CN105350074A - 一种提高led外延晶体质量的外延生长方法 - Google Patents

一种提高led外延晶体质量的外延生长方法 Download PDF

Info

Publication number
CN105350074A
CN105350074A CN201510737718.3A CN201510737718A CN105350074A CN 105350074 A CN105350074 A CN 105350074A CN 201510737718 A CN201510737718 A CN 201510737718A CN 105350074 A CN105350074 A CN 105350074A
Authority
CN
China
Prior art keywords
growth
layer
gan
tmga
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510737718.3A
Other languages
English (en)
Inventor
张宇
苗振林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangneng Hualei Optoelectrical Co Ltd
Original Assignee
Xiangneng Hualei Optoelectrical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangneng Hualei Optoelectrical Co Ltd filed Critical Xiangneng Hualei Optoelectrical Co Ltd
Priority to CN201510737718.3A priority Critical patent/CN105350074A/zh
Publication of CN105350074A publication Critical patent/CN105350074A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/22Sandwich processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction

Abstract

本申请公开提高LED外延晶体质量的外延生长方法,生长不掺杂GaN层后还包括生长不掺杂Si3N4/GaN超晶格层,生长不掺杂Si3N4/GaN超晶格层为:保持温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入NH3、TMGa、H2、SiH4,生长100nm-500nm的不掺杂Si3N4/GaN超晶格层。如此方案,在生长不掺杂GaN层后生长不掺杂Si3N4/GaN超晶格层,使得GaN位错密度减小或者位错不再向上层结构延伸,更大程度降低LED外延层位错密度,因此能够有效的提升上层结构的晶体质量,有利于提升LED的各方面性能。

Description

一种提高LED外延晶体质量的外延生长方法
技术领域
本申请涉及LED外延设计应用技术领域,具体地说,涉及一种提高LED外延晶体质量的外延生长方法。
背景技术
目前LED是一种固体照明,体积小、耗电量低使用寿命长高亮度、环保、坚固耐用等优点受到广大消费者认可,国内生产LED的规模也在逐步扩大;市场上对LED亮度和光效的需求与日俱增,如何生长更好的外延片日益受到重视,因为外延层晶体质量的提高,LED器件的性能可以得到提升,LED的发光效率、寿命、抗老化能力、抗静电能力、稳定性会随着外延层晶体质量的提升而提升。
目前市场对LED品质的要求提到了一个新的阶段;但是蓝宝石衬底上生长LED外延GaN,因为蓝宝石和GaN材料晶格不同,存在晶格不匹配的情况,这是客观存在的事实,导致的后果是GaN内位错密度很高,因而导致所生长的外延层晶体质量不高。
发明内容
有鉴于此,本申请所要解决的技术问题是提供了一种提高LED外延晶体质量的外延生长方法,其能够减少外延层位错密度,提高外延层晶体质量。
为了解决上述技术问题,本申请有如下技术方案:
一种提高LED外延晶体质量的外延生长方法,依次包括:处理衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、交替生长掺杂In的InxGa(1-x)N/GaN发光层、生长P型AlGaN层、生长掺杂Mg的P型GaN层,降温冷却,其特征在于,
所述生长不掺杂GaN层后还包括生长不掺杂Si3N4/GaN超晶格层,所述生长不掺杂Si3N4/GaN超晶格层为:
保持温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为50000sccm-60000sccm的NH3、20sccm-40sccm的TMGa、100L/min-130L/min的H2、10sccm的SiH4,生长100nm-500nm的不掺杂Si3N4/GaN超晶格层。
优选地,其中,所述生长不掺杂Si3N4/GaN超晶格层进一步为:
生长2nm-10nmGaN层:保持温度压力不变,通入流量为30000sccm-40000sccm的NH3、20sccm-40sccm的TMGa、100L/min-130L/min的H2,生长2nm-10nmGaN层;
生长2nm-10nmSi3N4层:保持温度压力不变,通入流量为30000sccm-40000sccm的NH3、100L/min-130L/min的H2、10sccm的SiH4,生长2-10nmSi3N4层;
单元周期性生长2nm-10nmGaN层和生长2-10nmSi3N4层,周期数为25-50,生长2-10nmGaN层和生长2-10nmSi3N4层的顺序可置换。
优选地,其中,所述处理衬底进一步为:在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底8min-10min。
优选地,其中,所述生长低温缓冲层GaN进一步为:
降温至500℃-600℃,保持反应腔压力300mbar-600mbar,通入流量为10000sccm-20000sccm的NH3、50sccm-100sccm的TMGa、100L/min-130L/min的H2、在蓝宝石衬底上生长厚度为20nm-40nm的低温缓冲层GaN。
优选地,其中,所述生长不掺杂GaN层进一步为:升高温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、持续生长2μm-4μm的不掺杂GaN层。
优选地,其中,所述生长掺杂Si的N型GaN层进一步为:
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、20sccm-50sccm的SiH4,持续生长3μm-4μm掺杂Si的N型GaN,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、2sccm-10sccm的SiH4,持续生长200nm-400nm掺杂Si的N型GaN,Si掺杂浓度5E17atoms/cm3-1E18atoms/cm3
优选地,其中,所述交替生长掺杂In的InxGa(1-x)N/GaN发光层进一步为:
保持反应腔压力300mbar-400mbar、温度700℃-750℃,通入流量为50000sccm-70000sccm的NH3、20sccm-40sccm的TMGa、1500sccm-2000sccm的TMIn、100L/min-130L/min的N2,生长掺杂In的2.5nm-3.5nm的InxGa(1-x)N层,x=0.20-0.25,发光波长450nm-455nm;
接着升高温度至750℃-850℃,保持反应腔压力300mbar-400mbar,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的N2,生长8nm-15nm的GaN层;
重复InxGa(1-x)N的生长,然后重复GaN的生长,交替生长InxGa(1-x)N/GaN发光层,控制周期数为7-15个。
优选地,其中,所述生长P型AlGaN层进一步为:
保持反应腔压力200mbar-400mbar、温度900℃-950℃,通入流量为50000sccm-70000sccm的NH3、30sccm-60sccm的TMGa、100L/min-130L/min的H2、100sccm-130sccm的TMAl、1000sccm-1300sccm的Cp2Mg,持续生长50nm-100nm的P型AlGaN层,Al掺杂浓度1E20atoms/cm3-3E20atoms/cm3,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
优选地,其中,所述生长掺Mg的P型GaN层进一步为:
保持反应腔压力400mbar-900mbar、温度950℃-1000℃,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的H2、1000sccm-3000sccm的Cp2Mg,持续生长50nm-100nm的掺Mg的P型GaN层,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
优选地,其中,所述降温冷却进一步为:降温至650℃-680℃,保温20min-30min,接着关闭加热系统、关闭给气系统,随炉冷却。
与现有技术相比,本申请所述的方法,达到了如下效果:
本发明提高LED外延晶体质量的外延生长方法中,在生长不掺杂GaN层后,GaN位错密度很高,在此之后生长不掺杂Si3N4/GaN超晶格层,Si3N4/GaN超晶格有效的阻挡位错的延生,使一部分位错在Si3N4/GaN超晶格内形成闭合的环或者转向,从而使得位错密度减小或者位错不再向上层结构延伸,能够更大程度降低LED外延层位错密度,因此能够有效的提升上层结构的晶体质量,有利于提升LED的各方面性能。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例1中LED外延层的结构示意图;
图2为对比实施例1中LED外延层的结构示意图;
其中,1、衬底,2、缓冲层GaN,3、不掺杂GaN,4、Si3N4/GaN超晶格层,5、掺杂Si的N型GaN,6、GaN,7、InxGa(1-x)N,8、P型AlGaN,9、P型GaN。
具体实施方式
如在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。此外,“耦接”一词在此包含任何直接及间接的电性耦接手段。因此,若文中描述一第一装置耦接于一第二装置,则代表所述第一装置可直接电性耦接于所述第二装置,或通过其他装置或耦接手段间接地电性耦接至所述第二装置。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
实施例1
参见图1,本发明运用MOCVD来生长高亮度GaN基LED外延片。采用高纯H2或高纯N2或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为N源,金属有机源三甲基镓(TMGa)作为镓源,三甲基铟(TMIn)作为铟源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),衬底为(0001)面蓝宝石,反应压力在70mbar到900mbar之间。具体生长方式如下:
一种提高LED外延晶体质量的外延生长方法,依次包括:处理衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、交替生长掺杂In的InxGa(1-x)N/GaN发光层、生长P型AlGaN层、生长掺Mg的P型GaN层,降温冷却,其中,
上述处理衬底的进一步为:在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底8min-10min。
上述方案中,生长低温缓冲层GaN进一步为:降温至500℃-600℃,保持反应腔压力300mbar-600mbar,通入流量为10000sccm-20000sccm的NH3、50sccm-100sccm的TMGa、100L/min-130L/min的H2、在蓝宝石衬底上生长厚度为20nm-40nm的低温缓冲层GaN。
上述生长不掺杂GaN层进一步为:升高温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、持续生长2μm-4μm的不掺杂GaN层。
本发明中,上述生长不掺杂GaN层后还包括生长不掺杂Si3N4/GaN超晶格层,所述生长不掺杂Si3N4/GaN超晶格层为:
保持温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为50000sccm-60000sccm的NH3、20sccm-40sccm的TMGa、100L/min-130L/min的H2、10sccm的SiH4,生长100nm-500nm的不掺杂Si3N4/GaN超晶格层。
上述生长不掺杂Si3N4/GaN超晶格层进一步为:
生长2nm-10nmGaN层:保持温度压力不变,通入流量为30000sccm-40000sccm的NH3、20sccm-40sccm的TMGa、100L/min-130L/min的H2,生长2nm-10nmGaN层;
生长2nm-10nmSi3N4层:保持温度压力不变,通入流量为30000sccm-40000sccm的NH3、100L/min-130L/min的H2、10sccm的SiH4,生长2-10nmSi3N4层;
单元周期性生长2nm-10nmGaN层和生长2-10nmSi3N4层,周期数为25-50,生长2-10nmGaN层和生长2-10nmSi3N4层的顺序可置换。
上述生长掺杂Si的N型GaN层进一步为:
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、20sccm-50sccm的SiH4,持续生长3μm-4μm掺杂Si的N型GaN,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3(1E19代表10的19次方,也就是1019,5E18代表5×1018,以下表示方式以此类推);
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、2sccm-10sccm的SiH4,持续生长200nm-400nm掺杂Si的N型GaN,Si掺杂浓度5E17atoms/cm3-1E18atoms/cm3
上述交替生长掺杂In的InxGa(1-x)N/GaN发光层进一步为:
保持反应腔压力300mbar-400mbar、温度700℃-750℃,通入流量为50000sccm-70000sccm的NH3、20sccm-40sccm的TMGa、1500sccm-2000sccm的TMIn、100L/min-130L/min的N2,生长掺杂In的2.5nm-3.5nm的InxGa(1-x)N层,x=0.20-0.25,发光波长450nm-455nm;
接着升高温度至750℃-850℃,保持反应腔压力300mbar-400mbar,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的N2,生长8nm-15nm的GaN层;
重复InxGa(1-x)N的生长,然后重复GaN的生长,交替生长InxGa(1-x)N/GaN发光层,控制周期数为7-15个。
上述生长P型AlGaN层进一步为:保持反应腔压力200mbar-400mbar、温度900℃-950℃,通入流量为50000sccm-70000sccm的NH3、30sccm-60sccm的TMGa、100L/min-130L/min的H2、100sccm-130sccm的TMAl、1000sccm-1300sccm的Cp2Mg,持续生长50nm-100nm的P型AlGaN层,Al掺杂浓度1E20atoms/cm3-3E20atoms/cm3,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
上述生长掺Mg的P型GaN层进一步为:保持反应腔压力400mbar-900mbar、温度950℃-1000℃,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的H2、1000sccm-3000sccm的Cp2Mg,持续生长50nm-100nm的掺Mg的P型GaN层,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
上述降温冷却进一步为:降温至650℃-680℃,保温20min-30min,接着关闭加热系统、关闭给气系统,随炉冷却。
本发明提高LED外延晶体质量的外延生长方法中,在生长不掺杂GaN层后,GaN位错密度很高,在此之后生长不掺杂Si3N4/GaN超晶格层,Si3N4/GaN超晶格有效的阻挡位错的延生,使一部分位错在Si3N4/GaN超晶格内形成闭合的环或者转向,从而使得位错密度减小或者位错不再向上层结构延伸,能够更大程度降低LED外延层位错密度,因此能够有效的提升上层结构的晶体质量,有利于提升LED的各方面性能。
对比实施例1
传统LED外延层的生长方法为(外延层结构参见图2):
1、在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底8min-10min。
2、降温至500-600℃下,保持反应腔压力300mbar-600mbar,通入流量为10000sccm-20000sccm的NH3、50sccm-100sccm的TMGa、100L/min-130L/min的H2、在蓝宝石衬底上生长厚度为20nm-40nm的低温缓冲层GaN。
3、高温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、持续生长2μm-4μm的不掺杂GaN层。
4、保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、20sccm-50sccm的SiH4,持续生长3μm-4μm掺杂Si的N型GaN,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3(1E19代表10的19次方,也就是1019,5E18代表5×1018,以下表示方式以此类推)。
5、保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、2sccm-10sccm的SiH4,持续生长200nm-400nm掺杂Si的N型GaN,Si掺杂浓度5E17atoms/cm3-1E18atoms/cm3
6、保持反应腔压力300mbar-400mbar、温度700℃-750℃,通入流量为50000sccm-70000sccm的NH3、20sccm-40sccm的TMGa、1500sccm-2000sccm的TMIn、100L/min-130L/min的N2,生长掺杂In的2.5nm-3.5nm的InxGa(1-x)N层,x=0.20-0.25,发光波长450nm-455nm;接着升高温度至750℃-850℃,保持反应腔压力300mbar-400mbar,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的N2,生长8nm-15nm的GaN层;重复InxGa(1-x)N的生长,然后重复GaN的生长,交替生长InxGa(1-x)N/GaN发光层,控制周期数为7-15个。
7、保持反应腔压力200mbar-400mbar、温度900℃-950℃,通入流量为50000sccm-70000sccm的NH3、30sccm-60sccm的TMGa、100L/min-130L/min的H2、100sccm-130sccm的TMAl、1000sccm-1800sccm的Cp2Mg,持续生长50nm-100nm的P型AlGaN层,Al掺杂浓度1E20atoms/cm3-3E20atoms/cm3,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
8、保持反应腔压力400mbar-900mbar、温度950℃-1000℃,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的H2、1000sccm-3000sccm的Cp2Mg,持续生长50nm-200nm的掺Mg的P型GaN层,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
9、最后降温至650℃-680℃,保温20min-30min,接着关闭加热系统、关闭给气系统,随炉冷却。
根据传统的LED的生长方法(对比实施例1的方法)制备样品1,根据本专利描述的方法制备样品2;样品1和样品2外延生长方法参数不同点在于在生长不掺杂GaN层后加入生长不掺杂Si3N4/GaN超晶格层,生长其它外延层生长条件完全一样;样品1和样品2在相同的前工艺条件下镀ITO层约150nm,相同的条件下镀Cr/Pt/Au电极约1500nm,相同的条件下镀保护层SiO2约100nm,然后在相同的条件下将样品研磨切割成635μm*635μm(25mil*25mil)的芯片颗粒,然后样品1和样品2在相同位置各自挑选100颗晶粒,在相同的封装工艺下,封装成白光LED。然后采用积分球在驱动电流350mA条件下测试样品1和样品2的光电性能。以下表1为发光层生长参数的对比表,表2为产品电性能参数的比较表格,表3为样品1、2外延片XRD参数的测定表。
表1发光层生长参数的对比
表2样品1、2产品电性参数的比较
表3样品1、2外延片XRD参数的测定
通过表1、表2和表3的数据可得出以下结论:
通过本专利提供的生长方法,外延晶体的质量变好,各项LED电性参数变好,实验数据证明了本专利的方案能提升LED产品晶体质量的可行性。
通过以上各实施例可知,本申请存在的有益效果是:
本发明提高LED外延晶体质量的外延生长方法中,在生长不掺杂GaN层后,GaN位错密度很高,在此之后生长不掺杂Si3N4/GaN超晶格层,Si3N4/GaN超晶格有效的阻挡位错的延生,使一部分位错在Si3N4/GaN超晶格内形成闭合的环或者转向,从而使得位错密度减小或者位错不再向上层结构延伸,能够更大程度降低LED外延层位错密度,因此能够有效的提升上层结构的晶体质量,有利于提升LED的各方面性能。
本领域内的技术人员应明白,本申请的实施例可提供为方法、装置、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求的保护范围内。

Claims (10)

1.一种提高LED外延晶体质量的外延生长方法,依次包括:处理衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、交替生长掺杂In的InxGa(1-x)N/GaN发光层、生长P型AlGaN层、生长掺杂Mg的P型GaN层,降温冷却,其特征在于,
所述生长不掺杂GaN层后还包括生长不掺杂Si3N4/GaN超晶格层,所述生长不掺杂Si3N4/GaN超晶格层为:
保持温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为50000sccm-60000sccm的NH3、20sccm-40sccm的TMGa、100L/min-130L/min的H2、10sccm的SiH4,生长100nm-500nm的不掺杂Si3N4/GaN超晶格层。
2.根据权利要求1所述提高LED外延晶体质量的外延生长方法,其特征在于,
所述生长不掺杂Si3N4/GaN超晶格层进一步为:
生长2nm-10nmGaN层:保持温度压力不变,通入流量为30000sccm-40000sccm的NH3、20sccm-40sccm的TMGa、100L/min-130L/min的H2,生长2nm-10nmGaN层;
生长2nm-10nmSi3N4层:保持温度压力不变,通入流量为30000sccm-40000sccm的NH3、100L/min-130L/min的H2、10sccm的SiH4,生长2-10nmSi3N4层;
单元周期性生长2nm-10nmGaN层和生长2-10nmSi3N4层,周期数为25-50,生长2-10nmGaN层和生长2-10nmSi3N4层的顺序可置换。
3.根据权利要求1所述提高LED外延晶体质量的外延生长方法,其特征在于,
所述处理衬底进一步为:在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底8min-10min。
4.根据权利要求1所述提高LED外延晶体质量的外延生长方法,其特征在于,
所述生长低温缓冲层GaN进一步为:
降温至500℃-600℃,保持反应腔压力300mbar-600mbar,通入流量为10000sccm-20000sccm的NH3、50sccm-100sccm的TMGa、100L/min-130L/min的H2、在蓝宝石衬底上生长厚度为20nm-40nm的低温缓冲层GaN。
5.根据权利要求1所述提高LED外延晶体质量的外延生长方法,其特征在于,
所述生长不掺杂GaN层进一步为:升高温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、持续生长2μm-4μm的不掺杂GaN层。
6.根据权利要求1所述提高LED外延晶体质量的外延生长方法,其特征在于,
所述生长掺杂Si的N型GaN层进一步为:
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、20sccm-50sccm的SiH4,持续生长3μm-4μm掺杂Si的N型GaN,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2、2sccm-10sccm的SiH4,持续生长200nm-400nm掺杂Si的N型GaN,Si掺杂浓度5E17atoms/cm3-1E18atoms/cm3
7.根据权利要求1所述提高LED外延晶体质量的外延生长方法,其特征在于,
所述交替生长掺杂In的InxGa(1-x)N/GaN发光层进一步为:
保持反应腔压力300mbar-400mbar、温度700℃-750℃,通入流量为50000sccm-70000sccm的NH3、20sccm-40sccm的TMGa、1500sccm-2000sccm的TMIn、100L/min-130L/min的N2,生长掺杂In的2.5nm-3.5nm的InxGa(1-x)N层,x=0.20-0.25,发光波长450nm-455nm;
接着升高温度至750℃-850℃,保持反应腔压力300mbar-400mbar,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的N2,生长8nm-15nm的GaN层;
重复InxGa(1-x)N的生长,然后重复GaN的生长,交替生长InxGa(1-x)N/GaN发光层,控制周期数为7-15个。
8.根据权利要求1所述提高LED外延晶体质量的外延生长方法,其特征在于,
所述生长P型AlGaN层进一步为:
保持反应腔压力200mbar-400mbar、温度900℃-950℃,通入流量为50000sccm-70000sccm的NH3、30sccm-60sccm的TMGa、100L/min-130L/min的H2、100sccm-130sccm的TMAl、1000sccm-1300sccm的Cp2Mg,持续生长50nm-100nm的P型AlGaN层,Al掺杂浓度1E20atoms/cm3-3E20atoms/cm3,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
9.根据权利要求1所述提高LED外延晶体质量的外延生长方法,其特征在于,
所述生长掺Mg的P型GaN层进一步为:
保持反应腔压力400mbar-900mbar、温度950℃-1000℃,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的H2、1000sccm-3000sccm的Cp2Mg,持续生长50nm-100nm的掺Mg的P型GaN层,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
10.根据权利要求1~9之任一所述提高LED外延晶体质量的外延生长方法,其特征在于,
所述降温冷却进一步为:降温至650℃-680℃,保温20min-30min,接着关闭加热系统、关闭给气系统,随炉冷却。
CN201510737718.3A 2015-11-03 2015-11-03 一种提高led外延晶体质量的外延生长方法 Pending CN105350074A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510737718.3A CN105350074A (zh) 2015-11-03 2015-11-03 一种提高led外延晶体质量的外延生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510737718.3A CN105350074A (zh) 2015-11-03 2015-11-03 一种提高led外延晶体质量的外延生长方法

Publications (1)

Publication Number Publication Date
CN105350074A true CN105350074A (zh) 2016-02-24

Family

ID=55326130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510737718.3A Pending CN105350074A (zh) 2015-11-03 2015-11-03 一种提高led外延晶体质量的外延生长方法

Country Status (1)

Country Link
CN (1) CN105350074A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895753A (zh) * 2016-04-29 2016-08-24 湘能华磊光电股份有限公司 提高led发光效率的外延生长方法
CN106601882A (zh) * 2016-11-21 2017-04-26 华灿光电(浙江)有限公司 一种发光二极管的外延片及其制造方法
CN108808446A (zh) * 2018-06-27 2018-11-13 潍坊华光光电子有限公司 一种具有位错折断结构的GaN基激光器外延结构及其生长方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010040246A1 (en) * 2000-02-18 2001-11-15 Hirotatsu Ishii GaN field-effect transistor and method of manufacturing the same
JP2002289579A (ja) * 2001-03-23 2002-10-04 Mitsubishi Cable Ind Ltd 結晶成長用基板、その製造方法、およびGaN系結晶の製造方法
CN1659713A (zh) * 2002-06-04 2005-08-24 氮化物半导体株式会社 氮化镓(GaN)类化合物半导体装置及其制造方法
CN1753199A (zh) * 2004-09-23 2006-03-29 璨圆光电股份有限公司 氮化镓系发光二极管
CN103560187A (zh) * 2013-11-15 2014-02-05 湘能华磊光电股份有限公司 含有超晶格势垒层的led结构外延生长方法及其结构
CN103594570A (zh) * 2013-11-15 2014-02-19 湘能华磊光电股份有限公司 含有超晶格势垒层的 led 结构外延生长方法及其结构
CN103824912A (zh) * 2014-03-12 2014-05-28 合肥彩虹蓝光科技有限公司 一种改善GaN基LED反向漏电的外延生长方法
CN103943740A (zh) * 2014-05-13 2014-07-23 湘能华磊光电股份有限公司 增加发光效率的led外延层生长方法及led外延层
CN103972335A (zh) * 2014-05-26 2014-08-06 湘能华磊光电股份有限公司 Led外延层结构及具有该结构的led芯片
CN103996769A (zh) * 2014-06-06 2014-08-20 湘能华磊光电股份有限公司 Led外延层结构、生长方法及具有该结构的led芯片
CN104009136A (zh) * 2014-06-16 2014-08-27 湘能华磊光电股份有限公司 提高发光效率的led外延层生长方法及led外延层
CN104103721A (zh) * 2014-08-04 2014-10-15 湘能华磊光电股份有限公司 P型led外延结构、生长方法及led显示装置
CN104201257A (zh) * 2014-09-17 2014-12-10 湘能华磊光电股份有限公司 通过缓冲层调节控制led外延片波长均匀性的方法
CN104409586A (zh) * 2014-11-13 2015-03-11 湘能华磊光电股份有限公司 GaN基Ⅲ-Ⅴ族化合物半导体LED外延片及生长方法
CN104409590A (zh) * 2014-11-12 2015-03-11 湘能华磊光电股份有限公司 Led外延结构及其生长方法
CN104638082A (zh) * 2015-02-04 2015-05-20 映瑞光电科技(上海)有限公司 低电压GaN基LED外延结构的制作方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010040246A1 (en) * 2000-02-18 2001-11-15 Hirotatsu Ishii GaN field-effect transistor and method of manufacturing the same
JP2002289579A (ja) * 2001-03-23 2002-10-04 Mitsubishi Cable Ind Ltd 結晶成長用基板、その製造方法、およびGaN系結晶の製造方法
CN1659713A (zh) * 2002-06-04 2005-08-24 氮化物半导体株式会社 氮化镓(GaN)类化合物半导体装置及其制造方法
CN1753199A (zh) * 2004-09-23 2006-03-29 璨圆光电股份有限公司 氮化镓系发光二极管
CN103560187A (zh) * 2013-11-15 2014-02-05 湘能华磊光电股份有限公司 含有超晶格势垒层的led结构外延生长方法及其结构
CN103594570A (zh) * 2013-11-15 2014-02-19 湘能华磊光电股份有限公司 含有超晶格势垒层的 led 结构外延生长方法及其结构
CN103824912A (zh) * 2014-03-12 2014-05-28 合肥彩虹蓝光科技有限公司 一种改善GaN基LED反向漏电的外延生长方法
CN103943740A (zh) * 2014-05-13 2014-07-23 湘能华磊光电股份有限公司 增加发光效率的led外延层生长方法及led外延层
CN103972335A (zh) * 2014-05-26 2014-08-06 湘能华磊光电股份有限公司 Led外延层结构及具有该结构的led芯片
CN103996769A (zh) * 2014-06-06 2014-08-20 湘能华磊光电股份有限公司 Led外延层结构、生长方法及具有该结构的led芯片
CN104009136A (zh) * 2014-06-16 2014-08-27 湘能华磊光电股份有限公司 提高发光效率的led外延层生长方法及led外延层
CN104103721A (zh) * 2014-08-04 2014-10-15 湘能华磊光电股份有限公司 P型led外延结构、生长方法及led显示装置
CN104201257A (zh) * 2014-09-17 2014-12-10 湘能华磊光电股份有限公司 通过缓冲层调节控制led外延片波长均匀性的方法
CN104409590A (zh) * 2014-11-12 2015-03-11 湘能华磊光电股份有限公司 Led外延结构及其生长方法
CN104409586A (zh) * 2014-11-13 2015-03-11 湘能华磊光电股份有限公司 GaN基Ⅲ-Ⅴ族化合物半导体LED外延片及生长方法
CN104638082A (zh) * 2015-02-04 2015-05-20 映瑞光电科技(上海)有限公司 低电压GaN基LED外延结构的制作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895753A (zh) * 2016-04-29 2016-08-24 湘能华磊光电股份有限公司 提高led发光效率的外延生长方法
CN105895753B (zh) * 2016-04-29 2019-01-15 湘能华磊光电股份有限公司 提高led发光效率的外延生长方法
CN106601882A (zh) * 2016-11-21 2017-04-26 华灿光电(浙江)有限公司 一种发光二极管的外延片及其制造方法
CN108808446A (zh) * 2018-06-27 2018-11-13 潍坊华光光电子有限公司 一种具有位错折断结构的GaN基激光器外延结构及其生长方法

Similar Documents

Publication Publication Date Title
CN105932118B (zh) 提高空穴注入的led外延生长方法
CN105869999A (zh) Led外延生长方法
CN105789388B (zh) 提高外延晶体质量的led生长方法
CN105261678A (zh) 一种提高led内量子效率的外延生长方法
CN105355735B (zh) 一种降低led接触电阻的外延生长方法
CN105895753B (zh) 提高led发光效率的外延生长方法
CN106098870A (zh) Led外延接触层生长方法
CN108550665A (zh) 一种led外延结构生长方法
CN106328777A (zh) 一种发光二极管应力释放层的外延生长方法
CN105870270A (zh) Led外延超晶格生长方法
CN106409999A (zh) 一种led外延超晶格生长方法
CN106129199A (zh) 降低接触电阻的led外延生长方法
CN103413879A (zh) Led外延的生长方法以及通过此方法获得的led芯片
CN106410000B (zh) 一种led外延层生长方法
CN106299062B (zh) 电流扩展层的外延生长方法
CN106206884B (zh) Led外延p层生长方法
CN105350074A (zh) 一种提高led外延晶体质量的外延生长方法
CN107946416A (zh) 一种提高发光效率的led外延生长方法
CN105845788B (zh) 一种led电流扩展层外延生长方法
CN105742419A (zh) 一种led外延新p层生长方法
CN103952684A (zh) Led外延层生长方法及led外延层
CN106206882A (zh) 提高抗静电能力的led生长方法
CN106848022B (zh) 一种led外延结构及其生长方法
CN105655455B (zh) 一种提升led光效的外延生长方法
CN107564999A (zh) 一种提升发光效率的led外延生长方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160224

RJ01 Rejection of invention patent application after publication