CN106253316A - 一种蓄电池充放电功率与荷电状态的预测方法 - Google Patents

一种蓄电池充放电功率与荷电状态的预测方法 Download PDF

Info

Publication number
CN106253316A
CN106253316A CN201610716386.5A CN201610716386A CN106253316A CN 106253316 A CN106253316 A CN 106253316A CN 201610716386 A CN201610716386 A CN 201610716386A CN 106253316 A CN106253316 A CN 106253316A
Authority
CN
China
Prior art keywords
accumulator
batt
power
charge
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610716386.5A
Other languages
English (en)
Inventor
黄麒元
朱俊
王致杰
王东伟
杜彬
王浩清
周泽坤
吕金都
王鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN201610716386.5A priority Critical patent/CN106253316A/zh
Publication of CN106253316A publication Critical patent/CN106253316A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Power Engineering (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种蓄电池充放电功率与荷电状态的预测方法,其设备包括参数输入模块、功率与电荷状态预测模块,二者之间耦合充电功率计算模块与放电功率计算模块,通过参数输入、功率计算以及综合计算三步建立储能电池功率模型,能够较为精确地反映在微电网调度中储能电池的充放电能力,提高微电网运行经济性。

Description

一种蓄电池充放电功率与荷电状态的预测方法
技术领域
本发明涉及微网电池领域,具体涉及一种蓄电池充放电功率与荷电状态的预测方法。
背景技术
当前在孤岛运行的微电网调度中采用的模型过于简单,且多数是建立储能电池的化学模型,针对储能电池的充放电功率模型的文献甚少,导致微电网能量管理系统达不到真正意义上的经济性。
在本领域研究中,有部分学者进行了储能电池的可持续放电时间模型,但并未建立储能电池的充放电功率模型,现在逐渐有建立了储能电池的充放电模型,但模型过于简单,不能准确反映在微电网调度中储能电池的充放电能力。
发明内容
本发明的目的是为克服上述问题,提出一种蓄电池充放电功率与荷电状态预测方法,建立储能电池功率模型,能够较为精确地反映在微电网调度中储能电池的充放电能力,提高微电网运行经济性。
本发明的技术方案设备包括,
参数输入模块、功率与电荷状态预测模块,二者之间耦合充电功率计算模块与放电功率计算模块,其具体预测步骤为
第一步,参数输入:参数输入模块初始化仿真时间步长Δt,蓄电池在任意时刻下的总能量Q、可用能量Q1、束缚能量Q2、极小电流下的最大荷电量Qmax、充放电比率常量k、容量比率常数c、放电效率ηbatt,d与充电效率ηbatt,c、最大充电率αc、最大充电电流Imax、蓄电池的个数Nbatt、电池的额定电压Vnom,并给定n个仿真步长内蓄电池需要充放电的功率P1~Pn;其中,Q=Q1+Q2
第二步,功率计算:参数输入模块识别在第n个仿真步长里所需的电池功率Pn的正负,若Pn<0,表示蓄电池需要充电,Pn>0,表示蓄电池需要放电;其中,
1.充电步骤功率:充电功率计算模块根据蓄电池剩余能量决定的蓄电池的最大充电功率Pbatt,cmax,kbm、最大充电电流决定的最大充电功率Pbatt,cmax,mcc、最大充电率决定的蓄电池的最大充电功率Pbatt,cmax,mcr确定蓄电池的最大充电功率Pbatt,cmax;其关系满足
P b a t t , c max = min ( P b a t t , c max , k b m , P b a t t , c max , m c r , P b a t t , c max , m c c ) &eta; b a t t , c ,
若|Pn|<Pbatt,cmax,则蓄电池实际充电功率值Preal-n=-Pbatt,cmax,若|Pn|>Pbatt,cmax,则Preal-n=Pn
2.放电步骤功率:放电功率计算模块根据蓄电池剩余能量决定的最大放电功率Pbatt,dmax,kbm确定蓄电池的最大放电功率Pbatt,dmax,其关系满足
Pbatt,damx=ηbatt,dPbatt,dmax,kbm
若|Pn|<Pbatt,dmax,则蓄电池实际放电功率Preal-n=Pn,若|Pn|<Pbatt,dmax,则Preal-n=Pbatt,dmax
第三步,综合计算:功率与电荷状态预测模块根据蓄电池在第n个Δt的仿真步长内的实际充放电功率,进而
1.分别计算蓄电池内部的可用荷电量Q1,end和束缚荷电量Q2,end,并得到总能量Q,从而计算蓄电池核电状态SOC;其中,
Q 1 , e n d = Q 1 e - k &Delta; t + ( Q k c - P r e a l ) ( 1 - e - k &Delta; t ) k - P r e a l c ( k &Delta; t - 1 + e - k &Delta; t ) k
Q 2 , e n d = Q 2 e - k &Delta; t + Q ( 1 - c ) ( 1 - e - k &Delta; t ) - P r e a l ( 1 - c ) ( k &Delta; t - 1 + e - k &Delta; t ) k
S O C = Q Q max ;
2.求得所有仿真步长的蓄电池实际充放电功率与荷电状态;把当前的Q1,end和Q2,end作为第n+1个仿真步长的Q1、Q2,通过重复步骤2~步骤3i,得到所有仿真步长的蓄电池实际充放电功率Preal-1~Preal-n以及SOC1~SOCn
以上步骤通过建立充放电功率模型,考虑蓄电池电量充放电调度的经济性能,使得蓄电池的荷电状态曲线变化较平缓,符合蓄电池的充放电特性。
进一步的,为了便于蓄电池最大充电功率的计算,模块内计算的逻辑步骤可以设置为:
第一步,根据蓄电池极小电流下的最大荷电量Qmax、可用能量Q1、总能量Q计算得到由电池剩余总能量决定的蓄电池最大充电功率Pbatt,cmax,kbm,其关系满足
P b a t t , c m a x , k b m = | - kcQ m a x + kQ 1 e - k &Delta; t + Q k c ( 1 - e - k &Delta; t ) 1 - e - k &Delta; t + c ( k &Delta; t - 1 + e - k &Delta; t ) | ;
第二步,根据蓄电池最大充电率αc、最大荷电量Qmax、总能量Q计算得到由最大充电率决定的蓄电池的最大充电功率Pbatt,cmax,mcr,其关系满足
P b a t t , c max , m c r = ( 1 - e - &alpha; c &Delta; t ) ( Q max - Q ) &Delta; t ;
第三步,根据蓄电池的个数Nbatt、最大充电电流Imax、电池的额定电压Vnom,计算得到蓄电池最大充电电流决定的最大充电功率Pbatt,cmax,mcc,其关系满足
P b a t t , c max , m c c = N b a t t I max V n o m 1000 ;
第四步,根据a~c最终得到
其中,
&eta; b a t t , c = &eta; b a t t , n .
进一步的,为了便于蓄电池最大放电功率的计算,模块内计算的逻辑步骤可以设置为:
第一步,根据蓄电池充放电比率常量k、可用能量Q1、总能量Q计算由电池剩余能量决定的最大放电功率Pbatt,dmax,kbm,其关系满足
P b a t t , d m a x , k b m = kQ 1 e - k &Delta; t + Q k c ( 1 - e - k &Delta; t ) 1 - e - k &Delta; t + c ( k &Delta; t - 1 + e - k &Delta; t ) ;
第二步,根据蓄电池放电效率ηbatt,d计算得到蓄电池的最大放电功率Pbatt,dmax,其关系满足
Pbatt,damx=ηbatt,dPbatt,dmax,kbm,其中,
&eta; b a t t , d = &eta; b a t t , n .
附图说明
图1是本发明的流程图。
图2是本发明与实验数据得对比图。
具体实施方式及效果说明
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合图示与具体实施例,进一步阐述本发明。
如图1所示,根据上述步骤,本发明的具体仿真步长数n设置为24,将动能电池置于微电网系统下充放电功率与在本仿真模型下计算所得结果的数据误差在5%以内,验证了电池模型调度的准确性。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。

Claims (4)

1.一种蓄电池充放电功率与荷电状态的预测方法,其设备包括参数输入模块、功率与电荷状态预测模块,二者之间耦合充电功率计算模块与放电功率计算模块,其特征在于,具体预测步骤如下:
1)参数输入:参数输入模块初始化仿真时间步长Δt,蓄电池在任意时刻下的总能量Q、可用能量Q1、束缚能量Q2、极小电流下的最大荷电量Qmax、充放电比率常量k、容量比率常数c、放电效率ηbatt,d与充电效率ηbatt,c、最大充电率αc、最大充电电流Imax、蓄电池的个数Nbatt、电池的额定电压Vnom,并给定n个仿真步长内蓄电池需要充放电的功率P1~Pn
2)功率计算:参数输入模块识别在第n个仿真步长里所需的电池功率Pn的正负,若Pn<0,表示蓄电池需要充电,Pn>0,表示蓄电池需要放电;其中,
i)充电步骤功率:充电功率计算模块根据蓄电池剩余能量决定的蓄电池的最大充电功率Pbatt,cmax,kbm、最大充电电流决定的最大充电功率Pbatt,cmax,mcc、最大充电率决定的蓄电池的最大充电功率Pbatt,cmax,mcr确定蓄电池的最大充电功率Pbatt,cmax;其关系满足
P b a t t , c max = min ( P b a t t , c max , k b m , P b a t t , c max , m c r , P b a t t , c max , m c c ) &eta; b a t t , c ,
若|Pn|<Pbatt,cmax,则蓄电池实际充电功率值Preal-n=-Pbatt,cmax,若|Pn|>Pbatt,cmax,则Preal-n=Pn
ii)放电步骤功率:放电功率计算模块根据蓄电池剩余能量决定的最大放电功率Pbatt,dmax,kbm确定蓄电池的最大放电功率Pbatt,dmax,其关系满足
Pbatt,damx=ηbatt,dPbatt,dmax,kbm
若|Pn|<Pbatt,dmax,则蓄电池实际放电功率Preal-n=Pn,若|Pn|<Pbatt,dmax,则Preal-n=Pbatt,dmax
3)综合计算:功率与电荷状态预测模块根据蓄电池在第n个Δt的仿真步长内的实际充放电功率,进而
i)分别计算蓄电池内部的可用荷电量Q1,end和束缚荷电量Q2,end,并得到总能量Q,从而计算蓄电池核电状态SOC;其中,
Q 1 , e n d = Q 1 e - k &Delta; t + ( Q k c - P r e a l ) ( 1 - e - k &Delta; t ) k - P r e a l c ( k &Delta; t - 1 + e - k &Delta; t ) k
Q 2 , e n d = Q 2 e - k &Delta; t + Q ( 1 - c ) ( 1 - e - k &Delta; t ) - P r e a l ( 1 - c ) ( k &Delta; t - 1 + e - k &Delta; t ) k
S O C = Q Q max ;
ii)求得所有仿真步长的蓄电池实际充放电功率与荷电状态;把当前的Q1,end和Q2,end作为第n+1个仿真步长的Q1、Q2,通过重复步骤2~步骤3i,得到所有仿真步长的蓄电池实际充放电功率Preal-1~Preal-n以及SOC1~SOCn
2.根据权利要求1所述的一种蓄电池充放电功率与荷电状态的预测方法,其特征在于:步骤2i中,蓄电池在Δt的仿真步长里的最大充电功率Pbatt,cmax的计算方法如下:
a)根据蓄电池极小电流下的最大荷电量Qmax、可用能量Q1、总能量Q计算得到由电池剩余总能量决定的蓄电池最大充电功率Pbatt,cmax,kbm,其关系满足
P b a t t , c m a x , k b m = | - kcQ m a x + kQ 1 e - k &Delta; t + Q k c ( 1 - e - k &Delta; t ) 1 - e - k &Delta; t + c ( k &Delta; t - 1 + e - k &Delta; t ) | ;
b)根据蓄电池最大充电率αc、最大荷电量Qmax、总能量Q计算得到由最大充电率决定的蓄电池的最大充电功率Pbatt,cmax,mcr,其关系满足
P b a t t , c max , m c r = ( 1 - e - &alpha; c &Delta; t ) ( Q max - Q ) &Delta; t ;
c)根据蓄电池的个数Nbatt、最大充电电流Imax、电池的额定电压Vnom,计算得到蓄电池最大充电电流决定的最大充电功率Pbatt,cmax,mcc,其关系满足
P b a t t , c max , m c c = N b a t t I m a x V n o m 1000 ;
d)根据a~c最终得到
P b a t t , c max = min ( P b a t t , c max , k b m , P b a t t , c max , m c r , P b a t t , c max , m c c ) &eta; b a t t , c .
3.根据权利要求1所述的一种蓄电池充放电功率与荷电状态的预测方法,其特征在于:步骤2ii中,蓄电池在Δt的仿真步长里的最大放电功率Pbatt,dmax的计算方法如下:
a)根据蓄电池充放电比率常量k、可用能量Q1、总能量Q计算由电池剩余能量决定的最大放电功率Pbatt,dmax,kbm,其关系满足
P b a t t , d m a x , k b m = kQ 1 e - k &Delta; t + Q k c ( 1 - e - k &Delta; t ) 1 - e - k &Delta; t + c ( k &Delta; t - 1 + e - k &Delta; t ) ;
b)根据蓄电池放电效率ηbatt,d计算得到蓄电池的最大放电功率Pbatt,dmax,其关系满足
Pbatt,damx=ηbatt,dPbatt,dmax,kbm。
4.根据权利要求1所述的一种蓄电池充放电功率与荷电状态预测方法,其特征在于:所述仿真步长数n=24。
CN201610716386.5A 2016-08-24 2016-08-24 一种蓄电池充放电功率与荷电状态的预测方法 Pending CN106253316A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610716386.5A CN106253316A (zh) 2016-08-24 2016-08-24 一种蓄电池充放电功率与荷电状态的预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610716386.5A CN106253316A (zh) 2016-08-24 2016-08-24 一种蓄电池充放电功率与荷电状态的预测方法

Publications (1)

Publication Number Publication Date
CN106253316A true CN106253316A (zh) 2016-12-21

Family

ID=57595292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610716386.5A Pending CN106253316A (zh) 2016-08-24 2016-08-24 一种蓄电池充放电功率与荷电状态的预测方法

Country Status (1)

Country Link
CN (1) CN106253316A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192957A (zh) * 2017-05-19 2017-09-22 燕山大学 基于倍率容量与恢复特性的双井模型荷电状态估算方法
CN108647434A (zh) * 2018-05-10 2018-10-12 燕山大学 一种基于改进粒子滤波算法的二元荷电状态估算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326428A (zh) * 2013-06-08 2013-09-25 东北电力大学 一种提高锂电池寿命的储能系统运行优化控制方法
CN103427429A (zh) * 2013-08-21 2013-12-04 华北电力大学 用户侧分散储能设备的实时功率分配系统和分配方法
CN104283230A (zh) * 2014-10-22 2015-01-14 国家电网公司 一种基于多能源微电网的蓄电池soc计算方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326428A (zh) * 2013-06-08 2013-09-25 东北电力大学 一种提高锂电池寿命的储能系统运行优化控制方法
CN103427429A (zh) * 2013-08-21 2013-12-04 华北电力大学 用户侧分散储能设备的实时功率分配系统和分配方法
CN104283230A (zh) * 2014-10-22 2015-01-14 国家电网公司 一种基于多能源微电网的蓄电池soc计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄麒元 等: "Kinetic电池模型在微电网调度的应用研究", 《电力系统保护与控制》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192957A (zh) * 2017-05-19 2017-09-22 燕山大学 基于倍率容量与恢复特性的双井模型荷电状态估算方法
CN108647434A (zh) * 2018-05-10 2018-10-12 燕山大学 一种基于改进粒子滤波算法的二元荷电状态估算方法

Similar Documents

Publication Publication Date Title
Chen et al. A review of lithium-ion battery for electric vehicle applications and beyond
CN103762624B (zh) 一种电池管理方法及装置
CN104795833B (zh) 一种独立微电网蓄电池储能系统容量优化配置方法
US11526639B2 (en) Fractional-order KiBaM battery model considering nonlinear capacity characteristics and parameter identification method
CN102545214B (zh) 一种含电池储能设备的风电场可靠性评估方法
CN103997052B (zh) 一种多储能电站的有功功率控制的方法
CN104362657B (zh) 风储混合电站
CN104410089B (zh) 基于电动汽车的风力发电微网功率平衡实时调度方法
CN103926538A (zh) 基于aic准则的变阶数rc等效电路模型及实现方法
CN101692120B (zh) 一种测量串联蓄电池组最大可用能量的测量方法
CN105552969A (zh) 基于功率预测的分布式光伏发电输出功率平滑方法和系统
CN107169170B (zh) 一种电池剩余容量的预测方法
CN107230988A (zh) 基于未来信息的光伏功率波动的动态平抑方法
CN103682508A (zh) 一种航天器锂离子蓄电池组荷电状态确定方法
CN109358291B (zh) 储能系统电池工况的简化方法
CN105203968A (zh) 一种铅酸蓄电池剩余电量的在线测量系统
CN105207243A (zh) 一种用于风电场实时功率预报修正的电池能量管理方法
Moore et al. An empirically based electrosource horizon lead-acid battery model
CN106872901A (zh) KiBaM‑分数阶等效电路综合特征电池模型及参数辨识方法
El Mehdi Laadissi et al. Aging study of a lead-acid storage bank in a multi-source hybrid system
CN203825171U (zh) 基于aic准则的变阶数rc等效电路模型
CN106253316A (zh) 一种蓄电池充放电功率与荷电状态的预测方法
Wang et al. Stochastic dynamic programming based optimal energy scheduling for a hybrid fuel cell/PV/battery system under uncertainty
CN107391899A (zh) 一种电动汽车集群负荷响应能力评估方法
Jusoh et al. Accurate battery model parameter identification using heuristic optimization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161221

RJ01 Rejection of invention patent application after publication