附轻烃尾气中的含氧化合物,其成分简单,容易获取,成本低廉。

Description

固体净化剂及其制备方法
技术领域
本发明涉及一种固体净化剂,具体涉及一种用于除去挥发性含氧化物的固体净化剂及其制备方法。
背景技术
近年来,随着美国页岩气开采技术的成熟,全世界范围内兴起了页岩气开采热,天然气产量大幅增加。我国是煤炭资源大国煤制油、煤制烯烃(MTO)这些煤化工技术在我国的发展前景十分乐观。页岩天然气、煤制烯烃这些新技术开采的轻烃气体中含有大量挥发性含氧化合物,例如甲醇、二甲醚、乙醛、丙酮等。这些轻烃气体被用作燃料或化工原料,使用的过程中其含有的挥发性含氧化合物如果不经过处理会对周围人员身体产生毒害。
目前,轻烃气体采用的脱除挥发性含氧化合物方法主要有湿式法和干式法,湿式法通过气液交换将气体中的含氧化合物转移到液相中,有比较高的脱含氧化合物容量,干式法通过气固交换将气体中的含氧化合物吸附到净化剂中,有比较高的脱氧化物精度。美国专利US 6111162报道了采用硅胶作为吸附剂,从烃类原料中吸附脱除含氧化合物。美国专利US 4371718报道了氧化铝作为吸附剂从丁烯原料中除去甲醇。这些专利虽然报道了一些净化剂和相应的脱除方法,但是都是将净化剂应用于生产领域,防止挥发性含氧化合物对催化剂和生产设备的危害。由于将净化剂应用在环境净化领域由于要求脱氧化物精度很高,目前国内外还没有专利报道。
因此,本领域还需要研发用于脱除轻烃尾气中的含氧化合物的净化剂。
发明内容
为了解决上述技术问题,本发明提供一种可用于在常温下通过化学吸附净化轻烃尾气中挥发性含氧化合物的净化剂及其制备方法,其具有成分简单、价格低廉、使用成本低的优点。
因此,本发明一个方面提供一种固体净化剂,以质量百分比计,其包括:
作为载体的分子筛,90.0~98.5%,优选为92.0~97.0%;
锌盐,0.5~2.5%,优选1.0~2.0%;
碱金属盐,0.5~5%,优选1.0~4.0%;和
碱土金属盐,0.5~2.5%,优选1.0~2.0%。
在上述技术方案的具体实施方式中,所述分子筛可以是非晶形的、结晶的或其组合。在一个具体实施方式中,所述分子筛的堆密度0.62~0.67g/ml,抗压强度大于30N,颗粒尺寸为1.6-2.5mm,硅铝比为2-3。
任意一种可负载于载体的碱金属盐均可用于本发明。在上述技术方案的具体实施方式中,所述碱金属盐选自锂盐、钠盐、钾盐、铷盐和铯盐中的至少一种。在一个具体实施方式中,所述碱金属盐选自锂、钠、钾、铷和铯的卤化物和硫酸盐中的至少一种,其中所述卤化物优选为氯化物或溴化物。在一个具体实施方式中,所述碱金属盐选自钠盐和钾盐中的至少一种;优选选自氯化钠、氯化钾、硫酸钠和硫酸钾中的至少一种。
任意一种可负载于载体的碱土金属盐均可用于本发明。在上述技术方案的具体实施方式中,所述碱土金属盐为可溶性盐。在具体实施方式中,所述碱土金属盐选自铍盐、镁盐、钙盐、锶盐和钡盐中的至少一种。优选地,所述碱土金属盐选自铍、镁、钙、锶和钡的卤化物和硫酸盐中的至少一种,其中所述卤化物优选为氯化物或溴化物。更优选地,所述碱土金属盐选自镁和钙的卤化物和硫酸盐中的至少一种。在一个具体实施方式中,所述碱土金属盐选自氯化镁、氯化钙、硫酸镁和硫酸钙中的至少一种。
任意一种可负载于分子筛的锌盐均可用于本发明。在上述技术方案的具体实施方式中,所述锌盐为可溶性的锌盐;优选为锌的卤化物和硫酸盐中的至少一种;更优选为氯化锌和硫酸锌中的至少一种。锌作为过渡族金属元素负载在高比表面分子筛上时可以通过气固交换与轻烃原料中氧化物中的碳氧双键和含氧羟基作用在分子筛表面形成氧螯合键,从而起到吸附脱除轻烃原料中氧化物的作用。
优选本发明所述的固体净化剂是具有较高表面积的多孔固体。在一个实施方式中,所述固体净化剂的表面积为至少约>500m2/g。优选所述固体净化剂的表面积为至少约>600m2/g,更优选至少约>650m2/g。
另一个方面,本发明还提供了一种制备上述固体净化剂的方法,包括以下步骤:
步骤1),将所述碱金属盐、所述碱土金属盐以及所述锌盐与水配制成混合溶液;
步骤2),将所述分子筛浸渍于上述混合溶液中,以得到包括负载活性金属组分的载体的混合物;
步骤3),使步骤2)得到的包括负载活性金属组分的载体的混合物脱除水分,以得到负载活性金属组分的分子筛颗粒;
步骤4),将步骤3)得到的分子筛颗粒进行氧化处理;
步骤5),将步骤4)处理后的分子筛颗粒进行焙烧以得到所述固体净化剂。
优选地,在步骤1)中,以质量百分比计,所述混合溶液中含有碱金属盐1.5~10.0%,碱土金属盐1.5~5.0%、锌盐1.0~4.0%,余量为水。
优选地,在步骤2)中,所述分子筛与所述混合溶液的质量比是1:1~1:3。
根据一个具体的实施方式,步骤2)中,所述浸渍在30~100℃的条件下进行,同时搅拌6~12小时;优选在40~80℃的条件下进行,同时搅拌6~10小时。
根据一个具体实施方式中,在步骤3)中,在90~150℃的条件下脱除水分。
根据一个具体实施方式中,在步骤4)中,采用硝酸和双氧水进行所述氧化处理。在一个具体实施例中,优选采用68%~70%的硝酸和50%的双氧水的混合溶液,其中硝酸和双氧水的体积比为1:2~2:1。具体地,氧化处理的时间为5小时以内。优选处理至不产生气体。在一个具体实施方式中,对分子筛颗粒进行氧化处理后,先用去离子水洗涤分子筛颗粒,优选洗涤至pH值为7~9,然后再进行焙烧。采用硝酸和双氧水混合溶液对负载活性组分的分子筛进行氧化处理可以有效的降低后期焙烧温度。尽管提高焙烧温度同样可以达到对负载活性组分的分子筛进行氧化处理的目的,但是焙烧温度过高会破坏分子筛表面形态和通道结构造成表面烧结和通道坍塌从而降低了比表面和孔容孔径最终影响净化剂的净化效率。
根据一个具体的实施方式,步骤5)中的焙烧条件为:焙烧温度200~600℃,焙烧时间4~18小时;优选焙烧温度200~300℃,焙烧时间8~12小时。
在上述方法的具体实施方式中,以质量百分比计,所得固体净化剂含有碱金属盐为1.0~4.0%,碱土金属盐为1.0~2.0%、锌盐为1.0~2.0%,载体分子筛为92~97%。
本发明提供的固体净化剂可用于吸附轻烃尾气中的含氧化合物,其成分简单,容易获取,成本低廉。另外,该净化剂的制备过程简单,原料易得,生产成本低,无环境污染。将本发明的净化剂装入净化管内可广泛适用于工厂和实验室用轻烃尾气中含有ppm级含氧化合物的净化,净化后含氧化合物的含量小于0.5ppm(体积分数),具有对含氧化合物的吸附选择性和吸附容量高,应用方便的优点。
附图说明
图1为本发明实施例中成品净化剂装入净化管示意图。
具体实施方式
下面,结合附图和具体实施例,对本发明作进一步的说明。
实施例1
将3.2g氯化钠、4.8g氯化镁(含六个结晶水)和3.8g氯化锌与100mL水配制成混合溶液。然后将40g 13X型分子筛颗粒浸入配制好的混合溶液中,于60℃下搅拌8小时。在110℃烘干,得到负载活性组分的载体颗粒。将负载活性组分的载体颗粒浸入68%-70%的硝酸(50-100ml)和50%的双氧水(50-100ml)配制的混合溶液中,直到不再有气体产生。过滤出颗粒后用蒸馏水洗涤检测其pH值为8。在250℃条件下,焙烧10小时,得到成品净化剂。净化剂活性组分:氯化钠质量百分比为2.0%,氯化镁质量百分比为2.0%,氯化锌质量百分比为2.0%;载体质量百分比为94%。
实施例2
将1.5g氯化钾、2.5g氯化钙(含二个结晶水)和1.9g氯化锌,与100mL水配制成混合溶液。然后将40g 13X型分子筛颗粒浸入配制好的混合溶液中,于80℃下搅拌6小时。在150℃的条件下烘干,得到负载活性组分的载体颗粒。将负载活性组分的载体颗粒浸入68%-70%的硝酸(50-100ml)和50%的双氧水(50-100ml)配制的混合溶液中,直到不再有气体产生。过滤出颗粒后用蒸馏水洗涤检测其pH值为9。在300℃条件下,焙烧8小时,得到成品净化剂。净化剂活性组分:氯化钾质量百分比为1.0%,氯化钙质量百分比为1.0%,氯化锌质量百分比为1.0%;载体质量百分比为97%。
实施例3
将7.5g硫酸钠(含十个结晶水)、3.2g硫酸镁(含七个结晶水)和4.4g硫酸锌(含七个结晶水)与100mL水配制成混合溶液。然后将40g 13X型分子筛颗粒浸入配制好的混合溶液中,于40℃下搅拌10小时。在90℃烘干,得到负载活性组分的载体颗粒。将负载活性组分的载体颗粒浸入68%-70%的硝酸(50-100ml)和50%的双氧水(50-100ml)配制的混合溶液中,直到不再有气体产生。过滤出颗粒后用蒸馏水洗涤检测其pH值为7。在200℃条件下,焙烧12小时,得到成品净化剂。净化剂活性组分:硫酸钠质量百分比为4.0%,硫酸镁质量百分比为2.0%,硫酸锌质量百分比为2.0%;载体质量百分比为92%。
实施例4
将9.3g硫酸钾、4.3g氯化钙和7.0g硫酸锌(含七个结晶水)与100mL水配制成混合溶液。然后将40g 13X型分子筛颗粒浸入配制好的混合溶液中,于30℃下搅拌12小时。在90℃烘干,得到负载活性组分的载体颗粒。将负载活性组分的载体颗粒浸入68%-70%的硝酸(50-100ml)和50%的双氧水(50-100ml)配制的混合溶液中,直到不再有气体产生。过滤出颗粒后用蒸馏水洗涤检测其pH值为7。在600℃条件下,焙烧4小时,得到成品净化剂。活性组分:硫酸钾质量百分比为5.0%,氯化钙质量百分比为2.5%,硫酸锌质量百分比为2.5%;载体质量百分比为90%。
实施例5
将0.9g氯化钠、0.8g氯化钙(含二个结晶水)和0.6g硫酸锌(含七个结晶水)与100mL水配制成混合溶液。然后将40g 13X型分子筛颗粒浸入配制好的混合溶液中,于100℃下搅拌6小时。在150℃烘干,得到负载活性组分的载体颗粒。将负载活性组分的载体颗粒浸入68%-70%的硝酸(50-100ml)和50%的双氧水(50-100ml)配制的混合溶液中,直到不再有气体产生。过滤出颗粒后用蒸馏水洗涤检测其pH值为9。在200℃条件下,焙烧18小时,得到成品净化剂。活性组分:氯化钠质量百分比为0.5%,氯化钙质量百分比为0.5%,硫酸锌质量百分比为0.5%;载体质量百分比为98.5%。
对比例1
将3.6g氯化钾和7.4g氯化镁(含六个结晶水)与100mL水配制成混合溶液。然后将40g 13X型分子筛颗粒浸入配制好的混合溶液中,于80℃下搅拌7小时。在130℃烘干,得到负载活性组分的载体颗粒。将负载活性组分的载体颗粒浸入68%-70%的硝酸(50-100ml)和50%的双氧水(50-100ml)配制的混合溶液中,直到不再有气体产生。过滤出颗粒后用蒸馏水洗涤检测其pH值为9。在300℃条件下,焙烧8小时,得到成品净化剂。活性组分:氯化钾质量百分比为2.0%,氯化镁质量百分比为4.0%;载体质量百分比为94%。
对比例2
将3.2g氯化钙和5.6g硫酸锌(含七个结晶水)与100mL水配制成混合溶液。然后将40g 13X型分子筛颗粒浸入配制好的混合溶液中,于40℃下搅拌10小时。在120℃烘干,得到负载活性组分的载体颗粒。将负载活性组分的载体颗粒浸入68%-70%的硝酸(50-100ml)和50%的双氧水(50-100ml)配制的混合溶液中,直到不再有气体产生。过滤出颗粒后用蒸馏水洗涤检测其pH值为7。在230℃条件下,焙烧10小时,得到成品净化剂。活性组分:氯化钙质量百分比为2.0%,硫酸锌质量百分比为2.0%;载体质量百分比为96%。
对比例3
将3.8g硫酸钠(含十个结晶水)和4.4g硫酸锌(含七个结晶水)与100mL水配制成混合溶液。然后将40g 13X型分子筛颗粒浸入配制好的混合溶液中,于60℃下搅拌11小时。在90℃烘干,得到负载活性组分的载体颗粒。将负载活性组分的载体颗粒浸入68%-70%的硝酸(50-100ml)和50%的双氧水(50-100ml)配制的混合溶液中,直到不再有气体产生。过滤出颗粒后用蒸馏水洗涤检测其pH值为8。在280℃条件下,焙烧9小时,得到成品净化剂。净化剂活性组分:硫酸钠质量百分比为2.0%,硫酸锌质量百分比为2.0%;载体质量百分比为96%。
对比例4
将3.2g氯化钠、4.8g氯化镁(含六个结晶水)和3.8g氯化锌与100mL水配制成混合溶液。然后将40g 13X型分子筛颗粒浸入配制好的混合溶液中,于60℃下搅拌8小时。在110℃烘干,得到负载活性组分的载体颗粒。在600℃条件下,焙烧10小时,得到成品净化剂。净化剂活性组分:氯化钠质量百分比为2.0%,氯化镁质量百分比为2.0%,氯化锌质量百分比为2.0%;载体质量百分比为94%。
净化效果
如图1所示,将净化剂(实施例1-5以及对比例1-4)装入内径为15mm,长100mm的净化管中,管两端1、3为密闭螺纹连接。含有10.2ppm(体积分数)乙醛气体、15.1ppm(体积分数)MTBE(甲基叔丁基醚)气体、11.7ppm(体积分数)丙酮气体、13.4ppm(体积分数)乙醚气体、9.9ppm(体积分数)TAME(甲基叔戊基醚)气体、16.8ppm(体积分数)丙醇、13.3ppm(体积分数)丁醇气体的轻烃混合烯烃尾气以100mL/min通入装有净化剂的净化管。持续净化10小时后,气相色谱氢火焰检测器监测含氧化合物组分含量,结果见表1。
表1
以上所述仅为本发明的较佳可行实施例,并非因此局限本发明的专利范围,故凡是运用本发明说明书及附图内容所作的等效结构变化,均包含于本发明的保护范围。

Claims (10)

1.一种固体净化剂,以质量百分比计,包括:
分子筛,90.0~98.5%;
锌盐,0.5~2.5%;
碱金属盐,0.5~5%;和
碱土金属盐,0.5~2.5%。
2.根据权利要求1所述的固体净化剂,其特征在于,所述碱金属盐选自锂盐、钠盐、钾盐、铷盐和铯盐中的至少一种;优选选自钠盐和钾盐中的至少一种。
3.根据权利要求1或2所述的固体净化剂,其特征在于,所述碱土金属盐选自铍盐、镁盐、钙盐、锶盐和钡盐中的至少一种;优选选自镁盐和钙盐中的至少一种。
4.根据权利要求1~3中任一项所述的固体净化剂,其特征在于,所述锌盐为可溶性的锌盐;优选选自锌的卤化物或硫酸盐;更优选氯化锌和硫酸锌中的至少一种。
5.根据权利要求1~4中任一项所述的固体净化剂,其特征在于,所述分子筛的堆密度0.62~0.67g/ml,抗压强度大于30N,颗粒尺寸为1.6~2.5mm,硅铝比为2~3。
6.一种制备权利要求1~5中任一项所述的固体净化剂的方法,包括:
步骤1),将碱金属盐、碱土金属盐以及锌盐与水配制成混合溶液;
步骤2),将分子筛浸渍于上述混合溶液中以得到包括负载活性金属组分的载体的混合物;
步骤3),使步骤2)得到的包括负载活性金属组分的载体的混合物脱除水分,以得到负载活性金属组分的分子筛颗粒;
步骤4),将步骤3)得到的分子筛颗粒进行氧化处理;
步骤5),将步骤4)处理后的分子筛颗粒进行焙烧以得到所述固体净化剂。
7.根据权利要求6所述的方法,其特征在于,在步骤1)中,以质量百分比计,所述混合溶液中包含碱金属盐1.5~10.0%、碱土金属盐1.5~5.0%、锌盐1.0~4.0%,余量为水。
8.根据权利要求6或7所述的方法,其特征在于,步骤2)中,所述浸渍在30~100℃的条件下进行,同时搅拌6~12小时;优选在50~80℃的条件下进行,同时搅拌8~10小时。
9.根据权利要求6~8中任意一项所述的方法,其特征在于,步骤5)中的焙烧条件为:焙烧温度200~600℃,焙烧时间4~18小时;优选焙烧温度200~300℃,焙烧时间8~12小时。
10.根据权利要求6~9中任意一项所述的方法,其特征在于,步骤4)中,采用质量浓度为68%~70%的硝酸和质量浓度为30~50%的双氧水配制的混合溶液进行氧化处理,其中硝酸和双氧水的体积比为1:2~2:1。
CN201510354408.3A 2015-06-24 2015-06-24 固体净化剂及其制备方法 Active CN106311133B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510354408.3A CN106311133B (zh) 2015-06-24 2015-06-24 固体净化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510354408.3A CN106311133B (zh) 2015-06-24 2015-06-24 固体净化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN106311133A true CN106311133A (zh) 2017-01-11
CN106311133B CN106311133B (zh) 2018-12-28

Family

ID=57729612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510354408.3A Active CN106311133B (zh) 2015-06-24 2015-06-24 固体净化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106311133B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110856815A (zh) * 2018-08-23 2020-03-03 中国石油化工股份有限公司 一种气体吸附剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068514A1 (en) * 1981-07-02 1983-01-05 Phillips Petroleum Company A process for fractionating a methanol-containing methyl-tertiary-butyl ether reactor effluent
WO1997040121A1 (en) * 1996-04-22 1997-10-30 Snamprogetti S.P.A. Process for removing oxygenated contaminants from hydrocarbon streams
CN101455956A (zh) * 2007-12-13 2009-06-17 中国石油天然气股份有限公司 一种分子筛吸附剂
CN104248941A (zh) * 2013-06-27 2014-12-31 中国石油化工股份有限公司 用于吸附mto尾气中挥发性氧化物的净化剂及其制备方法
CN104248944A (zh) * 2013-06-27 2014-12-31 中国石油化工股份有限公司 用于吸附mtp尾气中挥发性氧化物的净化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068514A1 (en) * 1981-07-02 1983-01-05 Phillips Petroleum Company A process for fractionating a methanol-containing methyl-tertiary-butyl ether reactor effluent
WO1997040121A1 (en) * 1996-04-22 1997-10-30 Snamprogetti S.P.A. Process for removing oxygenated contaminants from hydrocarbon streams
CN101455956A (zh) * 2007-12-13 2009-06-17 中国石油天然气股份有限公司 一种分子筛吸附剂
CN104248941A (zh) * 2013-06-27 2014-12-31 中国石油化工股份有限公司 用于吸附mto尾气中挥发性氧化物的净化剂及其制备方法
CN104248944A (zh) * 2013-06-27 2014-12-31 中国石油化工股份有限公司 用于吸附mtp尾气中挥发性氧化物的净化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘辛平: "《物理化学》", 31 July 2012, 中国中医药出版社 *
唐受印: "《废水处理水热氧化技术》", 31 October 2002, 化学工业出版社 *
雷炳新: "《无机反应与无机材料研究》", 30 April 2015, 中国水利水电出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110856815A (zh) * 2018-08-23 2020-03-03 中国石油化工股份有限公司 一种气体吸附剂及其制备方法和应用
CN110856815B (zh) * 2018-08-23 2022-03-15 中国石油化工股份有限公司 一种气体吸附剂及其制备方法和应用

Also Published As

Publication number Publication date
CN106311133B (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
US10245547B2 (en) Sulfur removal system
US8598072B2 (en) Mercury-removal adsorbent, method of producing mercury-removal adsorbent, and method of removing mercury by adsorption
TW201438807A (zh) 具有穩定吸附活性的ddr型沸石
CN1060087A (zh) 氧化偶合复合钙钛矿催化剂
JPH03213144A (ja) 液体炭化水素から水銀を除去するための新規な製品/方法/用途
CN1934030A (zh) 具有改进的抗机械性的活性炭、及其用途、特别是作为催化剂载体
Wang et al. Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon
CN107694605A (zh) 碳量子点@卟啉基金属有机骨架催化剂及制备方法和应用
CN110548479A (zh) 一种高强度液相脱氯剂及其制备方法和应用
KR102035867B1 (ko) 기공 내 요오드 또는 브롬이 포집된 요오드 또는 브롬 함유 제올라이트 복합체 및 이의 용도
US8690991B2 (en) Supported silver sulfide sorbent
van Zandvoort et al. Selectivity and stability of zeolites [Ca] A and [Ag] A towards ethylene adsorption and desorption from complex gas mixtures
CN106311133A (zh) 固体净化剂及其制备方法
JP2006342349A (ja) ガソリン留分の強脱硫のためのセシウム交換されたホージャサイト型ゼオライトの使用
CN105080476B (zh) 含铜和卤素分子筛吸附剂及其制备方法
Ernst et al. Cesium-modified mesoporous molecular sieves as basic catalysts for Knoevenagel condensations
JP6578704B2 (ja) 多孔性配位高分子
RU2686889C2 (ru) Способы удаления полисульфанов и элементарной серы из сероводорода
US6320087B2 (en) Adsorbent for separating halogenated aromatic compounds and separation method
US20190143294A1 (en) A process for preparing metal oxide-based chloride absorbent using natural binder and product obtained therefrom
CN106268963A (zh) 一种使用寿命长的合成氯乙烯用无汞触媒及其制备方法
JP2017090131A (ja) ヨウ素酸イオン還元材、及びその製造方法
CN104248941B (zh) 用于吸附mto尾气中挥发性氧化物的净化剂及其制备方法
CN106311134A (zh) 固体净化剂及其制备方法
CN106140274B (zh) 一种溴甲烷高选择性制异丁烯的催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant