CN106271034B - 包层第一壁等温正反复合挤压和真空扩散焊复合制造方法 - Google Patents

包层第一壁等温正反复合挤压和真空扩散焊复合制造方法 Download PDF

Info

Publication number
CN106271034B
CN106271034B CN201610872498.XA CN201610872498A CN106271034B CN 106271034 B CN106271034 B CN 106271034B CN 201610872498 A CN201610872498 A CN 201610872498A CN 106271034 B CN106271034 B CN 106271034B
Authority
CN
China
Prior art keywords
component
shaped part
wall
covering
isothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610872498.XA
Other languages
English (en)
Other versions
CN106271034A (zh
Inventor
李萍
薛克敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201610872498.XA priority Critical patent/CN106271034B/zh
Publication of CN106271034A publication Critical patent/CN106271034A/zh
Application granted granted Critical
Publication of CN106271034B publication Critical patent/CN106271034B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/14Preventing or minimising gas access, or using protective gases or vacuum during welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

本发明公开了一种包层第一壁等温正反复合挤压和真空扩散焊复合制造方法,其特征是首先将初始横截面为矩形的板坯通过弯曲成形为预成形U形件;然后对于预成形U形件,采用等温精密塑性成形工艺正反复合挤压成形为双向敞口的H型截面U形件作为第一构件;对于预成形U形件采用等温精密塑性成形工艺单向挤压成形为单向敞口的U型截面U形件作为第二构件;最后采用真空扩散焊接将第一构件以敞口相对两两对焊;将第二构件与处在两端位置上的第一构件以敞口相对进行封装焊接,成形出包层第一壁。本发明方法成形的包层第一壁形状尺寸精度高、壁厚均匀、流道截面无畸变、流道和焊缝组织性能好、材料利用率和生产效率高、工艺稳定。

Description

包层第一壁等温正反复合挤压和真空扩散焊复合制造方法
本申请是申请日为20150213、申请号为2015100808041、发明名称为包层第一壁等温正反复合挤压和真空扩散焊复合制造工艺、申请人为合肥工业大学的发明专利申请的分案申请。
技术领域
本发明涉及一种包层第一壁等温正反复合挤压和真空扩散焊复合制造工艺,属于材料加工技术领域。
背景技术
聚变堆包层是未来聚变堆部件的核心,是进行中子能量的沉积转换以及氚增殖和屏蔽的关键部件。第一壁是包层模块中的一个重要部件,作为包层结构直接面向高温等离子体的部件,所处的环境最为恶劣,要直接承受来自等离子体的高热负载0.5MW/m2和强中子壁负载0.78MW/m2,壁管道通入300℃、8MPa的氦气,温度和压力都较高,需要有优异的高温力学性能。而且包层第一壁内部流道结构复杂,为保证流动连续,避免热载局部升温,损伤部件,尺寸精度要求较高,同时需要满足与其它结构件的焊接匹配要求。因此,对该部件制造工艺提出了极高的要求。
目前国际热核聚变实验堆ITER实验包层模块TBM采用的结构材料大多为低活化钢,但其室温塑性较差,成形困难。对于包层第一壁,传统的加工工艺为将矩形管和内外平板通过热等静压扩散焊接为一体的三明治法工艺。该工艺认为是目前制造低活化钢包层第一壁的比较好的工艺方法。但该方案中的先弯后焊工艺管件弯曲会造成一定程度的流道畸变,而且U型弯角经热等静压扩散焊接后出现二次自由变形,造成尺寸精度降低;而先焊后弯工艺导致整体焊接件弯曲产生的流道畸变无法进行后期校正。其它的制造工艺主要是通过铣槽、焊接、折弯等工艺按不同顺序进行复合来实现。但目前制造工艺存在材料利用率和生产效率低、流道组织性能较差、尺寸精度低、工艺不稳定等缺陷。热等静压扩散连接工艺尽管在试验包层模块第一壁的组装中得到了应用,但该工艺必须在密封的环境下,对待焊件要求很高,且焊接过程中会发生焊缝的二次自由变形,无法对其成形精度进行控制。
发明内容
鉴于上述传统生产工艺上存在的一些不足和局限性,本发明提供包层第一壁等温正反复合挤压和真空扩散焊复合制造方法,是一种包层第一壁成形成性一体化制造方法,以期提高包层第一壁的形状尺寸精度,消除矩形流道存在的截面畸变、壁厚偏差的不足,改善显微组织,保证流线沿轮廓的完整性,进一步提高其力学性能,并同时提高材料利用率和生产效率。
本发明为解决技术问题采用如下技术方案:
本发明包层第一壁等温正反复合挤压和真空扩散焊复合制造工艺的特点是:
采用垂直工艺拆分方案,将包层第一壁的矩形流道进行上下拆分形成H型截面,仅在上下封口部分形成U型截面,以保证成形工艺的稳定性;
采用等温精密塑性成形工艺分别制造包层第一壁的H型截面U形件和U型截面U形件,以保证矩形流道等截面、等壁厚、端面平整、流线沿轮廓分布完整、组织细化;
采用真空压力扩散焊接工艺,将多组H型截面U形件和两端U型截面U形件进行整体一次连接,控制焊缝处的变形量和连接强度,成形出包层第一壁。
本发明包层第一壁等温正反复合挤压和真空扩散焊复合制造工艺的结构特点也在于:采用等温正反复合挤压工艺制造包层第一壁的H型截面U形件流道,采用等温单向挤压成形出U型截面U形件。
本发明包层第一壁等温正反复合挤压和真空扩散焊复合制造方法的特点是按如下步骤进行:
步骤1:将初始横截面为矩形的板坯通过弯曲成形为预成形U形件;
步骤2:对于所述预成形U形件,采用等温精密塑性成形工艺正反复合挤压成形为双向敞口的H型截面U形件作为第一构件;对于所述预成形U形件采用等温精密塑性成形工艺单向挤压成形为单向敞口的U型截面U形件作为第二构件;
步骤3:采用真空扩散焊接将第一构件以敞口相对两两对焊;将第二构件与处在两端位置上的第一构件以敞口相对进行封装焊接,成形出包层第一壁。
本发明包层第一壁等温正反复合挤压和真空扩散焊复合制造方法的特点也在于:在所述步骤3中将多组第一构件整体一次连接。
本发明包层第一壁等温正反复合挤压和真空扩散焊复合制造方法的特点也在是:在所述步骤3中同时采用两个第二构件分别对于处在两端位置上的第一构件以敞口相对进行一次整体封装焊接。
与已有技术相比,本发明有益效果体现在:
1、本发明采用等温正反复合挤压和真空扩散焊复合制造工艺,将板坯直接成形出聚变堆试验包层模块第一壁,能够提高形状尺寸精度,消除现有制造工艺中存在的矩形流道截面发生畸变、壁厚存在偏差等不足。
2、本发明采用等温正反挤压复合成形工艺制造H型截面U形件,能够改善流线分布、细化显微组织、提高力学性能,避免了现有的采用铣槽方法加工矩形流道的工艺造成的金属流线被切断引起的力学性能下降的不足。
3、本发明采用等温正反挤压复合成形工艺制造H型截面U形件,一次成形生产两个试件,比现有的铣槽工艺大大提高了材料利用率和生产率。
4、本发明采用真空扩散焊接工艺对H型截面U形件进行对焊,克服了传统的熔焊方式导致的焊缝过密、热应力过大的不足。
5、本发明采用真空扩散焊接工艺对多组H型截面U形件进行对焊,并且采用两个U型截面U形件进行封装焊接,可以在保证产品形状尺寸精度的条件下实现多组焊接面的整体扩散连接,避免现有的热等静压扩散焊工艺对密封环境和待焊件要求很高、焊接过程中会发生的二次自由变形、截面变形等缺陷。
附图说明
图1为本发明中包层第一壁成形过程示意图;
图2为本发明中包层第一壁中H型截面U形件等温正反复合挤压工艺示意图;
图3为本发明中包层第一壁中U型截面U形件等温单向挤压工艺示意图;
图中标号:1.板坯,2.预成形U形件,3.H型截面U形件,4.U型截面U形件,5.试验包层模块第一壁真空压力扩散焊装配体,6.包层模块第一壁,7.第一构件上模,8.下模,9.顶出块,10.第二构件上模。
具体实施方式
本实施例中包层第一壁等温正反复合挤压和真空扩散焊复合制造工艺是:
采用垂直工艺拆分方案,将包层第一壁的矩形流道进行上下拆分形成H型截面,仅在上下封口部分形成U型截面,以保证成形工艺的稳定性。
采用等温精密塑性成形工艺分别制造包层第一壁的H型截面U形件和U型截面U形件4,保证流道等截面、等壁厚、端面平整、流线沿轮廓分布完整、组织细化;具体采用等温正反复合挤压工艺制造包层第一壁的H型截面U形件3流道,采用等温单向挤压成形出U型截面U形件。
采用真空压力扩散焊接工艺,将多组H型截面U形件和两端U型截面U形件进行整体一次连接,控制焊缝处的变形量和连接强度,成形出包层第一壁。
参见图1、图2和图3,本实施例中试验包层模块第一壁等温正反复合挤压和真空扩散焊复合制造方法是按如下步骤进行:
步骤1:折弯,是将初始横截面为矩形的板坯1通过弯曲成形为预成形U形件2。
步骤2:成形,对于预成形U形件2,采用等温精密塑性成形工艺正反复合挤压成形为双向敞口的H型截面U形件3作为第一构件;对于预成形U形件2采用等温精密塑性成形工艺单向挤压成形为单向敞口的U型截面U形件4作为第二构件,该工艺可以保证矩形流道壁厚均匀、端面平整、流线沿轮廓分布完整、组织细化。
步骤3:焊接,是采用真空扩散焊接将第一构件以敞口相对两两对焊,多组第一构件整体一次连接,实现试验包层模块第一壁矩形流道的连接,在保证焊缝尺寸精度的同时提高焊缝的连接强度;再将两个第二构件分别与处在两端位置上的第一构件以敞口相对进行一次整体封装焊接为试验包层模块第一壁真空压力扩散焊装配体5,控制焊缝处的变形量和连接强度,从而成形出试验包层模块第一壁6。
本实施例中,由于试验包层模块第一壁6采用的结构材料为低活化钢,其室温塑性较差,成形困难。本发明采用等温精密塑性成形工艺,对于低塑性难变形的材料能够获得理想的塑性变形能力,改善材料的流动和充填型腔能力。
具体实施中,是将试验包层模块第一壁6的矩形流道采用垂直拆分的方式,拆分成四个H型截面U型件和两只U型截面U型件;H型截面U型件的筋高比传统的U形截面U型件减小了一半,且对称分布,降低了金属流动阻力,改变了金属的流动方向,型腔较易充填完整,能够避免成形缺陷,提高成形质量。同时,考虑到载荷的对称性和提高生产效率,可以采用一次成形两个U形件的成形方式,即将图2所示的模具和坯料,在U形件开口侧对称再放置一套,一次成形两个,形成一个中间不连通的长方形框。这一方法能够提高生产率,平衡载荷。
图2所示为本实施例中试验包层模块第一壁中H型截面U形件3等温正反复合挤压工艺示意图。在正反复合挤压过程中,下模8和顶出块9固定不动,第一构件上模7下行,成形出H型截面U型件3,在成形结束之后,顶出块9上行,将H型截面U型件3顶出。
图3所示为本实施例中包层第一壁中U型截面U形件4等温单向挤压工艺示意图。在单向挤压过程中,下模8和顶出块9固定不动,第二构件上模10下行,成形出U型截面U型件4。
本实施例中:板坯是从低活化钢板上加工出来的初始坯料,等温精密塑性成形工艺指坯料在精密塑性成形过程中,模具温度始终接近或等于坯料的变形温度,真空扩散焊接是指在真空环境中,将焊件紧密贴合,在一定温度和压力下保持一段时间,使接触面之间的原子相互扩散形成联接的焊接方法。
本发明采用等温正反复合挤压与真空压力扩散焊工艺相结合,将板坯直接成形出聚变堆试验包层模块第一壁,避免了传统工艺材料利用率和生产效率低、流道组织性能较差、尺寸精度低、工艺不稳定等缺陷。由于采用等温正反复合挤压工艺,因此成形零件形状尺寸精度高、壁厚均匀、流道截面无畸变。同时,由于采用真空压力扩散焊工艺进行整体对焊,流道和焊缝组织性能好、材料利用率和生产效率高、工艺稳定,具有很好的应用价值和发展前景。
按现有设计的试验包层模块第一壁是由很多组矩形流道组成的,本实施例中只是针对其典型结构提供一种成形方法,实施例中按部分流道形式进行表达。

Claims (1)

1.一种包层第一壁等温正反复合挤压和真空扩散焊复合制造方法,其特征是按如下步骤进行:
步骤1:将初始横截面为矩形的板坯(1)通过弯曲成形为预成形U形件(2);
步骤2:对于所述预成形U形件(2),采用等温精密塑性成形工艺正反复合挤压成形为双向敞口的H型截面U形件(3)作为第一构件;对于所述预成形U形件(2)采用等温精密塑性成形工艺单向挤压成形为单向敞口的U型截面U形件(4)作为第二构件;
步骤3:采用真空扩散焊接将第一构件以敞口相对两两对焊;将第二构件与处在两端位置上的第一构件以敞口相对进行封装焊接,成形出包层第一壁;
在所述步骤3中将多组第一构件整体一次连接,且同时采用两个第二构件分别对于处在两端位置上的第一构件以敞口相对进行一次整体封装焊接。
CN201610872498.XA 2015-02-13 2015-02-13 包层第一壁等温正反复合挤压和真空扩散焊复合制造方法 Active CN106271034B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610872498.XA CN106271034B (zh) 2015-02-13 2015-02-13 包层第一壁等温正反复合挤压和真空扩散焊复合制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510080804.1A CN104690418B (zh) 2015-02-13 2015-02-13 包层第一壁等温正反复合挤压和真空扩散焊复合制造工艺
CN201610872498.XA CN106271034B (zh) 2015-02-13 2015-02-13 包层第一壁等温正反复合挤压和真空扩散焊复合制造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201510080804.1A Division CN104690418B (zh) 2015-02-13 2015-02-13 包层第一壁等温正反复合挤压和真空扩散焊复合制造工艺

Publications (2)

Publication Number Publication Date
CN106271034A CN106271034A (zh) 2017-01-04
CN106271034B true CN106271034B (zh) 2019-04-23

Family

ID=53338176

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610872498.XA Active CN106271034B (zh) 2015-02-13 2015-02-13 包层第一壁等温正反复合挤压和真空扩散焊复合制造方法
CN201510080804.1A Active CN104690418B (zh) 2015-02-13 2015-02-13 包层第一壁等温正反复合挤压和真空扩散焊复合制造工艺

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510080804.1A Active CN104690418B (zh) 2015-02-13 2015-02-13 包层第一壁等温正反复合挤压和真空扩散焊复合制造工艺

Country Status (1)

Country Link
CN (2) CN106271034B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478991B (zh) * 2015-12-30 2017-11-03 中国科学院合肥物质科学研究院 一种含内嵌流道的聚变堆包层耐热部件制备方法
CN106181015A (zh) * 2016-08-19 2016-12-07 中国科学院等离子体物理研究所 一种聚变堆包层附钨u型含流道第一壁部件的制造工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1655645A1 (ru) * 1988-12-05 1991-06-15 Предприятие П/Я Х-5827 Штамп дл изотермической закрытой штамповки
JPH0552211A (ja) * 1991-08-19 1993-03-02 Kasuya Seiko Kk 中空軸部材およびその製造方法
JP2000158191A (ja) * 1998-11-30 2000-06-13 Kondotec Inc H型鋼溶接用裏当金具
JP2002239737A (ja) * 2001-02-09 2002-08-28 Takenaka Komuten Co Ltd 溶接施工装置及び溶接施工方法
CN102335813A (zh) * 2010-07-26 2012-02-01 核工业西南物理研究院 一种tbm第一壁u形含流冷却管道组的加工工艺
CN103280143A (zh) * 2013-04-10 2013-09-04 西安交通大学 一种基于聚变裂变混合堆水冷包层的实验段及其实验方法
CN103406482A (zh) * 2013-08-28 2013-11-27 哈尔滨工业大学 一种7075铝合金锥形机匣等温模锻成形模具及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2919819B2 (ja) * 1997-11-27 1999-07-19 川崎重工業株式会社 核融合炉増殖ブランケットの第一壁の製作方法
CN100586638C (zh) * 2008-07-25 2010-02-03 中国科学院等离子体物理研究所 一种适用于聚变堆包层含流道部件的制造工艺
CN102294577B (zh) * 2011-08-29 2013-04-24 中国科学院合肥物质科学研究院 一种中子辐照下内含非直线型轴线流道的部件制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1655645A1 (ru) * 1988-12-05 1991-06-15 Предприятие П/Я Х-5827 Штамп дл изотермической закрытой штамповки
JPH0552211A (ja) * 1991-08-19 1993-03-02 Kasuya Seiko Kk 中空軸部材およびその製造方法
JP2000158191A (ja) * 1998-11-30 2000-06-13 Kondotec Inc H型鋼溶接用裏当金具
JP2002239737A (ja) * 2001-02-09 2002-08-28 Takenaka Komuten Co Ltd 溶接施工装置及び溶接施工方法
CN102335813A (zh) * 2010-07-26 2012-02-01 核工业西南物理研究院 一种tbm第一壁u形含流冷却管道组的加工工艺
CN103280143A (zh) * 2013-04-10 2013-09-04 西安交通大学 一种基于聚变裂变混合堆水冷包层的实验段及其实验方法
CN103406482A (zh) * 2013-08-28 2013-11-27 哈尔滨工业大学 一种7075铝合金锥形机匣等温模锻成形模具及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ITER TBM第一壁制造方法与样件试制;叶兴福,冯开明;《核聚变与等离子体物理》;20111231;第31卷(第4期);第356-359页
某牌号低活化马氏体钢U形件成形工艺研究;徐杰,李向博;《精密成形工程》;20150910;第7卷(第5期);第110-113页

Also Published As

Publication number Publication date
CN104690418B (zh) 2016-08-31
CN104690418A (zh) 2015-06-10
CN106271034A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN110539138B (zh) 一种铝合金轻量化主动冷却结构蒙皮制备方法
CN103612007B (zh) 一种高温合金三维点阵夹层结构的制备方法
CN102962592B (zh) SiCp/Al复合材料电子束辅助热挤压扩散连接方法
CN111001699B (zh) 采用3d打印和热气压胀形制造薄壁金属构件的方法
CN104191092B (zh) L型铝合金结构的激光-tig复合填丝密封焊接方法
CN102284588A (zh) 一种提高板材成形极限的装置
CN112792505B (zh) 内壁沟槽结构再生冷却身部成型方法
CN105032980B (zh) 一种薄壁钛合金复杂变截面管材的成形方法及应用
CN112935507B (zh) 一种印刷电路板式换热器芯体的扩散焊接工艺
CN106271034B (zh) 包层第一壁等温正反复合挤压和真空扩散焊复合制造方法
CN109967588A (zh) 一种铝合金差厚拼焊板充液成形方法
CN111085616A (zh) 一种带支柱中空复杂结构件的成形模具及制造方法
CN101767270A (zh) 一种均热板的封口结构与制造方法
CN109127886B (zh) 一种棱边圆角R≤2t难变形材料矩形截面空心件的气压-模压复合成形方法
CN105149391A (zh) 一种钛合金波纹加强筒形零件成形装置及成形方法
CN110560876A (zh) 一种带冷却用扰流柱结构的双层板及真空电子束加工方法
CN102806420A (zh) 一种提高薄壁管摩擦焊接头强度的新型加工方法
CN107855398B (zh) 一种通过预反变形改善超塑成形异形筒体壁厚分布的成形方法
CN108161353B (zh) 一种性能均匀的大型铝合金拼焊板封头整体成形的方法
CN110560875A (zh) 一种带通道结构的双层板及其真空电子束加工方法
CN104646479A (zh) 一种激光加热诱导等静压加载板材无模成形的方法
CN114871700B (zh) 一种铝合金/铝锂合金空心加强筋蒙皮成形方法及模具
CN102853569B (zh) 椭圆型太阳能集热管及其制造方法
CN113732141B (zh) 一炉多模多件多工艺高温真空复合成形装置及工艺
CN109175917B (zh) 一种钛合金轻量化加强翼面的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant