CN106252430A - 一种晶体硅异质结太阳电池 - Google Patents

一种晶体硅异质结太阳电池 Download PDF

Info

Publication number
CN106252430A
CN106252430A CN201610822295.XA CN201610822295A CN106252430A CN 106252430 A CN106252430 A CN 106252430A CN 201610822295 A CN201610822295 A CN 201610822295A CN 106252430 A CN106252430 A CN 106252430A
Authority
CN
China
Prior art keywords
layer
silicon
solar battery
tio
heterojunction solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610822295.XA
Other languages
English (en)
Other versions
CN106252430B (zh
Inventor
高超
黄海宾
周浪
岳之浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201610822295.XA priority Critical patent/CN106252430B/zh
Publication of CN106252430A publication Critical patent/CN106252430A/zh
Application granted granted Critical
Publication of CN106252430B publication Critical patent/CN106252430B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)

Abstract

一种晶体硅异质结太阳电池,其结构从迎光面开始依次为:前电极、TiOx层、晶体硅吸收层、本征非晶硅钝化层、p型非晶硅重掺杂层、背电极。迎光面使用n型掺杂的TiOx与晶体硅形成异质结,而背面使用传统的非晶硅/晶体硅异质结结构。由于TiOx光学带隙较宽,从迎光面入射的太阳光几乎可以全部进入到晶体硅内部,从而避免了由于窗口层的吸收而导致的光生电流损失。另外,TiOx可良好钝化硅片表面且与硅形成良好异质结,有助于增加异质结电池的开路电压。因此,本发明所提出晶体硅异质结太阳电池可同时实现高的开路电压和短路电流,提高晶体硅异质结太阳电池的光电转换效率。

Description

一种晶体硅异质结太阳电池
技术领域
本发明属于太阳电池领域,也属于半导体器件领域,涉及硅太阳电池的结构设计。
背景技术
光伏发电是一种重要的清洁能源,在全球环境污染和能源短缺的背景下,光伏发电在最近几十年得到了迅猛发展。然而当前光伏发电的成本仍然高于传统发电成本,若要推动光伏发电的普及,必须降低作为光伏发电主体的太阳电池的制备成本并提高其光电转换效率。
由于硅在地壳中储量丰富且提纯技术相对成熟,另外硅的光学带隙与太阳光谱比较匹配,因此硅材料是一种比较理想的太阳电池制备材料。当前晶体硅太阳电池多数基于同质结结构,其技术较为成熟,转换效率最高可达25%左右。在同质结太阳电池中,内建电场的强弱主要由p-n结两端半导体的掺杂浓度决定。若提高半导体的掺杂浓度,可提高内建电场的强度因而提高开路电压。然而,当半导体掺杂浓度提高到一定程度之后,若进一步提高掺杂浓度,会引起半导体内部载流子的复合因而降低饱和电流密度。为实现最大转换效率,一般会限制p-n结两端半导体的掺杂浓度,因此同质结晶体硅太阳电池的开路电压一般低于700 mV。相比较于同质结太阳电池,异质结太阳电池可充分利用两种不同半导体之间功函数以及能带位置的差异,可以在不增加太阳电池内部载流子复合的前提下增强内建电场的强度,因而可同时实现较大的开路电压(大于700 mV)和短路电流密度。因此,较同质结太阳电池,异质结太阳电池可实现更大的光电转换效率。
目前较为成熟的晶体硅异质结太阳电池是基于非晶硅/晶体硅异质结的HIT电池(典型结构为ITO/α-Si(p)/α-Si(i)/c-Si/α-Si(i)/ α-Si(n)/ITO)。 HIT太阳电池虽然可以实现较大的开路电压(最大750 mV),但是由于作为钝化层和发射极的非晶硅材料带隙较窄且光吸收系数较大,使得一部分太阳光被内部缺陷较多的非晶硅吸收而未能转化成光生电流。虽然通过对非晶硅掺氧等手段可以减小非晶硅层对太阳光的吸收,但掺氧也同时增大了电池串联电阻,因而电池的光电转换效率未能有明显提高。作为其它的解决途径,可将非晶硅替换为其它材料,该材料应能良好钝化硅材料表面并与硅形成良好异质结。
发明内容
本发明的目的是提出一种新结构的晶体硅异质结太阳电池。
本发明所述的一种晶体硅异质结太阳电池,包括前电极、TiOx层、晶体硅吸收层、本征非晶硅钝化层(α-Si(i))、p型非晶硅重掺杂层(α-Si(p))、背电极。其结构从迎光面开始依次为:前电极、TiOx层、晶体硅吸收层、本征非晶硅钝化层、p型非晶硅重掺杂层、背电极。
所述的TiOx为n型掺杂。
所述的晶体硅吸收层为n型或p型掺杂,且晶体硅吸收层的硅片进行单面或双面制绒以减小表面反射率。
所述的前电极包含透明导电层和金属栅状电极,同时可在透明导电层或金属栅状电极上使用减反射层以进一步降低表面反射。
所述的后电极包含透明导电层和金属栅状电极,或者单独使用连续的金属电极。
本发明使用n型掺杂的TiOx与作为吸收层的晶体硅形成异质结,以沉积TiOx的一面作为太阳电池的迎光面,而背面使用传统的非晶硅/晶体硅异质结。由于TiOx的光学带隙较大(~3.2 eV),因此入射的太阳光几乎全部被作为吸收层的硅所吸收,从而避免了传统HIT结构中由于非晶硅的吸收而导致的光生电流损失的问题。另外,由于TiOx的导带位置稍高于硅的导带(<0.3eV)而价带位置远低于硅的价带(>2.0eV),所形成的导带阶有助于增强Si/TiOx异质结的内建电场,而价带阶可抑制暗电流或反向饱和电流。同时,TiOx可对硅表面形成有效钝化,加上异质结本身的场钝化效果,可显著降低Si/TiOx异质结界面处光生载流子的复合。背面的非晶硅/晶体硅异质结,可形成有效的背电场并钝化硅片背表面,可增强开路电压并抑制背表面处光生载流子的复合。综上所述,本发明所提出的新型晶体硅太阳电池结构可使太阳电池同时拥有较高的开路电压和短路电流密度,保证太阳电池的高光电转换效率。
本发明所提出的新结构晶体硅异质结电池,可以在提高开路电压的前提下避免光生电流的损失。使晶体硅太阳电池同时具有高的开路电压和短路电流,从而提高晶体硅太阳电池的光电转换效率。本发明所提出的晶体硅异质结电池中的TiOx层可使用低温制备工艺(如使用原子层沉积,制备温度可低于300°C),因此整个电池制备工艺可无需高温环节,从而降低硅太阳电池制备过程中的能源损耗。另外,根据背电极形式的不同,本发明所提出的新结构晶体硅异质结电池可为双面太阳电池或单面太阳电池,可根据具体的使用环境选择太阳电池的具体结构。
附图说明
附图1为本发明晶体硅异质结太阳电池结构示意图。
具体实施方式
本发明将通过以下实施例作进一步说明。
实施例1。
(1)对硅片进行初步清洗,双面制绒。
(2)用氢氟酸去掉硅片表面氧化层,使用等离子增强化学气相沉积制备非晶硅钝化层和p型重掺杂非晶硅发射极。
(3)在非晶硅钝化层和p型重掺杂非晶硅发射极溅射制备ITO透明导电层,随后制备Ag金属栅线。
(4)硅片表面反转,在另一面使用原子层外延沉积TiOx层。
(5)沉积金属Ag,制备背电极。
实施例2。
(1)对硅片进行初步清洗,双面制绒。
(2)用氢氟酸去掉硅片表面氧化层,使用热丝化学气相沉积制备非晶硅钝化层和p型重掺杂非晶硅发射极。
(3)在非晶硅钝化层和p型重掺杂非晶硅发射极溅射制备AZO透明导电层,随后制备Cu金属栅线。
(4)硅片表面反转,在另一面使用化学气相沉积制备TiOx层。
(5)在TiOx层上溅射沉积AZO作为透明导电层,制备Cu金属栅线。

Claims (6)

1.一种晶体硅异质结太阳电池,其特征是包括前电极、TiOx层、晶体硅吸收层、本征非晶硅钝化层、p型非晶硅重掺杂层、背电极;其结构从迎光面开始依次为:前电极、TiOx层、晶体硅吸收层、本征非晶硅钝化层、p型非晶硅重掺杂层、背电极。
2.根据权利要求1所述的晶体硅异质结太阳电池,其特征是所述的TiOx为n型掺杂。
3.根据权利要求1所述的晶体硅异质结太阳电池,其特征是所述的晶体硅吸收层为n型或p型掺杂,且晶体硅吸收层的硅片进行单面或双面制绒以减小表面反射率。
4.根据权利要求1所述的晶体硅异质结太阳电池,其特征是所述的前电极包含透明导电层和金属栅状电极。
5.根据权利要求4所述的晶体硅异质结太阳电池,其特征是在透明导电层或金属栅状电极上使用减反射层。
6.根据权利要求1所述的晶体硅异质结太阳电池,其特征是所述的后电极包含透明导电层和金属栅状电极,或者单独使用连续的金属电极。
CN201610822295.XA 2016-09-14 2016-09-14 一种晶体硅异质结太阳电池 Active CN106252430B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610822295.XA CN106252430B (zh) 2016-09-14 2016-09-14 一种晶体硅异质结太阳电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610822295.XA CN106252430B (zh) 2016-09-14 2016-09-14 一种晶体硅异质结太阳电池

Publications (2)

Publication Number Publication Date
CN106252430A true CN106252430A (zh) 2016-12-21
CN106252430B CN106252430B (zh) 2019-01-11

Family

ID=57599764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610822295.XA Active CN106252430B (zh) 2016-09-14 2016-09-14 一种晶体硅异质结太阳电池

Country Status (1)

Country Link
CN (1) CN106252430B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336155A (zh) * 2018-03-12 2018-07-27 南昌大学 一种hac-d晶体硅双面太阳电池结构
CN108336157A (zh) * 2018-03-12 2018-07-27 南昌大学 一种局域非晶硅发射极晶体硅背场的双面太阳电池结构
CN108336156A (zh) * 2018-03-12 2018-07-27 南昌大学 一种具有hac-d特征的晶体硅双面太阳电池结构
CN108461553A (zh) * 2018-03-12 2018-08-28 南昌大学 一种具有局域非晶硅/晶体硅异质结特性的双面太阳电池结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197399A (zh) * 2007-12-26 2008-06-11 中国科学院电工研究所 一种薄膜硅/晶体硅背结太阳能电池
CN102148280A (zh) * 2010-02-10 2011-08-10 上海空间电源研究所 一种新型硅基底异质结太阳电池
CN102637749A (zh) * 2011-02-11 2012-08-15 三菱综合材料株式会社 太阳能电池用复合膜及其制造方法
CN103413838A (zh) * 2013-07-23 2013-11-27 新奥光伏能源有限公司 一种晶体硅太阳电池及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206271715U (zh) * 2016-09-14 2017-06-20 南昌大学 一种晶体硅异质结太阳电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197399A (zh) * 2007-12-26 2008-06-11 中国科学院电工研究所 一种薄膜硅/晶体硅背结太阳能电池
CN102148280A (zh) * 2010-02-10 2011-08-10 上海空间电源研究所 一种新型硅基底异质结太阳电池
CN102637749A (zh) * 2011-02-11 2012-08-15 三菱综合材料株式会社 太阳能电池用复合膜及其制造方法
CN103413838A (zh) * 2013-07-23 2013-11-27 新奥光伏能源有限公司 一种晶体硅太阳电池及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336155A (zh) * 2018-03-12 2018-07-27 南昌大学 一种hac-d晶体硅双面太阳电池结构
CN108336157A (zh) * 2018-03-12 2018-07-27 南昌大学 一种局域非晶硅发射极晶体硅背场的双面太阳电池结构
CN108336156A (zh) * 2018-03-12 2018-07-27 南昌大学 一种具有hac-d特征的晶体硅双面太阳电池结构
CN108461553A (zh) * 2018-03-12 2018-08-28 南昌大学 一种具有局域非晶硅/晶体硅异质结特性的双面太阳电池结构

Also Published As

Publication number Publication date
CN106252430B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
Yamamoto et al. High-efficiency heterojunction crystalline Si solar cells
Yan et al. A review on the crystalline silicon bottom cell for monolithic perovskite/silicon tandem solar cells
Płaczek-Popko Top PV market solar cells 2016
CN206271715U (zh) 一种晶体硅异质结太阳电池
Raza et al. Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives
CN106252430B (zh) 一种晶体硅异质结太阳电池
CN110867516A (zh) 新型基于钙钛矿和晶硅背钝化叠层太阳电池及其制造方法
Khan et al. Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives
CN109509807A (zh) 晶硅异质结太阳能电池的发射极结构及其制备方法
CN202134564U (zh) 一种新型ibc 结构n型硅异质结电池
CN103560155A (zh) 一种基于晶体硅材料的化合物半导体异质结太阳电池
CN106449845B (zh) 一种基于Si/TiOx异质结的双面晶体硅太阳电池
Sui et al. A review of technologies for high efficiency silicon solar cells
CN114335348B (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
KR101327553B1 (ko) 태양전지
CN103999240B (zh) 太阳能电池模块及其制备方法
Ahmad et al. A novel approach to reduce both front and rear side power losses in PERC solar cells using different combinations of transparent metal oxides
CN214176064U (zh) 一种双面入射叠层太阳能电池
CN102157596B (zh) 一种势垒型硅基薄膜半叠层太阳电池
CN206271724U (zh) 一种基于Si/TiOx异质结的双面晶体硅太阳电池
CN110137269A (zh) 一种石墨烯/InGaN多结异质太阳能电池及其制备方法
CN106298983A (zh) 一种基于Si/NiOx异质结的晶体硅太阳电池
CN206148438U (zh) 一种基于Si/NiOx异质结的晶体硅太阳电池
CN208706661U (zh) 一种太阳电池
CN101866969A (zh) 太阳电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant