CN106279679A - 聚1‑萘胺/BaFe12O19铁氧体复合材料的制备方法 - Google Patents

聚1‑萘胺/BaFe12O19铁氧体复合材料的制备方法 Download PDF

Info

Publication number
CN106279679A
CN106279679A CN201610655616.1A CN201610655616A CN106279679A CN 106279679 A CN106279679 A CN 106279679A CN 201610655616 A CN201610655616 A CN 201610655616A CN 106279679 A CN106279679 A CN 106279679A
Authority
CN
China
Prior art keywords
bafe
pna
composite material
solution
weigh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610655616.1A
Other languages
English (en)
Inventor
潘忠宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610655616.1A priority Critical patent/CN106279679A/zh
Publication of CN106279679A publication Critical patent/CN106279679A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)

Abstract

聚1‑萘胺/ BaFe12O19铁氧体复合材料的制备方法,先制备BaFe12O19,再制备PNA及PNA/BaFe12O19复合材料,称取1.59‑1.82g的BaFe12O19和0.58‑0.64NA单体加入至含0.15mol/L的稀盐酸的三口烧瓶中,超声20min后;称取2.49g过硫酸铵溶解于20mL稀盐酸里,用滴液漏斗缓慢滴加到上述混合溶液中,维持温度在0℃,搅拌反应10h,待反应结束后,洗涤产物至滤液无色,滤饼于55‑58℃真空干燥18‑20h,制得PNA/BaFe12O19纳米复合材料。本发明的有益效果是:合成工艺简单,生产成本较低,可重复性好。

Description

聚1-萘胺/BaFe12O19铁氧体复合材料的制备方法
技术领域
本发明涉及材料合成方法,具体的是聚1-萘胺/BaFe12O19铁氧体复合材料的制备方法。
背景技术
聚苯胺是目前研究最为广泛的一种导电聚合物,具有密度低、电导率可控、结构设计空间大和环境稳定性好等特点, 在超级电容器、能源储存和柔性电子器件等领域具有广阔的应用前景。聚1-萘胺(PNA)是聚苯胺的衍生物,与聚 苯胺相比,其分子中含有更大的π-共轭结构,因此它在电化学、有机合成、生物化学等领域中有着重要的应用。例如,Ameen等采用原位聚合法分别制备了Tio2/PNA、Sio2/PNA复合材料,并考察了两种复合材料对亚甲基蓝染料 的光降解催化活性。Liu通过将PNA修饰的碳电极浸入硫酸镍溶液中制得PNA/Ni改性碳电极,结果发现该电极对甲醛具有良好的催化氧化能力。磁铅石 M 型铁氧体BaFe12O19具有低成本、合适的饱和磁化强度、高磁矫顽力及良好的化学稳定性等特点,目前广泛用于永久磁铁、高密度磁记录媒介质和微波吸收等领域。 因此,将导电高分子与铁氧体纳米粒子复合制备的复合材料有望兼具导电高分子的低密度、优良的加工性能和铁氧体纳米粒子的力学和磁性能。
发明内容
本发明所要解决的技术问题在于提供聚1-萘胺/ BaFe12O19铁氧体复合材料的制备方法,提供一种新的合成方法。
本发明采用的合成方法,包括如下步骤:
a、先制备BaFe12O19,称取1.5份(重量份数,下同)Fe(NO·9H0、0.85份Ba(NO溶解在去离子水中配制成硝酸盐溶液,称取2.35份柠檬酸加入水中,搅拌溶解得无色透明溶液,将硝酸盐溶液和柠檬酸溶液均匀混合后缓慢滴加氨水直至溶液pH至7,然后置于80℃水浴加热,得到粘稠状湿凝胶,将湿凝胶置于105-115℃的干燥箱中保温20h后变为干凝胶,最后将干凝胶进行加热自蔓延燃烧后继续升温至750-780℃下保温3-3.5h,随炉冷却即可获得疏松树枝状的产物。
b、制备PNA及PNA/BaFe12O19复合材料,称取1.59-1.82g的BaFe12O19和0.58-0.64NA单体加入至含0.15mol/L的稀盐酸的三口烧瓶中,超声20min后;称取2.49g过硫酸铵溶解于20mL稀盐酸里,用滴液漏斗缓慢滴加到上述混合溶液中,维持温度在0℃,搅拌反应10h,待反应结束后,洗涤产物至滤液无色,滤饼于55-58℃真空干燥18-20h,制得PNA/BaFe12O19纳米复合材料。
本发明的有益效果是:合成工艺简单,生产成本较低,可重复性好。
具体实施方式
以下结合实例进一步说明本发明的内容,由技术常识可知,本发明也可通过其它的不脱离本发明技术特征的方案来描述,因此所有在本发明范围内或等同本发明范围内的改变均被本发明包含。
实施例1:
先制备BaFe12O19,称取1.5份(重量份数,下同)Fe(NO·9H0、0.85份Ba(NO溶解在去离子水中配制成硝酸盐溶液,称取2.35份柠檬酸加入水中,搅拌溶解得无色透明溶液,将硝酸盐溶液和柠檬酸溶液均匀混合后缓慢滴加氨水直至溶液pH至7,然后置于80℃水浴加热,得到粘稠状湿凝胶,将湿凝胶置于105℃的干燥箱中保温20h后变为干凝胶,最后将干凝胶进行加热自蔓延燃烧后继续升温至750℃下保温3h,随炉冷却即可获得疏松树枝状的产物。
制备PNA及PNA/BaFe12O19复合材料,称取1.59g的BaFe12O19和0.58NA单体加入至含0.15mol/L的稀盐酸的三口烧瓶中,超声20min后;称取2.49g过硫酸铵溶解于20mL稀盐酸里,用滴液漏斗缓慢滴加到上述混合溶液中,维持温度在0℃,搅拌反应10h,待反应结束后,洗涤产物至滤液无色,滤饼于55℃真空干燥18h,制得PNA/BaFe12O19纳米复合材料。
实施例2:
先制备BaFe12O19,称取1.5份(重量份数,下同)Fe(NO·9H0、0.85份Ba(NO溶解在去离子水中配制成硝酸盐溶液,称取2.35份柠檬酸加入水中,搅拌溶解得无色透明溶液,将硝酸盐溶液和柠檬酸溶液均匀混合后缓慢滴加氨水直至溶液pH至7,然后置于80℃水浴加热,得到粘稠状湿凝胶,将湿凝胶置于115℃的干燥箱中保温20h后变为干凝胶,最后将干凝胶进行加热自蔓延燃烧后继续升温至780℃下保温3.5h,随炉冷却即可获得疏松树枝状的产物。
2、制备PNA及PNA/BaFe12O19复合材料,称取1.82g的BaFe12O19和0.64NA单体加入至含0.15mol/L的稀盐酸的三口烧瓶中,超声20min后;称取2.49g过硫酸铵溶解于20mL稀盐酸里,用滴液漏斗缓慢滴加到上述混合溶液中,维持温度在0℃,搅拌反应10h,待反应结束后,洗涤产物至滤液无色,滤饼于58℃真空干燥20h,制得PNA/BaFe12O19纳米复合材料。
采用溶胶凝胶-自蔓延燃烧法制备了BaFe12O19铁氧体,以盐酸为掺杂剂、过硫酸铵为氧化剂,通过原位聚合法合成了PNA/BaFe12O19纳米复合材料。SEM结果表明:BaFe12O19铁氧体呈棒状纳米颗粒,长径比约为5.2∶1;TEM 表明:PNA/BaFe12O19纳米复合材料具有明显的核-壳结构, BaFe12O19表面 被PNA 高分子链包覆。红外光谱和紫外吸收光谱表明:BaFe12O19纳米粒子与PNA基体之间存在较强的界面相互作用。BaFe12O19的矫顽力(Hc)、饱和磁化强度(Ms)、剩余磁化 强度(Mr)分别为3560.01 Oe、56.68emu/g、34.18emu/g,然而聚1-萘胺包覆后, PNA/BaFe12O19纳米复合材料的饱和磁化强度Ms、剩余磁化强度Mr 均明显减小,而且随着铁氧体含量的增加,Ms、Mr均有一定程度的增加。此外,复合材料的Hc较纯钡铁氧体有所增大,且随着铁氧体含量增加而增大。因此,该研究有望应用于电化学、光催化、微波吸收和电磁屏蔽等领域。

Claims (1)

1.聚1-萘胺/ BaFe12O19铁氧体复合材料的制备方法,包括如下步骤:
a、先制备BaFe12O19,称取1.5份(重量份数,下同)Fe(NO·9H0、0.85份Ba(NO溶解在去离子水中配制成硝酸盐溶液,称取2.35份柠檬酸加入水中,搅拌溶解得无色透明溶液,将硝酸盐溶液和柠檬酸溶液均匀混合后缓慢滴加氨水直至溶液pH至7,然后置于80℃水浴加热,得到粘稠状湿凝胶,将湿凝胶置于105-115℃的干燥箱中保温20h后变为干凝胶,最后将干凝胶进行加热自蔓延燃烧后继续升温至750-780℃下保温3-3.5h,随炉冷却即可获得疏松树枝状的产物;
b、制备PNA及PNA/BaFe12O19复合材料,称取1.59-1.82g的BaFe12O19和0.58-0.64NA单体加入至含0.15mol/L的稀盐酸的三口烧瓶中,超声20min后;称取2.49g过硫酸铵溶解于20mL稀盐酸里,用滴液漏斗缓慢滴加到上述混合溶液中,维持温度在0℃,搅拌反应10h,待反应结束后,洗涤产物至滤液无色,滤饼于55-58℃真空干燥18-20h,制得PNA/BaFe12O19纳米复合材料。
CN201610655616.1A 2016-08-11 2016-08-11 聚1‑萘胺/BaFe12O19铁氧体复合材料的制备方法 Pending CN106279679A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610655616.1A CN106279679A (zh) 2016-08-11 2016-08-11 聚1‑萘胺/BaFe12O19铁氧体复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610655616.1A CN106279679A (zh) 2016-08-11 2016-08-11 聚1‑萘胺/BaFe12O19铁氧体复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN106279679A true CN106279679A (zh) 2017-01-04

Family

ID=57668421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610655616.1A Pending CN106279679A (zh) 2016-08-11 2016-08-11 聚1‑萘胺/BaFe12O19铁氧体复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106279679A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654144A (zh) * 2005-02-07 2005-08-17 武汉理工大学 自燃烧法合成钡铁氧体微粉的方法
CN102964595A (zh) * 2012-11-12 2013-03-13 南昌航空大学 一种钡镁铁氧体/sdbs改性碳纳米管/聚吡咯复合吸波材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654144A (zh) * 2005-02-07 2005-08-17 武汉理工大学 自燃烧法合成钡铁氧体微粉的方法
CN102964595A (zh) * 2012-11-12 2013-03-13 南昌航空大学 一种钡镁铁氧体/sdbs改性碳纳米管/聚吡咯复合吸波材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张玉富 等: "聚1-萘胺/BaFe12O19铁氧体复合材料的制备及磁性能研究", 《化工新型材料》 *

Similar Documents

Publication Publication Date Title
Ma et al. Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol
Zhu et al. A facile and flexible process of β-cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host–guest inclusion studies
Lin et al. Growth–dissolution–regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions
Sun et al. Synthesis of Fe3O4‐Au nanocomposites with enhanced peroxidase‐like activity
Yang et al. Magnetic single-enzyme nanoparticles with high activity and stability
CN101530923B (zh) 一种铁镍铂合金纳米棒的制备方法
CN104045336B (zh) 镍铁氧体磁性纳米纤维材料的制备方法
Gabal et al. Structural, thermal, magnetic and electrical properties of polyaniline/CoFe 2 O 4 nano-composites with special reference to the dye removal capability
Qi et al. Study of self-assembly of octahedral magnetite under an external magnetic field
CN102489252A (zh) 酸改性碳纳米管负载四氧化三铁纳米晶体及其制备方法
CN107200361A (zh) 一种rGO/Fe2O3纳米复合材料的制备方法
CN102923785A (zh) CoFe2O4磁性纳米材料的制备方法
Ramzannezhad et al. Fabrication of magnetic nanorods and their applications in medicine
CN101786601B (zh) Fe3O4/CoO核壳结构复合纳米粒子的制备方法
CN105148837B (zh) 一种以碳纳米管为芯、四氧化三铁为壳的复合材料及其制备方法
CN104096836A (zh) 一种石墨烯包覆磁性纳米镍粒子及其制备方法
Singh et al. Covalent surface modification of nickel ferrite nanoparticles for electrochemical supercapacitor performance
Lu et al. TiO2/Fe2O3/CNTs magnetic photocatalyst: a fast and convenient synthesis and visible‐light‐driven photocatalytic degradation of tetracycline
Shi et al. Synthesis and properties of Fe3O4/polyaniline and its tiny magnetic field functions during oxygen transfer processes
CN102295454B (zh) 一种制备铁氧体纳米粉体的微反应系统和制备方法
CN106279679A (zh) 聚1‑萘胺/BaFe12O19铁氧体复合材料的制备方法
CN103130937A (zh) 一种pam包覆的四氧化三铁功能化纳米材料的制备方法
CN102964496B (zh) 一种聚苯乙烯-钴铁氧体磁性纳米复合材料的制备方法
CN102976418B (zh) 一种羧基化铁酸钴磁性纳米粒子的制备方法
CN104900364A (zh) 超顺磁性Fe3O4/APTES复合纳米粒子及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170104

WD01 Invention patent application deemed withdrawn after publication