CN106298896B - 在有源装置区中具有埋入介电区的双极结晶体管 - Google Patents

在有源装置区中具有埋入介电区的双极结晶体管 Download PDF

Info

Publication number
CN106298896B
CN106298896B CN201610465839.1A CN201610465839A CN106298896B CN 106298896 B CN106298896 B CN 106298896B CN 201610465839 A CN201610465839 A CN 201610465839A CN 106298896 B CN106298896 B CN 106298896B
Authority
CN
China
Prior art keywords
device area
active device
side wall
dielectric
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610465839.1A
Other languages
English (en)
Other versions
CN106298896A (zh
Inventor
R·卡米洛卡斯蒂略
V·贾殷
M·H·哈提尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries US Inc
Original Assignee
GlobalFoundries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalFoundries Inc filed Critical GlobalFoundries Inc
Publication of CN106298896A publication Critical patent/CN106298896A/zh
Application granted granted Critical
Publication of CN106298896B publication Critical patent/CN106298896B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/735Lateral transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/764Air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Element Separation (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明涉及一种在有源装置区中具有埋入介电区的双极结晶体管。一种双极结晶体管的装置结构及制造方法。形成沟槽隔离区沿侧壁环绕有源装置区。形成介电区从该有源装置区的侧壁横向延伸进入该有源装置区。该介电区位于该有源装置区的顶面之下,使得该有源装置区的一部分位于该顶面及该介电区之间。

Description

在有源装置区中具有埋入介电区的双极结晶体管
技术领域
本发明一般涉及半导体装置以及集成电路制造,并且尤其涉及双极结晶体管的制造方法和装置结构。
背景技术
双极结晶体管除了其他最终用途外,可在高频及高功率应用中被发现。特别是,双极结晶体管的具体最终用途可用于无线通信系统和移动装置、开关及振荡器的放大器。双极结晶体管也可以用在高速逻辑电路。双极结晶体管是三端子的电子装置,其包括射极、本质基极和集极,由不同的半导体材料区来定义。在该装置结构中,本质基极位于射极与集极之间。NPN双极结晶体管可包括构成该射极与集极的n型半导体材料区,及构成本质基极的p型半导体材料区。PNP双极结晶体管包括构成射极与集极的p型半导体材料区,及构成本质基极的n型半导体材料区。在操作中,基极-射极结是正向偏压,基极-集极结是反向偏压。集极-射极电流可以藉由基极-射极电压进行控制。
需要改进用于双极结晶体管的制造方法及装置结构。
发明内容
在本发明的一个实施例中,提供了一种用于制造装置结构的方法。形成沟槽隔离区沿侧壁环绕有源装置区。形成介电区从该有源装置区的侧壁横向延伸进入该有源装置区。该介电区位于该有源装置区的顶面之下,使得一部分的有源装置区位于该顶面及该介电区之间。
在本发明的一个实施例中,提供了一种用于双极结晶体管的装置结构。该装置结构包括:沟槽隔离区,其位于该半导体衬底内;有源装置区,具有顶面及与该沟槽隔离区共同延伸的侧壁;以及介电区,从该有源装置区的该侧壁横向延伸进入该有源装置区。该有源装置区由半导体衬底的一部分构成。该介电区位于该有源装置区的顶面之下,使得一部分的有源装置区位于该顶面及该介电区之间。
附图说明
附图包含在说明书中,并与以上披露的本发明以及以下示出的实施方式的详细描述的一般说明构成本说明书的一部分,附图示出本发明的各种实施例,并一起用于解释本发明的实施方式。
图1-5是根据本发明的一个实施例,用于制造装置结构的处理方法的连续制造阶段的衬底的一部分的横截面图。
图6是根据本发明的替代实施例的处理方法制造类似于图5的装置结构剖面图。
具体实施方式
参考图1及根据本发明的一个实施例,衬底10包括可用以形成集成电路装置的单晶半导体材料。例如,衬底10可以包括单晶含硅材料,诸如本体单晶硅晶圆。构成衬底10的半导体材料可包括电活性掺杂剂,其改变衬底10的电性能,并且还可以包括在其顶面的视需要的外延层。
沟槽隔离区12在衬底10内形成并延伸进入衬底10到给定的深度d1。沟槽隔离区12界定各自由衬底10的半导体材料构成的有源装置区14及集极接触区16,并且提供电隔离。该集极接触区16位于该有源装置区14的附近并且由沟槽隔离区12的其中一个与该有源装置区14分隔开来。沟槽隔离区12的位置及安排定义了该有源装置区14的大小、几何形状、以及边界与集极接触区16的位置。有源装置区14具有侧壁15位于其边界并与沟槽隔离区12的接触互补侧壁共同延伸深度d1
沟槽隔离区12可以藉由浅沟槽隔离(shallow trench isolation,STI)技术形成,该技术涉及以光刻及干式蚀刻工艺来界定该沟槽,沉积电绝缘体填充该沟槽,并且使用例如化学机械研磨(CMP)来平坦化相对于衬底10的顶面的电绝缘体。该沟槽隔离区12可以包括介电材料,例如经化学气相沉积技术所沉积的硅的氧化物(例如,二氧化硅(SiO2))。
该有源装置区14可界定双极结晶体管的集极18,或者可以包括集极18。该集极18可以构成该有源装置区14的全部或一部分,并且可以由衬底10的半导体材料构成。集极18的导电率可通过例如电活性掺杂剂的离子植入或是在衬底10的顶面生长掺杂外延层而提高。副集极(sub-collector)20可以以沟槽隔离区12下方的深度在衬底10中横向延伸,以便耦合集极18与集极接触区16。集极接触区16、集极18、及副集极20是由半导体衬底10的材料构成,并有共同的导电类型。
介电层22、24被依次沉积并铺设图案化的蚀刻掩模26。每个介电层22、24可以由具有介电常数(例如,介电率(permittivity))特性的介电材料的电绝缘体构成。在一个实施例中,介电层22可以包括藉由化学气相沉积(CVD)沉积的二氧化硅,及介电层24可以由使用化学气相沉积法沉积的氮化硅(Si3N4)构成。蚀刻掩模可以由一层感光材料,诸如有机光刻胶构成,可以藉由旋涂工艺铺设、预烘焙、暴露于通过光掩模的投射光、曝光后烘烤、并用化学显影剂显影。蚀刻掩模26包括开口28、30,它们相对于有源装置区14而位于沟槽预定位置以用于延伸到该沟槽隔离区12。
介电层22、24的蚀刻是通过蚀刻工艺以化学蚀刻选择性移除构成的介电材料并且延伸开口到沟槽隔离区12的顶面来进行,从而界定用于随后的蚀刻工艺的图案化的硬掩模。该蚀刻工艺可以包括湿式化学蚀刻工艺或干式蚀刻工艺,例如反应离子蚀刻(RIE)。该蚀刻掩模26可以随后被移除。如果包括光刻胶,在后续的清洁过程中,该蚀刻掩模26可以通过灰化或溶剂剥离来移除。
参考图2,其中,类似的附图标记参照到类似图1的特征,该处理方法的后续制造阶段中,沟槽32、34在沟槽隔离区12内使用蚀刻工艺而以开口28、30的位置来界定。用于蚀刻沟槽隔离区12的介电材料的蚀刻工艺具有化学蚀刻选择性以比有源装置区14的半导体材料及介电层24更高的速率(即,选择性的)移除介电材料。该蚀刻工艺可以包括干式蚀刻工艺,例如反应离子蚀刻(RIE)。蚀刻工艺被定时,使得沟槽32、34延伸到沟槽隔离区12的深度d2小于深度d1。所以,沟槽32及34只是部分地延伸到沟槽隔离区12,而不是下层的衬底10。沟槽32、34与有源装置区14共同延伸而不穿透到其侧壁15。
参考图3,其中,类似的附图标记参照到类似图1的特征,该处理方法的后续制造阶段中,在沟槽32、34的初始部分蚀刻后,于沟槽32、34边界的侧壁上形成间隙壁36。一种各向异性蚀刻工艺可被用于保形介电层以形成间隙壁36。间隙壁36可以由电绝缘体构成,例如使用化学气相沉积的氮化硅(Si3N4)沉积。间隙壁36是在工艺流程中随后被移除的牺牲元件,因此,不存在于完成的装置结构中。
形成间隙壁36之后,在开口28、30的位置使用蚀刻工艺令沟槽32、34延伸进入沟槽隔离区12更大的深度。用于蚀刻沟槽隔离区12的介电材料的蚀刻工艺具有化学蚀刻选择性以比有源装置区14的半导体材料、间隙壁36及介电层24的介电材料更高的速率(即,选择性的)移除介电材料。该蚀刻工艺可以包括干式蚀刻工艺,例如反应离子蚀刻(RIE)。蚀刻工艺被定时,使得沟槽32、34延伸到沟槽隔离区12的深度d3小于深度d1但大于深度d2。所以,部分蚀刻的结果,沟槽32及34只是部分地延伸到沟槽隔离区12,而不是下层的衬底10。沟槽32、34是与有源装置区14共同延伸而不穿透到其侧壁15。
高能离子,如单头箭头38示意所示,利用离子植入引入到有源装置区14以形成有源装置区14的受损区40、42。离子轨迹利用沟槽32、34提供的入口而撞击(impinge)该有源装置区14的侧壁15,并且离子38以一范围且范围分散(range straggle)的方式穿透该有源装置区14在侧壁15下方的半导体材料。植入条件(例如,角度,离子能量,剂量)可以修改以调节受损区40、42的特征。在一个实施例中,离子38可以是氩气(Ar)的正离子,以选定的或特定的角度植入。在另一个实施例中,离子38可以是硅(Si)或锗(Ge)的正离子,以选定或指定的角度植入。如本文所用,术语“倾斜植入”指的是离子轨迹撞击有源装置区14的顶面的入射行进角度大于或小于0°,其中,0°表示衬底10顶面的正交(即,垂直)方向。离子38的离子轨迹也相对于有源装置区14的侧壁15成角度。受损区40、42可以使用链式植入(chainedimplants)(例如,以不同的能量及/或不同的物种(如,氩或锗)的多个离散植入)来形成,而且受损区40、42可以以不引入离子(包括电活性掺杂剂)到有源装置区14的半导体材料的方式来形成。
受损区40、42的晶体结构会因离子38的植入损伤而改变。受损区40、42的形状及它们在有源装置区14的穿透深度可藉由改变(但不限于)下列因素而受到控制,如植入角度及离子能量的植入条件、以及沟槽32、34的宽度及深度还有间隙壁36的位置。间隙壁36作为位于受损区40、42上方的部分有源装置区14的植入掩模,而沟槽隔离区12作为位于受损区40、42下面的部分有源装置区14的植入掩模。间隙壁36的位置是藉由控制延伸沟槽32、34到深度d2的初始部分蚀刻确定的。受损区40、42的厚度等于深度d2及深度d3之间的差,并藉由控制延伸沟槽32、34到深度d3的后续部分蚀刻而确立。受损区40、42横向延伸一指定宽度W从沟槽隔离区12的侧壁及有源装置区14的侧壁15进入有源装置区14的边界。
在离子植入之后,受损区40、42的晶体结构不同于有源装置区14的上覆、横向相邻以及下层的半导体材料的晶体结构。例如,受损区40、42的半导体材料可藉由离子植入的非晶化而变为非晶的,使得与有源装置区14中的单晶半导体材料相比,受损区40、42的半导体材料不存在有结晶度。受损区40、42的下面、上面以及横向受到有源装置区的单晶半导体材料14所限制。如以下讨论者,结晶度差异促使受损区40、42的半导体材料的蚀刻速率不同或氧化速度不同,允许受损区40、42在不引起有源装置区14的半导体材料改变的情况下进行修改。
参考图4,其中,类似的附图标记参照到类似图3的特征,该处理方法的后续制造阶段中,受损区40、42的受损半导体材料转换为介电材料,受损区40、42形成介电区44、46。受损区40、42可使用湿式或干式热氧化工艺转换成介电区44、46,并且介电区44、46可以包括二氧化硅。在一个实施例中,受损区40、42的受损半导体材料(例如,硅)的氧化速度高于有源装置区14的周围未损伤的半导体材料(例如,单晶硅)。介电区44、46横向穿透到有源装置区14中并且局部缩小该有源装置区14。
介电区44、46界定从沟槽隔离区12延伸到有源装置区14及集极18的第二掩埋隔离区。有源装置区14的区域48、49位于介电区44、46及有源装置区14的顶面之间。所以,该介电区44、46被掩埋在有源装置区14的顶面之下,并且可以以沟槽32、34的初始部分蚀刻期间设置的距离(例如,d2)与有源装置区14的顶面隔开。在一个实施例中,介电区44、46是由等于该距离的距离(例如,d2)与有源装置区14的顶面隔开。
介电区44、46的形状及尺寸都与受损区40、42的形状及尺寸有关,介电区44、46的高度是由部分蚀刻以及间隙壁36在沟槽32、34的位置所建立的,并与d2及d3之间的差异有关。在一个实施例中,介电区44、46的最上层的深度可位于深度d2而介电区44、46的最底部深度可位于深度d3,使得该介电区44、46相对于有源装置区14的顶面从深度d2垂直地延伸到深度d3。介电区44、46的宽度是与受损区40、42的宽度W有关,并且在一个实施例中,可以等于受损区40、42的宽度W。
在一个替代实施例中,受损区40、42可以被移除,如以下结合图6的说明,以及由介电材料代替以形成介电区44、46。介电区44、46的候选无机介电材料可以包括,但不限于,二氧化硅(SiO2)、掺氟硅玻璃(FSG)、及这些介电材料的组合。其特征在于,相比于二氧化硅的低介电常数。该介电区44、46可包括有机或无机介电材料,其可以是电绝缘体,特征是在室温下大于1010(Ω-m)的电阻率。或者,介电区44、46可包括低-k介电材料,其特征在于相对介电率或介电常数比二氧化硅约3.9的介电常数来得小。介电区44、46的候选低-k介电材料包括,但不限于,旋涂有机低-k介电材料(例如,旋涂聚合物树脂)及无机低-k介电材料(例如,有机硅酸酯玻璃,氢富集的碳氧化硅(SiCOH),及碳掺杂氧化物),以及这些及其它有机及无机介质的组合。
参考图5,其中,类似的附图标记参照到类似图4的特征,该处理方法的后续制造阶段中,间隙壁36从沟槽32、34中移除并且用电绝缘的固体介电材料填充沟槽32、34,使得沟槽隔离区12再次形成。在一个实施例中,用于沉积固体介电材料的保形沉积技术可以是使用硅烷或硅烷与氮气的混合物的任何一个硅源的低压化学汽相沉积(LPCVD)。在一个具体的实施例中,固体介电材料可以是藉由LPCVD沉积的硅的氧化物(例如SiO2)。覆盖顶面的固体介电材料可以被回蚀或化学机械抛光移除,而且介电层22、24可以藉由化学湿式蚀刻及/或干式蚀刻移除以恢复平坦性。
在有源装置区14的顶面形成基部层50。基部层50可以由与集极18不同的半导体材料构成,并且可以是与集极18相反的导电类型。介电区44、46,其具有与沟槽32、34的部分蚀刻相关的特定厚度以及深度d2及深度d3之间的数值差,且与基部层50有非接触的关系。
基部层50可以由半导体材料制成,例如硅锗(SiGe)的合金,其硅(Si)含量的范围从95原子百分比至50原子百分比而锗(Ge)含量的范围从5原子百分比至50原子百分比。基部层50的锗含量在其整个厚度可以是渐进及/或步进分布。基部层50的半导体材料可以包括掺杂剂,例如从周期表第III族(例如,硼)中选择的p型掺杂剂,其浓度能有效赋予p型导电性以及视需要地给予碳(C)以抑制p型掺杂剂的向外扩散。基部层50可以由使用低温外延(LTE)的生长工艺,如汽相外延(VPE)沉积的半导体材料层而形成。基部层50的厚度可以根据装置预期的应用选择较大的层厚度用于功率放大应用。
射极52位于在基部层50的顶面。射极52可由与基部层50不同的半导体材料构成,并且可以具有与基部层50相反的导电类型。例如,射极52可缺少锗,但其至少存在于基部层50的一部分。在一个代表性实施例中,射极52可以由半导体材料构成,例如硅,由化学气相沉积沉积而得,并且可以掺杂从周期表第V族(例如,磷(P)或砷(As))中选择的n型掺杂剂,其浓度能有效的赋予n型导电性。
射极52被非导电性间隙壁54所包围,该间隙壁54覆盖射极开口,射极开口被界定在位于基部层50的顶面上的一个或多个介电层56中。该间隙壁54形成在射极52形成之前。间隙壁54可以藉由沉积电绝缘体构成的共形层来形成,诸如藉由CVD沉积的氮化硅,以及用各向异性蚀刻工艺(如RIE)来为该共形层塑形,即优先移除水平表面的电绝缘体。射极52包括邻近间隙壁54且与间隙壁54共同延伸的外侧壁。
外质基极58在基部层50内形成。藉由引入相对于基部层50的剩余部分可以增加导电率的掺杂剂浓度,可以形成外质基极58。在一个实施例中,外质基极58的形成可以藉由离子植入,具体地说,相对于基部层50的剩余部分,藉由植入从周期表第III族(例如,硼)中选择的p型掺杂剂的离子而形成,其浓度可有效地提高p型的导电性水平。介电区44、46,位于外质基极58及有源装置区14的区域48、49的下方,可以减少来自外质基极58的掺杂剂扩散通过有源装置区14的区域48、49,进入在该有源装置区14的集极18。
在一个替代实施例中,位于外质基极58下面的有源装置区14的区域48、49,可以故意掺杂选自周期表第III族的掺杂剂(例如,硼),其浓度可有效地赋予p型导电性。导入区域48、49的半导体材料中的p型导电性与有源装置区14的区域48、49的初始n型半导体材料不同。该掺杂剂可以藉由离子植入来引入,在不提高集极-基极寄生电容的情况下,可以有效地降低基极电阻进而提高装置效率。就效果而言,基极电阻的降低与集极-基极寄生电容的任何增加脱钩,可以促使这些不同且经常竞争的装置性能的度量指针独立优化。植入区域48、49可以成为装置结构中本质基极与外质基极之间的连接区的一部分。
由该处理方法的制造阶段所形成的双极结晶体管的装置结构60的特征在于垂直架构,其包括射极52、集极18、以及位在射极52与集极18之间藉由基部层50的中心部分所界定的本质基极62。该本质基极62与集极18沿一个p-n结共同延伸,且射极52与本质基极62沿另一个p-n结共同延伸。外质基极58与本质基极62耦合以建立电接触。如果集极18、射极52、及本质基极62中的两个或全部三个是由不同能带隙的半导体材料所构成,则双极结晶体管可具有异质结双极晶体管(heterojunction bipolar transistor,HBT)的特点。
装置结构60不包括在其结构上凸起的外质基极。该介电区44、46位在射极52与基部层50之间的界面下方以特定的距离隔开。该特定的距离与沟槽32、34的初始部分蚀刻的深度d2有直接关系。
在制造过程中的前段(front-end-of-line,FEOL)部分,可横跨基底10的至少一部分的表面区域复制装置结构60。在BiCMOS集成电路中,互补金属氧化物-半导体(CMOS)晶体管可以用衬底10的其他区域来形成。结果就是可以提供双极结晶体管(或异质结双极晶体管)及CMOS晶体管共同位于同一衬底10上。
标准的中段(middle-of-line,MOL)工艺与后段(back-end-of-line,BEOL)工艺如下,其中,包括形成介电层、过孔插塞及接线用于互连结构与装置结构60的耦合,以及用于附加装置结构60的其它类似接触,还有任何可以被包括制造在衬底10上的其他电路中的CMOS晶体管。
参考图6,其中,类似的附图标记参照到类似图5的特征,根据本发明的替代实施例的处理方法的后续制造阶段中,介电区44、46(图5)可以由以气隙(air gap)70、72形式的介电区取代,这是藉由移除受损区40、42的受损半导体材料,代替氧化受损区40、42(图3),在受损区40、42形成。在一个实施例中,受损区40、42可以利用蚀刻工艺使用比有源装置区14周围未损的半导体材料(例如,单晶硅)更高的蚀刻速率将受损半导体材料(例如,硅)移除。与介电区44、46一样,气隙70、72侧向渗透到有源装置区14有效地作为沟槽隔离区12的横向延伸,并局部地缩小有源装置区14。气隙70、72的特征可以藉由一个有效介电率或接近一致的介电常数(真空介电率)来表示,或是可以在大气压力或接近大气压力下填充空气,或是可以在大气压力或接近大气压力下填充另一种气体,或是可以在低于大气压的压力(例如,部分真空)下包含空气或其它气体。
藉由定向或非共形沉积工艺所沉积的介电材料来填充沟槽32、34,使得气隙70、72得以保留。该介电材料包括电绝缘体,以便重新形成沟槽隔离区12及关闭气隙70、72。在一个实施例中,介电材料可由沉积的二氧化硅构成,该二氧化硅是藉由等离子体增强化学气相沉积(PECVD)沉积的硅的氧化物(例如SiO2)。包括介电区44、46的气隙各代表没有介电材料的空的空间。
该方法与图5结合持续描述。包括介电区的气隙70、72因此形成在基部层50形成之前,其允许围绕气隙70、72的受损表面在基部层50生长之前被修复及钝化。
如上所述的方法用于制造集成电路芯片。所得的集成电路芯片可以藉由制造者以原始芯片形式(例如,具有多个未封装芯片的单一芯片),以裸芯片或以封装的形式进行散布。在后一种情况下,芯片被安装在单个芯片封装内(例如,塑料载体,具有固定到母板或其他更高级别的载体的引线)或在多芯片封装内(例如,陶瓷载体,具有表面互连或掩埋互连中的任一个或两者皆有)。在任何情况下,芯片接着与其它芯片、离散电路元件及/或其它信号处理装置集成,作为(a)中间产品,诸如母板,或者(b)最终产品的一部分。最终产品可以是包括集成电路芯片的任何产品,范围从玩具及其他低端应用到具有显示器的高级计算器产品、键盘或其他输入设备以及中央处理器。
一个特征与另一个元件“连接”或“耦合”可以直接连接或耦合到其他元件,或者是相反的,可以存在一个或多个中间元件。如果中间元件不存在,一个特征可被“直接连接”或“直接耦合”到另一元件。如果至少存在一个中间元件,一个特征可被“间接连接”或“间接耦合”到另一元件。
本发明的各种实施例的描述是基于说明的目的,但并非意在穷举或限制所公开的实施例。对于本领域的普通技术人员,许多修改及变化将不脱离所描述实施例的范围及精神是显而易见的。本文选择所用的术语以最好地解释实施例的原理,在市场中发现的实际应用或技术改进过的技术,或使普通技术人员能够理解在此公开的实施例。

Claims (18)

1.一种制造半导体装置结构的方法,该方法包括:
形成沟槽隔离区,该沟槽隔离区沿着侧壁环绕有源装置区,其中,该有源装置区由半导体材料构成;以及
形成介电区,该介电区从该有源装置区的该侧壁横向延伸进入该有源装置区,
其中,该介电区位于该有源装置区的顶面之下,使得该有源装置区的一部分位于该顶面及该介电区之间,以及
其中,形成从该有源装置区的该侧壁横向延伸进入到该有源装置区的该介电区包括:
形成沟槽,该沟槽部分地延伸穿过与该有源装置区的该侧壁的一部分共同延伸的该沟槽隔离区;以及
形成在该半导体材料内的受损区,该受损区位于该有源装置区的该侧壁的该部分的下方。
2.如权利要求1所述的方法,其中,形成从该有源装置区的该侧壁横向延伸进入该有源装置区的该介电区更包括:
以选择性蚀刻工艺移除该受损区,该选择性蚀刻工艺使用比周围的半导体材料更高的蚀刻速率移除该受损区,
其中,该介电区包括气隙。
3.如权利要求2所述的方法,更包括:
该受损区被移除后,使用保留并关闭该气隙的定向沉积工艺填充介电材料至该沟槽。
4.如权利要求1所述的方法,其中,形成从该有源装置区的该侧壁横向延伸进入该有源装置区的该介电区更包括:
以氧化工艺将该有源装置区的该受损区转换为第一介电材料。
5.如权利要求4所述的方法,更包括:
该受损区被转换成该第一介电材料之后,用第二介电材料填充该沟槽。
6.如权利要求1所述的方法,其中,形成在该半导体材料内的受损区,该受损区位于该有源装置区的该侧壁的该部分的下方包括:
向该有源装置区的该侧壁的该部分的下方的该半导体材料植入离子,该离子具有被引导到该沟槽的离子轨迹。
7.如权利要求6所述的方法,其中,该离子轨迹相对于该有源装置区的该顶面以及该有源装置区的该侧壁成角度。
8.如权利要求1所述的方法,其中,形成该沟槽,该沟槽部分地延伸穿过该沟槽隔离区,该沟槽隔离区与该有源装置区的该侧壁的一部分共同延伸,包括:
在该沟槽隔离区蚀刻该沟槽至第一深度;
在该有源装置区的该侧壁铺设间隙壁于该第一深度上方;以及
铺设该间隙壁后,在该沟槽隔离区蚀刻该沟槽至第二深度,该第二深度大于该第一深度,以露出该有源装置区的该侧壁在该第一深度及该第二深度之间的该部分。
9.如权利要求8所述的方法,其中,形成在该半导体材料内的受损区,该受损区位于该有源装置区的该侧壁的该部分的下方包括:
向该有源装置区的该侧壁的该部分的下方的该半导体材料植入离子,该离子具有被引导到该沟槽的离子轨迹。
10.如权利要求9所述的方法,其中,该离子轨迹是相对于该有源装置区的该顶面以及该有源装置区的该侧壁成角度。
11.如权利要求1所述的方法,包括:
引入掺杂剂到该有源装置区中位于该顶面及该介电区之间的该部分。
12.如权利要求11所述的方法,其中,该有源装置区是由具有第一导电性类型的半导体材料构成,并引入该掺杂剂到该有源装置区中位于该顶面及该介电区之间的该部分:
植入与该第一导电类型不同的第二导电类型的离子到该有源装置区的该部分。
13.如权利要求1所述的方法,包括
在形成该介电区之后,在该有源装置区上形成基部层。
14.如权利要求13所述的方法,包括:
将掺杂剂引入该基部层的一部分,覆盖该有源装置区的该部分,以界定外质基极。
15.一种用于异质结双极晶体管的半导体装置结构,该半导体装置结构使用半导体衬底制作,该半导体装置结构包括:
沟槽隔离区,其位于该半导体衬底内;
有源装置区,该有源装置区具有顶面及与该沟槽隔离区共同延伸的侧壁,该有源装置区由该半导体衬底的一部分构成;
基部层,包含安排在该有源装置区的该顶面上方的外质基极;以及
介电区,该介电区从该有源装置区的该侧壁横向延伸进入该有源装置区,该介电区位于该有源装置区的顶面之下,使得该有源装置区的一部分位于该顶面及该介电区之间,
其中,该有源装置区是由具有第一导电类型的半导体材料构成,该有源装置区包括位于该有源装置区的该顶面及该介电区之间的掺杂部分,且该有源装置区的该掺杂部分是由与该第一导电类型不同的第二导电类型的该半导体材料所构成。
16.如权利要求15所述的半导体装置结构,其中,该有源装置区是由半导体材料构成,该沟槽隔离区包括与该侧壁的一部分共同延伸的沟槽,并且该沟槽以介电材料填充。
17.如权利要求15所述的半导体装置结构,其中,该介电区包括气隙。
18.如权利要求15所述的半导体装置结构,其中,该介电区由固体介电材料构成。
CN201610465839.1A 2015-06-23 2016-06-23 在有源装置区中具有埋入介电区的双极结晶体管 Active CN106298896B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/747,668 US9722057B2 (en) 2015-06-23 2015-06-23 Bipolar junction transistors with a buried dielectric region in the active device region
US14/747,668 2015-06-23

Publications (2)

Publication Number Publication Date
CN106298896A CN106298896A (zh) 2017-01-04
CN106298896B true CN106298896B (zh) 2019-05-21

Family

ID=57602835

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610465839.1A Active CN106298896B (zh) 2015-06-23 2016-06-23 在有源装置区中具有埋入介电区的双极结晶体管

Country Status (3)

Country Link
US (1) US9722057B2 (zh)
CN (1) CN106298896B (zh)
TW (1) TWI594329B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177716B2 (en) * 2015-10-22 2019-01-08 Skyworks Solutions, Inc. Solder bump placement for emitter-ballasting in flip chip amplifiers
CN107342319B (zh) * 2017-06-21 2019-12-10 燕山大学 一种复合应变Si/SiGe异质结双极晶体管及其制备方法
US10461152B2 (en) 2017-07-10 2019-10-29 Globalfoundries Inc. Radio frequency switches with air gap structures
US10833153B2 (en) 2017-09-13 2020-11-10 Globalfoundries Inc. Switch with local silicon on insulator (SOI) and deep trench isolation
US10224423B1 (en) 2017-10-13 2019-03-05 STMircoelectronics (Crolles 2) SAS Heterojunction bipolar transistor and method of manufacturing the same
US10186605B1 (en) * 2017-10-13 2019-01-22 Stmicroelectronics (Crolles 2) Sas Cyclic epitaxy process to form air gap isolation for a bipolar transistor
WO2019139617A1 (en) * 2018-01-12 2019-07-18 Intel Corporation Heterojunction bipolar transistors having lateral growth structures
US10446643B2 (en) 2018-01-22 2019-10-15 Globalfoundries Inc. Sealed cavity structures with a planar surface
US10818772B2 (en) * 2018-04-24 2020-10-27 Globalfoundries Inc. Heterojunction bipolar transistors with an inverted crystalline boundary in the base layer
FR3087048B1 (fr) 2018-10-08 2021-11-12 St Microelectronics Sa Transistor bipolaire
FR3087047B1 (fr) 2018-10-08 2021-10-22 St Microelectronics Sa Transistor bipolaire
US11410872B2 (en) 2018-11-30 2022-08-09 Globalfoundries U.S. Inc. Oxidized cavity structures within and under semiconductor devices
US10923577B2 (en) 2019-01-07 2021-02-16 Globalfoundries U.S. Inc. Cavity structures under shallow trench isolation regions
US11127816B2 (en) 2020-02-14 2021-09-21 Globalfoundries U.S. Inc. Heterojunction bipolar transistors with one or more sealed airgap
FR3113539B1 (fr) 2020-08-24 2022-09-23 St Microelectronics Crolles 2 Sas Transistor bipolaire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964907B1 (en) * 2003-11-17 2005-11-15 National Semiconductor Corporation Method of etching a lateral trench under an extrinsic base and improved bipolar transistor
CN1787222A (zh) * 2004-12-09 2006-06-14 台湾积体电路制造股份有限公司 降低或消除漏电的半导体结构及方法
CN101228616A (zh) * 2005-07-22 2008-07-23 加利福尼亚大学董事会 用于控制硅锗缓冲层中的位错位置的方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470852A (en) 1982-09-03 1984-09-11 Ncr Corporation Method of making CMOS device and contacts therein by enhanced oxidation of selectively implanted regions
JPH01274470A (ja) * 1988-04-26 1989-11-02 Nec Corp バイポーラ・トランジスタ装置及びその製造方法
US6680522B1 (en) * 1999-01-11 2004-01-20 Nec Electronics Corporation Semiconductor device with reduced electrical variation
US6144086A (en) 1999-04-30 2000-11-07 International Business Machines Corporation Structure for improved latch-up using dual depth STI with impurity implant
DE10104776A1 (de) * 2001-02-02 2002-08-22 Infineon Technologies Ag Bipolartransistor und Verfahren zu dessen Herstellung
US6380017B1 (en) * 2001-06-15 2002-04-30 National Semiconductor Corporation Polysilicon-edge, base-emitter super self-aligned, low-power, high-frequency bipolar transistor and method of forming the transistor
US6703685B2 (en) * 2001-12-10 2004-03-09 Intel Corporation Super self-aligned collector device for mono-and hetero bipolar junction transistors
JP3755658B2 (ja) 2002-05-30 2006-03-15 横河電機株式会社 Hbtの製造方法
US6858532B2 (en) * 2002-12-10 2005-02-22 International Business Machines Corporation Low defect pre-emitter and pre-base oxide etch for bipolar transistors and related tooling
US6864560B2 (en) 2003-03-28 2005-03-08 International Business Machines Corporation Bipolar transistor structure with a shallow isolation extension region providing reduced parasitic capacitance
US6809024B1 (en) * 2003-05-09 2004-10-26 International Business Machines Corporation Method to fabricate high-performance NPN transistors in a BiCMOS process
TWI250640B (en) * 2003-06-19 2006-03-01 Samsung Electronics Co Ltd Bipolar junction transistors and methods of manufacturing the same
JP4643130B2 (ja) * 2003-06-19 2011-03-02 株式会社日立製作所 半導体装置およびその製造方法
US6958516B2 (en) 2004-01-08 2005-10-25 International Business Machines Corporation Discriminative SOI with oxide holes underneath DC source/drain
US7037798B2 (en) * 2004-01-09 2006-05-02 International Business Machines Corporation Bipolar transistor structure with self-aligned raised extrinsic base and methods
US7265018B2 (en) * 2004-09-21 2007-09-04 International Business Machines Corporation Method to build self-aligned NPN in advanced BiCMOS technology
US7288829B2 (en) * 2004-11-10 2007-10-30 International Business Machines Corporation Bipolar transistor with self-aligned retrograde extrinsic base implant profile and self-aligned silicide
US7396732B2 (en) * 2004-12-17 2008-07-08 Interuniversitair Microelektronica Centrum Vzw (Imec) Formation of deep trench airgaps and related applications
KR100580115B1 (ko) * 2004-12-31 2006-05-12 동부일렉트로닉스 주식회사 자기 정렬 쌍극자 반도체 소자 및 제작 방법
US7170083B2 (en) * 2005-01-07 2007-01-30 International Business Machines Corporation Bipolar transistor with collector having an epitaxial Si:C region
US7071047B1 (en) 2005-01-28 2006-07-04 International Business Machines Corporation Method of forming buried isolation regions in semiconductor substrates and semiconductor devices with buried isolation regions
GB2425400A (en) * 2005-04-18 2006-10-25 X Fab Semiconductor Foundries Improvements in transistor manufacture
US7342293B2 (en) * 2005-12-05 2008-03-11 International Business Machines Corporation Bipolar junction transistors (BJTS) with second shallow trench isolation (STI) regions, and methods for forming same
US7888745B2 (en) * 2006-06-21 2011-02-15 International Business Machines Corporation Bipolar transistor with dual shallow trench isolation and low base resistance
US7521772B2 (en) 2006-11-08 2009-04-21 International Business Machines Corporation Monocrystalline extrinsic base and emitter heterojunction bipolar transistor and related methods
US9041149B2 (en) 2008-08-19 2015-05-26 Nxp, B.V. Gringo heterojunction bipolar transistor with a metal extrinsic base region
US8129234B2 (en) * 2009-09-09 2012-03-06 International Business Machines Corporation Method of forming bipolar transistor integrated with metal gate CMOS devices
EP2372754B1 (en) * 2010-04-01 2018-03-14 Nxp B.V. Spacer formation in the fabrication of planar bipolar transistors
CN102456727A (zh) 2010-10-25 2012-05-16 上海华虹Nec电子有限公司 低集电极/基极电容SiGe异质结双极晶体管结构及制造方法
EP2458624A1 (en) * 2010-11-26 2012-05-30 Nxp B.V. Heterojunction Bipolar Transistor Manufacturing Method and Integrated Circuit Comprising a Heterojunction Bipolar Transistor
US20130277804A1 (en) * 2012-04-20 2013-10-24 International Business Machines Corporation Bipolar junction transistors with reduced base-collector junction capacitance
US20130313614A1 (en) * 2012-05-22 2013-11-28 Tsinghua University METAL SILICIDE SELF-ALIGNED SiGe HETEROJUNCTION BIPOLAR TRANSISTOR AND METHOD OF FORMING THE SAME
US8927379B2 (en) * 2012-09-26 2015-01-06 International Business Machines Corporation Method to bridge extrinsic and intrinsic base by selective epitaxy in BiCMOS technology
US9093491B2 (en) 2012-12-05 2015-07-28 International Business Machines Corporation Bipolar junction transistors with reduced base-collector junction capacitance
US8975146B2 (en) 2013-05-01 2015-03-10 International Business Machines Corporation Trench isolation structures and methods for bipolar junction transistors
US8946861B2 (en) * 2013-06-11 2015-02-03 International Business Machines Corporation Bipolar device having a monocrystalline semiconductor intrinsic base to extrinsic base link-up region
US9231074B2 (en) * 2013-07-19 2016-01-05 Globalfoundries Inc. Bipolar junction transistors with an air gap in the shallow trench isolation
US8957456B1 (en) 2013-07-31 2015-02-17 International Business Machines Corporation Heterojunction bipolar transistors with reduced parasitic capacitance
US9761701B2 (en) * 2014-05-01 2017-09-12 Infineon Technologies Ag Bipolar transistor
US9245951B1 (en) * 2014-09-16 2016-01-26 Globalfoundries Inc. Profile control over a collector of a bipolar junction transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964907B1 (en) * 2003-11-17 2005-11-15 National Semiconductor Corporation Method of etching a lateral trench under an extrinsic base and improved bipolar transistor
CN1787222A (zh) * 2004-12-09 2006-06-14 台湾积体电路制造股份有限公司 降低或消除漏电的半导体结构及方法
CN101228616A (zh) * 2005-07-22 2008-07-23 加利福尼亚大学董事会 用于控制硅锗缓冲层中的位错位置的方法

Also Published As

Publication number Publication date
CN106298896A (zh) 2017-01-04
US20160380088A1 (en) 2016-12-29
TW201703154A (zh) 2017-01-16
US9722057B2 (en) 2017-08-01
TWI594329B (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
CN106298896B (zh) 在有源装置区中具有埋入介电区的双极结晶体管
US9368608B1 (en) Heterojunction bipolar transistor with improved performance and breakdown voltage
TWI601289B (zh) 具有多個射極指之雙極性接面電晶體
US9553145B2 (en) Lateral bipolar junction transistors on a silicon-on-insulator substrate with a thin device layer thickness
US8603885B2 (en) Flat response device structures for bipolar junction transistors
CN106257685B (zh) 针对具有高电阻操作晶圆的绝缘体上硅衬底的装置结构
CN107316889B (zh) 双极结型晶体管的紧凑器件结构
US9496377B2 (en) Self-aligned emitter-base-collector bipolar junction transistors with a single crystal raised extrinsic base
US20150021738A1 (en) Bipolar junction transistors with an air gap in the shallow trench isolation
TWI636569B (zh) 自對準與非自對準之異質接面雙極電晶體的共整
US9349845B2 (en) Self-aligned bipolar junction transistors
US9356097B2 (en) Method of forming a bipolar transistor with maskless self-aligned emitter
US9087868B2 (en) Bipolar junction transistors with self-aligned terminals
US10833072B1 (en) Heterojunction bipolar transistors having bases with different elevations
US10217852B1 (en) Heterojunction bipolar transistors with a controlled undercut formed beneath the extrinsic base
CN107026196B (zh) 具有外质装置区无沟槽隔离的双极性接面晶体管
US9590082B1 (en) Integration of heterojunction bipolar transistors with different base profiles
TWI711117B (zh) 異質接面雙極性電晶體及形成異質接面雙極性電晶體之方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210329

Address after: California, USA

Patentee after: Lattice chip (USA) integrated circuit technology Co.,Ltd.

Address before: Greater Cayman Islands, British Cayman Islands

Patentee before: GLOBALFOUNDRIES Inc.