CN106299062A - 电流扩展层的外延生长方法 - Google Patents
电流扩展层的外延生长方法 Download PDFInfo
- Publication number
- CN106299062A CN106299062A CN201610833486.6A CN201610833486A CN106299062A CN 106299062 A CN106299062 A CN 106299062A CN 201610833486 A CN201610833486 A CN 201610833486A CN 106299062 A CN106299062 A CN 106299062A
- Authority
- CN
- China
- Prior art keywords
- growth
- layer
- passed
- current extending
- reaction chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000012010 growth Effects 0.000 title claims abstract description 127
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000006243 chemical reaction Methods 0.000 claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 12
- 230000008569 process Effects 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 229910052594 sapphire Inorganic materials 0.000 claims description 10
- 239000010980 sapphire Substances 0.000 claims description 10
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 28
- 239000011777 magnesium Substances 0.000 description 18
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 12
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 230000005533 two-dimensional electron gas Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006854 communication Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 230000005571 horizontal transmission Effects 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- MHYQBXJRURFKIN-UHFFFAOYSA-N C1(C=CC=C1)[Mg] Chemical compound C1(C=CC=C1)[Mg] MHYQBXJRURFKIN-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000035935 pregnancy Effects 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 230000003712 anti-aging effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000007773 growth pattern Effects 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
本申请公开电流扩展层的外延生长方法,依次包括:处理衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、生长SiInN/SiAlN超晶格电流扩展层、生长发光层、生长P型AlGaN层、生长掺杂Mg的P型GaN层、降温冷却。生长SiInN/SiAlN超晶格电流扩展层的条件为保持反应腔压力300mbar‑400mbar、保持温度800℃‑900℃,通入流量为30000sccm‑60000sccm的NH3、100sccm‑200sccm的TMAl、1000sccm‑2000sccm的TMIn、100L/min‑130L/min的N2、1sccm‑5sccm的SiH4。
Description
技术领域
本申请涉及LED外延设计应用技术领域,具体地说,涉及一种电流扩展层的外延生长方法。
背景技术
目前LED(Light Emitting Diode,发光二极管)是一种固体照明,体积小、耗电量低使用寿命长高亮度、环保、坚固耐用等优点受到广大消费者认可,国内生产LED的规模也在逐步扩大;市场上对LED亮度和光效的需求与日俱增,如何生长更好的外延片日益受到重视,因为外延层晶体质量的提高,LED器件的性能可以得到提升,LED的发光效率、寿命、抗老化能力、抗静电能力、稳定性会随着外延层晶体质量的提升而提升。
传统的LED结构中N电极、P电极不对称,电流从P电极导向N电极,电流选择电阻值最低的路径传导,造成电流拥挤在靠近N电极的一侧,传统的LED结构,电流在外延层中传导是不均匀的,这就造成了LED内部电流拥挤,发光层电流分散不均匀,发光区域不均匀,发光效率受到影响。
发明内容
有鉴于此,本申请所要解决的技术问题是提供了一种电流扩展层的外延生长方法,引入SiInN/SiAlN超晶格层,使得电子从N电极传播经过N层后被电流扩展层扩展开来,然后传导至发光层和空穴复合产生光子,通过电子的散步方法,发光层的电流分布相对变得均匀,发光效率有一定程度的提升,电流拥挤的情况得到改善,电压得到一定下降。
为了解决上述技术问题,本申请有如下技术方案:
一种电流扩展层的外延生长方法,其特征在于,依次包括:处理衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、生长发光层、生长P型AlGaN层、生长掺杂Mg的P型GaN层、降温冷却,
在所述生长掺杂Si的N型GaN层之后、所述生长发光层之前,还包括:生长SiInN/SiAlN超晶格电流扩展层,
所述生长SiInN/SiAlN超晶格电流扩展层为:
保持反应腔压力300mbar-400mbar、保持温度800℃-900℃,通入流量为30000sccm-60000sccm的NH3、100sccm-200sccm的TMAl、1000sccm-2000sccm的TMIn、100L/min-130L/min的N2、1sccm-5sccm的SiH4,生长SiInN/SiAlN超晶格电流扩展层,
所述生长SiInN/SiAlN超晶格电流扩展层,具体为:
保持反应腔压力300mbar-400mbar、保持温度800℃-900℃,通入流量为30000sccm-60000sccm的NH3、1000sccm-2000sccm的TMIn、100L/min-130L/min的N2、1sccm-5sccm的SiH4,生长厚度为1nm-5nm的SiInN层;
保持反应腔压力300mbar-400mbar、保持温度800℃-900℃,通入流量为30000sccm-60000sccm的NH3、100sccm-200sccm的TMAl、100L/min-130L/min的N2、1sccm-5sccm的SiH4,生长厚度为5nm-10nm的SiAlN层,其中,Si掺杂浓度为1E17atoms/cm3-5E17atoms/cm3;
周期性生长所述SiInN层和所述SiAlN层,生长周期为10-20,
生长所述SiInN层和生长所述SiAlN层的顺序可互换。
优选地,其中:
所述处理衬底为:在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底8min-10min。
优选地,其中:
所述生长低温缓冲层为:
降低温度至500℃-600℃,保持反应腔压力300mbar-600mbar,通入流量为10000sccm-20000sccm NH3、50sccm-100sccm的TMGa、100L/min-130L/min的H2,在蓝宝石衬底上生长厚度为20nm-40nm的低温缓冲层GaN。
优选地,其中:
所述生长不掺杂GaN层为:
升高温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、持续生长2μm-4μm的不掺杂GaN层。
优选地,其中:
所述生长掺杂Si的N型GaN层为:
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、20sccm-50sccm的SiH4,持续生长3μm-4μm掺杂Si的N型GaN,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3;
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、2sccm-10sccm的SiH4,持续生长200nm-400nm掺杂Si的N型GaN,Si掺杂浓度5E17atoms/cm3-1E18atoms/cm3。
优选地,其中:
所述生长发光层为:
保持反应腔压力300mbar-400mbar、温度700℃-750℃,通入流量为50000sccm-70000sccm的NH3、20sccm-40sccm的TMGa、1500sccm-2000sccm的TMIn、100L/min-130L/min的N2,生长掺杂In的厚度为2.5nm-3.5nm的InxGa(1-x)N层,x=0.20-0.25,发光波长450nm-455nm;
接着升高温度至750℃-850℃,保持反应腔压力300mbar-400mbar,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的N2,生长8nm-15nm的GaN层;
重复InxGa(1-x)N的生长,然后重复GaN的生长,交替生长InxGa(1-x)N/GaN发光层,控制周期数为7-15个。
优选地,其中:
所述生长P型AlGaN层为:
保持反应腔压力200mbar-400mbar、温度900℃-950℃,通入流量为50000sccm-70000sccm的NH3、30sccm-60sccm的TMGa、100L/min-130L/min的H2、100sccm-130sccm的TMAl、1000sccm-1300sccm的Cp2Mg,持续生长50nm-100nm的P型AlGaN层,Al掺杂浓度1E20atoms/cm3-3E20atoms/cm3,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3。
优选地,其中:
所述生长掺杂Mg的P型GaN层为:
保持反应腔压力400mbar-900mbar、温度950℃-1000℃,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的H2、1000sccm-3000sccm的Cp2Mg,持续生长50nm-100nm的掺Mg的P型GaN层,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3。
优选地,其中:
所述降温冷却为:
降温至650℃-680℃,保温20min-30min,接着关闭加热系统、关闭给气系统,随炉冷却。
与现有技术相比,本申请所述的方法,达到了如下效果:
本发明电流扩展层的外延生长方法,与传统方法相比,在生长掺杂Si的N型GaN层之后、生长发光层之前,引入生长SiInN/SiAlN超晶格电流扩展层。利用AlN材料的高能带作用,电子在传播过程中遇到AlN高能带,传输受到能垒的阻挡,由于是大量拥挤的电子,AlN只能缓解电子纵向传播,电子横向传输得到扩展,InN材料作为势阱有很低的能带具有很强的陷域作用,电子纵向传播速率进一步下降,InN材料厚度到达纳米级将形成很强的二维电子气,二维电子气横向传播速率非常高,这就为电子横向扩展创造有利的条件,通过本专利发明的方法生长的LED,电流的分布变得均匀,发光效率有所增加。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明电流扩展层的外延生长方法的流程图;
图2为本发明中LED外延层的结构示意图;
图3为对比实施例中LED外延层的结构示意图;
其中,1、基板,2、低温缓冲层GaN,3、U型GaN层,4、N型GaN层,5、电流扩展层,5.1、SiInN层,5.2、SiAlN层,6、发光层,6.1、InxGa(1-x)N层,6.2、GaN层,7、P型AlGaN层,8、P型GaN层,9、ITO,10、SiO2,11、P电极P pad,12、N电极N pad。
具体实施方式
如在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。此外,“耦接”一词在此包含任何直接及间接的电性耦接手段。因此,若文中描述一第一装置耦接于一第二装置,则代表所述第一装置可直接电性耦接于所述第二装置,或通过其他装置或耦接手段间接地电性耦接至所述第二装置。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
实施例1
本发明运用MOCVD来生长高亮度GaN基LED外延片。采用高纯H2或高纯N2或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为N源,金属有机源三甲基镓(TMGa)作为镓源,三甲基铟(TMIn)作为铟源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),衬底为(001)面蓝宝石,反应压力在70mbar到900mbar之间。具体生长方式如下:
一种电流扩展层的外延生长方法,参见图1,依次包括:处理衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、生长发光层、生长P型AlGaN层、生长掺杂Mg的P型GaN层、降温冷却,
在所述生长掺杂Si的N型GaN层之后、所述生长发光层之前,还包括:生长SiInN/SiAlN超晶格电流扩展层,
所述SiInN/SiAlN超晶格电流扩展层为:
保持反应腔压力300mbar-400mbar、保持温度800℃-900℃,通入流量为30000sccm-60000sccm的NH3、100sccm-200sccm的TMAl、1000sccm-2000sccm的TMIn、100L/min-130L/min的N2、1sccm-5sccm的SiH4,生长SiInN/SiAlN超晶格电流扩展层,
所述生长SiInN/SiAlN超晶格电流扩展层,具体为:
保持反应腔压力300mbar-400mbar、保持温度800℃-900℃,通入流量为30000sccm-60000sccm的NH3、1000sccm-2000sccm的TMIn、100L/min-130L/min的N2、1sccm-5sccm的SiH4,生长厚度为1nm-5nm的SiInN层;
保持反应腔压力300mbar-400mbar、保持温度800℃-900℃,通入流量为30000sccm-60000sccm的NH3、100sccm-200sccm的TMAl、100L/min-130L/min的N2、1sccm-5sccm的SiH4,生长厚度为5nm-10nm的SiAlN层,其中,Si掺杂浓度为1E17atoms/cm3-5E17atoms/cm3;
周期性生长所述SiInN层和所述SiAlN层,生长周期为10-20,
生长所述SiInN层和生长所述SiAlN层的顺序可互换。
本申请中电流扩展层在外延生长中的运用,采用SiInN/SiAlN超晶格材料,利用AlN材料的高能带作用,电子在传播过程中遇到AlN高能带,传输受到能垒的阻挡,由于是大量拥挤的电子,AlN只能缓解电子纵向传播,电子横向传输得到扩展,InN材料作为势阱有很低的能带具有很强的陷域作用,电子纵向传播速率进一步下降,InN材料厚度到达纳米级将形成很强的二维电子气,二维电子气横向传播速率非常高,这就为电子横向扩展创造有利的条件,通过本专利发明的方法生长的LED,电流的分布变得均匀,发光效率有所增加。
实施例2
以下提供本发明的电流扩展层的外延生长方法的应用实施例,其外延结构参见图2,生长方法参见图1。运用MOCVD来生长高亮度GaN基LED外延片。采用高纯H2或高纯N2或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为N源,金属有机源三甲基镓(TMGa)作为镓源,三甲基铟(TMIn)作为铟源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),衬底为(0001)面蓝宝石,反应压力在70mbar到900mbar之间。具体生长方式如下:
步骤101、处理衬底:
在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底8min-10min。
步骤102、生长低温缓冲层:
降低温度至500℃-600℃,保持反应腔压力300mbar-600mbar,通入流量为10000sccm-20000sccm NH3、50sccm-100sccm的TMGa、100L/min-130L/min的H2,在蓝宝石衬底上生长厚度为20nm-40nm的低温缓冲层GaN。
步骤103、生长不掺杂GaN层:
升高温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、持续生长2μm-4μm的不掺杂GaN层。
步骤104、生长掺杂Si的N型GaN层:
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、20sccm-50sccm的SiH4,持续生长3μm-4μm掺杂Si的N型GaN,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3;
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、2sccm-10sccm的SiH4,持续生长200nm-400nm掺杂Si的N型GaN,Si掺杂浓度5E17atoms/cm3-1E18atoms/cm3。
本申请中,1E19代表10的19次方也就是1*1019,以此类推,atoms/cm3为掺杂浓度单位,下同。
步骤105、生长SiInN/SiAlN超晶格电流扩展层:
保持反应腔压力300mbar-400mbar、保持温度800℃-900℃,通入流量为30000sccm-60000sccm的NH3、1000sccm-2000sccm的TMIn、100L/min-130L/min的N2、1sccm-5sccm的SiH4,生长厚度为1nm-5nm的SiInN层;
保持反应腔压力300mbar-400mbar、保持温度800℃-900℃,通入流量为30000sccm-60000sccm的NH3、100sccm-200sccm的TMAl、100L/min-130L/min的N2、1sccm-5sccm的SiH4,生长厚度为5nm-10nm的SiAlN层,其中,Si掺杂浓度为1E17atoms/cm3-5E17atoms/cm3;
周期性生长所述SiInN层和所述SiAlN层,生长周期为10-20,
生长所述SiInN层和生长所述SiAlN层的顺序可互换。
步骤106、生长发光层:
保持反应腔压力300mbar-400mbar、温度700℃-750℃,通入流量为50000sccm-70000sccm的NH3、20sccm-40sccm的TMGa、1500sccm-2000sccm的TMIn、100L/min-130L/min的N2,生长掺杂In的厚度为2.5nm-3.5nm的InxGa(1-x)N层,x=0.20-0.25,发光波长450nm-455nm;
接着升高温度至750℃-850℃,保持反应腔压力300mbar-400mbar,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的N2,生长8nm-15nm的GaN层;
重复InxGa(1-x)N的生长,然后重复GaN的生长,交替生长InxGa(1-x)N/GaN发光层,控制周期数为7-15个。
步骤107、生长P型AlGaN层:
保持反应腔压力200mbar-400mbar、温度900℃-950℃,通入流量为50000sccm-70000sccm的NH3、30sccm-60sccm的TMGa、100L/min-130L/min的H2、100sccm-130sccm的TMAl、1000sccm-1300sccm的Cp2Mg,持续生长50nm-100nm的P型AlGaN层,Al掺杂浓度1E20atoms/cm3-3E20atoms/cm3,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3。
步骤108、生长掺杂Mg的P型GaN层:
保持反应腔压力400mbar-900mbar、温度950℃-1000℃,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的H2、1000sccm-3000sccm的Cp2Mg,持续生长50nm-100nm的掺Mg的P型GaN层,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3。
步骤109、降温冷却:
降温至650℃-680℃,保温20min-30min,接着关闭加热系统、关闭给气系统,随炉冷却。
实施例3
以下提供一种常规LED外延生长方法作为本发明的对比实施例。
常规LED外延的生长方法为(外延层结构参见图3):
1、在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底8min-10min。
2、降低温度至500℃-600℃,保持反应腔压力300mbar-600mbar,通入流量为10000sccm-20000sccm NH3、50sccm-100sccm的TMGa、100L/min-130L/min的H2,在蓝宝石衬底上生长厚度为20nm-40nm的低温缓冲层GaN。
3、升高温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、持续生长2μm-4μm的不掺杂GaN层。
4、保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、20sccm-50sccm的SiH4,持续生长3μm-4μm掺杂Si的N型GaN,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3。
5、保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、2sccm-10sccm的SiH4,持续生长200nm-400nm掺杂Si的N型GaN,Si掺杂浓度5E17atoms/cm3-1E18atoms/cm3。
6、保持反应腔压力300mbar-400mbar、温度700℃-750℃,通入流量为50000sccm-70000sccm的NH3、20sccm-40sccm的TMGa、1500sccm-2000sccm的TMIn、100L/min-130L/min的N2,生长掺杂In的厚度为2.5nm-3.5nm的InxGa(1-x)N层,x=0.20-0.25,发光波长450nm-455nm;
接着升高温度至750℃-850℃,保持反应腔压力300mbar-400mbar,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的N2,生长8nm-15nm的GaN层;
重复InxGa(1-x)N的生长,然后重复GaN的生长,交替生长InxGa(1-x)N/GaN发光层,控制周期数为7-15个。
7、保持反应腔压力200mbar-400mbar、温度900℃-950℃,通入流量为50000sccm-70000sccm的NH3、30sccm-60sccm的TMGa、100L/min-130L/min的H2、100sccm-130sccm的TMAl、1000sccm-1300sccm的Cp2Mg,持续生长50nm-100nm的P型AlGaN层,Al掺杂浓度1E20atoms/cm3-3E20atoms/cm3,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3。
8、保持反应腔压力400mbar-900mbar、温度950℃-1000℃,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的H2、1000sccm-3000sccm的Cp2Mg,持续生长50nm-100nm的掺Mg的P型GaN层,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3。
9、降温至650℃-680℃,保温20min-30min,接着关闭加热系统、关闭给气系统,随炉冷却。
在同一机台上,根据常规的LED的生长方法(对比实施例的方法)制备样品1,根据本专利描述的方法制备样品2;样品1和样品2外延生长方法参数不同点在于本发明在生长掺杂Si的N型GaN层后引入生长生长SiInN/SiAlN超晶格电流扩展层的步骤,即实施例2中的步骤105,生长其它外延层的生长条件完全一样。
样品1和样品2在相同的前工艺条件下镀ITO层约150nm,相同的条件下镀Cr/Pt/Au电极约1500nm,相同的条件下镀保护层SiO2约100nm,然后在相同的条件下将样品研磨切割成635μm*635μm(25mil*25mil)的芯片颗粒,然后样品1和样品2在相同位置各自挑选100颗晶粒,在相同的封装工艺下,封装成白光LED。然后采用积分球在驱动电流350mA条件下测试样品1和样品2的光电性能。
表1为样品1和样品2生长参数对比表,表2为样品1和样品2的电性参数对比表。
表1生长参数的对比表
表2样品1、2产品电性参数的比较
通过表2的数据对比可看出,样品2与样品1相比,亮度从129.05Lm/w提高到了147.05Lm/w,电压从3.151V降低到3.032V,其他参数变化不大。因此可得出以下结论:
通过本专利提供的生长方法,LED光效提升,亮度明显提高,LED电压下降,其他各项LED电性参数变化不大。实验数据证明了本专利的方案能显著提升LED产品光效的可行性。
通过以上各实施例可知,本申请存在的有益效果是:
本发明电流扩展层的外延生长方法,与传统方法相比,在生长掺杂Si的N型GaN层之后、生长发光层之前,引入生长SiInN/SiAlN超晶格电流扩展层。利用AlN材料的高能带作用,电子在传播过程中遇到AlN高能带,传输受到能垒的阻挡,由于是大量拥挤的电子,AlN只能缓解电子纵向传播,电子横向传输得到扩展,InN材料作为势阱有很低的能带具有很强的陷域作用,电子纵向传播速率进一步下降,InN材料厚度到达纳米级将形成很强的二维电子气,二维电子气横向传播速率非常高,这就为电子横向扩展创造有利的条件,通过本专利发明的方法生长的LED,电流的分布变得均匀,发光效率有所增加。
本领域内的技术人员应明白,本申请的实施例可提供为方法、装置、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求的保护范围内。
Claims (9)
1.一种电流扩展层的外延生长方法,其特征在于,依次包括:处理衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、生长发光层、生长P型AlGaN层、生长掺杂Mg的P型GaN层、降温冷却,
在所述生长掺杂Si的N型GaN层之后、所述生长发光层之前,还包括:生长SiInN/SiAlN超晶格电流扩展层,
所述生长SiInN/SiAlN超晶格电流扩展层为:
保持反应腔压力300mbar-400mbar、保持温度800℃-900℃,通入流量为30000sccm-60000sccm的NH3、100sccm-200sccm的TMAl、1000sccm-2000sccm的TMIn、100L/min-130L/min的N2、1sccm-5sccm的SiH4,生长SiInN/SiAlN超晶格电流扩展层,
所述生长SiInN/SiAlN超晶格电流扩展层,具体为:
保持反应腔压力300mbar-400mbar、保持温度800℃-900℃,通入流量为30000sccm-60000sccm的NH3、1000sccm-2000sccm的TMIn、100L/min-130L/min的N2、1sccm-5sccm的SiH4,生长厚度为1nm-5nm的SiInN层;
保持反应腔压力300mbar-400mbar、保持温度800℃-900℃,通入流量为30000sccm-60000sccm的NH3、100sccm-200sccm的TMAl、100L/min-130L/min的N2、1sccm-5sccm的SiH4,生长厚度为5nm-10nm的SiAlN层,其中,Si掺杂浓度为1E17atoms/cm3-5E17atoms/cm3;
周期性生长所述SiInN层和所述SiAlN层,生长周期为10-20,
生长所述SiInN层和生长所述SiAlN层的顺序可互换。
2.根据权利要求1所述电流扩展层的外延生长方法,其特征在于,
所述处理衬底为:在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底8min-10min。
3.根据权利要求1所述电流扩展层的外延生长方法,其特征在于,
所述生长低温缓冲层为:
降低温度至500℃-600℃,保持反应腔压力300mbar-600mbar,通入流量为10000sccm-20000sccm NH3、50sccm-100sccm的TMGa、100L/min-130L/min的H2,在蓝宝石衬底上生长厚度为20nm-40nm的低温缓冲层GaN。
4.根据权利要求1所述电流扩展层的外延生长方法,其特征在于,
所述生长不掺杂GaN层为:
升高温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、持续生长2μm-4μm的不掺杂GaN层。
5.根据权利要求1所述电流扩展层的外延生长方法,其特征在于,
所述生长掺杂Si的N型GaN层为:
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、20sccm-50sccm的SiH4,持续生长3μm-4μm掺杂Si的N型GaN,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3;
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、2sccm-10sccm的SiH4,持续生长200nm-400nm掺杂Si的N型GaN,Si掺杂浓度5E17atoms/cm3-1E18atoms/cm3。
6.根据权利要求1所述电流扩展层的外延生长方法,其特征在于,
所述生长发光层为:
保持反应腔压力300mbar-400mbar、温度700℃-750℃,通入流量为50000sccm-70000sccm的NH3、20sccm-40sccm的TMGa、1500sccm-2000sccm的TMIn、100L/min-130L/min的N2,生长掺杂In的厚度为2.5nm-3.5nm的InxGa(1-x)N层,x=0.20-0.25,发光波长450nm-455nm;
接着升高温度至750℃-850℃,保持反应腔压力300mbar-400mbar,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的N2,生长8nm-15nm的GaN层;
重复InxGa(1-x)N的生长,然后重复GaN的生长,交替生长InxGa(1-x)N/GaN发光层,控制周期数为7-15个。
7.根据权利要求1所述电流扩展层的外延生长方法,其特征在于,
所述生长P型AlGaN层为:
保持反应腔压力200mbar-400mbar、温度900℃-950℃,通入流量为50000sccm-70000sccm的NH3、30sccm-60sccm的TMGa、100L/min-130L/min的H2、100sccm-130sccm的TMAl、1000sccm-1300sccm的Cp2Mg,持续生长50nm-100nm的P型AlGaN层,Al掺杂浓度1E20atoms/cm3-3E20atoms/cm3,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3。
8.根据权利要求1所述电流扩展层的外延生长方法,其特征在于,
所述生长掺杂Mg的P型GaN层为:
保持反应腔压力400mbar-900mbar、温度950℃-1000℃,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的H2、1000sccm-3000sccm的Cp2Mg,持续生长50nm-100nm的掺Mg的P型GaN层,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3。
9.根据权利要求1所述电流扩展层的外延生长方法,其特征在于,
所述降温冷却为:
降温至650℃-680℃,保温20min-30min,接着关闭加热系统、关闭给气系统,随炉冷却。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610833486.6A CN106299062B (zh) | 2016-09-20 | 2016-09-20 | 电流扩展层的外延生长方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610833486.6A CN106299062B (zh) | 2016-09-20 | 2016-09-20 | 电流扩展层的外延生长方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106299062A true CN106299062A (zh) | 2017-01-04 |
CN106299062B CN106299062B (zh) | 2019-02-19 |
Family
ID=57713035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610833486.6A Active CN106299062B (zh) | 2016-09-20 | 2016-09-20 | 电流扩展层的外延生长方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106299062B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106711298A (zh) * | 2017-02-16 | 2017-05-24 | 湘能华磊光电股份有限公司 | 一种发光二极管外延生长方法及发光二极管 |
CN106876538A (zh) * | 2017-02-16 | 2017-06-20 | 湘能华磊光电股份有限公司 | 一种发光二极管外延生长方法及发光二极管 |
CN106887485A (zh) * | 2017-03-01 | 2017-06-23 | 湘能华磊光电股份有限公司 | 一种发光二极管外延生长方法及发光二极管 |
CN107946416A (zh) * | 2017-11-29 | 2018-04-20 | 湘能华磊光电股份有限公司 | 一种提高发光效率的led外延生长方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104409590A (zh) * | 2014-11-12 | 2015-03-11 | 湘能华磊光电股份有限公司 | Led外延结构及其生长方法 |
CN105206723A (zh) * | 2015-11-03 | 2015-12-30 | 湘能华磊光电股份有限公司 | 一种提高led亮度的外延生长方法 |
CN105845788A (zh) * | 2016-04-08 | 2016-08-10 | 湘能华磊光电股份有限公司 | 一种led电流扩展层外延生长方法 |
CN105869999A (zh) * | 2016-06-01 | 2016-08-17 | 湘能华磊光电股份有限公司 | Led外延生长方法 |
-
2016
- 2016-09-20 CN CN201610833486.6A patent/CN106299062B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104409590A (zh) * | 2014-11-12 | 2015-03-11 | 湘能华磊光电股份有限公司 | Led外延结构及其生长方法 |
CN105206723A (zh) * | 2015-11-03 | 2015-12-30 | 湘能华磊光电股份有限公司 | 一种提高led亮度的外延生长方法 |
CN105845788A (zh) * | 2016-04-08 | 2016-08-10 | 湘能华磊光电股份有限公司 | 一种led电流扩展层外延生长方法 |
CN105869999A (zh) * | 2016-06-01 | 2016-08-17 | 湘能华磊光电股份有限公司 | Led外延生长方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106711298A (zh) * | 2017-02-16 | 2017-05-24 | 湘能华磊光电股份有限公司 | 一种发光二极管外延生长方法及发光二极管 |
CN106876538A (zh) * | 2017-02-16 | 2017-06-20 | 湘能华磊光电股份有限公司 | 一种发光二极管外延生长方法及发光二极管 |
CN106876538B (zh) * | 2017-02-16 | 2019-01-25 | 湘能华磊光电股份有限公司 | 一种发光二极管外延生长方法及发光二极管 |
CN106711298B (zh) * | 2017-02-16 | 2019-02-26 | 湘能华磊光电股份有限公司 | 一种发光二极管外延生长方法及发光二极管 |
CN106887485A (zh) * | 2017-03-01 | 2017-06-23 | 湘能华磊光电股份有限公司 | 一种发光二极管外延生长方法及发光二极管 |
CN107946416A (zh) * | 2017-11-29 | 2018-04-20 | 湘能华磊光电股份有限公司 | 一种提高发光效率的led外延生长方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106299062B (zh) | 2019-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105869999B (zh) | Led外延生长方法 | |
CN105789388B (zh) | 提高外延晶体质量的led生长方法 | |
CN105244424B (zh) | 一种提高led器件光效的外延生长方法 | |
CN106098870A (zh) | Led外延接触层生长方法 | |
CN105932118A (zh) | 提高空穴注入的led外延生长方法 | |
CN105355735B (zh) | 一种降低led接触电阻的外延生长方法 | |
CN106409999B (zh) | 一种led外延超晶格生长方法 | |
CN106299062A (zh) | 电流扩展层的外延生长方法 | |
CN106129199A (zh) | 降低接触电阻的led外延生长方法 | |
CN105895753B (zh) | 提高led发光效率的外延生长方法 | |
CN106410000B (zh) | 一种led外延层生长方法 | |
CN105206722A (zh) | 一种led外延生长方法 | |
CN105870270A (zh) | Led外延超晶格生长方法 | |
CN106129198A (zh) | Led外延生长方法 | |
CN105261678A (zh) | 一种提高led内量子效率的外延生长方法 | |
CN105206723A (zh) | 一种提高led亮度的外延生长方法 | |
CN106328494A (zh) | 提高光效的led外延生长方法 | |
CN106206884B (zh) | Led外延p层生长方法 | |
CN103943740B (zh) | 增加发光效率的led外延层生长方法及led外延层 | |
CN105869994B (zh) | 一种超晶格层的生长方法及含此结构的led外延结构 | |
CN105845788B (zh) | 一种led电流扩展层外延生长方法 | |
CN105742419A (zh) | 一种led外延新p层生长方法 | |
CN105350074A (zh) | 一种提高led外延晶体质量的外延生长方法 | |
CN106206882A (zh) | 提高抗静电能力的led生长方法 | |
CN106848022B (zh) | 一种led外延结构及其生长方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |