CN106238027A - 纳米TiO2毛细管柱的制备方法 - Google Patents

纳米TiO2毛细管柱的制备方法 Download PDF

Info

Publication number
CN106238027A
CN106238027A CN201610515185.9A CN201610515185A CN106238027A CN 106238027 A CN106238027 A CN 106238027A CN 201610515185 A CN201610515185 A CN 201610515185A CN 106238027 A CN106238027 A CN 106238027A
Authority
CN
China
Prior art keywords
capillary column
water
solution
add
dehydrated alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610515185.9A
Other languages
English (en)
Inventor
杨俊佼
朱美英
杨怀涛
贺育敢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201610515185.9A priority Critical patent/CN106238027A/zh
Publication of CN106238027A publication Critical patent/CN106238027A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

纳米TiO2毛细管柱的制备方法,其特征在于:取内径100‑500微米的毛细管柱,用NaOH溶液活化,使其内壁上的硅羟基打开,干燥备用;向烧杯A中加入10ml无水乙醇、2.5‑10ml钛酸丁酯、3‑5ml冰醋酸,搅拌均匀;向烧杯B中加入10ml无水乙醇、2ml水,加入0.5‑4ml的PEG‑400,放入0‑5℃冰水浴中,磁力搅拌下将溶液A加入到溶液B中,继续搅拌20min形成均匀透明的前躯体溶液;将上述溶液用注射器注入活化好的毛细管柱中,用橡皮塞封端后放入50℃水浴中反应6h,再放入120℃干燥箱中凝胶、干燥3h;D、将制备好的毛细管柱放入马弗炉中煅烧。本发明制备出纳米二氧化钛毛细管柱作光催化反应器,实现催化剂的可回收利用,不会对环境产生二次污染。

Description

纳米TiO2毛细管柱的制备方法
技术领域
本发明使用溶胶-凝胶法制备出的纳米TiO2毛细管柱作光催化反应器,光催化降解有机物,用来处理环境污水、净化空气,并解决其他光降解载体难以回收利用的难题。通过改变PEG的加入量控制TiO2层的厚度,与常用的旋转涂膜法、射频磁控溅射法相比具有成本低廉、操作简单的优点。
背景技术
随着全球工业化进程的发展,环境污染问题日益严重,环境问题己成为21世纪影响人类生存与发展的重要问题。光催化可直接利用太阳能作为光源来驱动反应,是一种理想的环境污染治理技术和洁净能源生产技术。二氧化钛由于具有化学性质稳定、抗光腐蚀、无毒和低成本等优点,在光电转化和光催化领域具有广阔的应用前景。半导体TiO2是一种重要的光催化剂,被广泛的应用于光催化降解有机污染物、太阳能电池、气敏传感器、光解水制氢等。
二氧化钛制备方法众多,在近些年得到了广泛的研究和讨论,但是,二氧化钛合成中利用一种简便的方法制备不同尺寸的纳米二氧化钛粒子依然是一项具有挑战性的工作。就目前TiO2体系的研究而言,粉体和薄膜是最常用的光催化剂。粉体虽然比表面积高、量子产率大、光催化效率高,但其反应后的催化剂易团聚、且难以分离和回收极大的限制了其在工业方面的应用。而薄膜又过于脆弱,无法很好的应用到生产中。因此,目前对于二氧化钛的制备仍然有很多问题需要解决。催化效率和光的利用率亟待提高,催化剂难以回收利用,高效光催化反应器仍需进一步开发。
发明内容:
针对上述情况,本发明拟解决的问题是将纳米TiO2层通过化学反应键合到毛细管内壁上,制备出纳米二氧化钛毛细管柱作光催化反应器,实现催化剂的可回收利用,不会对环境产生二次污染。
本发明公开了一种纳米二氧化钛毛细管柱的制备方法,以钛酸四丁酯为钛源,乙醇和水分别为溶剂和反应物,醋酸作催化剂控制反应速度,制备了TiO2溶胶前躯体溶液(含Ti-(OH)x),通过改变PEG的加入量控制TiO2层的厚度。再将钛溶胶前躯体注入活化的毛细管柱(含Si-OH)中,50℃水浴下通过羟基间的缩合反应使TiO2键合到毛细管内壁上,最后通过高温煅烧制备出具有光催化性能的锐钛矿型TiO2毛细管柱。
具体步骤如下:
A、取内径100-500微米的毛细管柱,用注射器注入1-2mol/L的NaOH溶液,橡皮塞封端,60℃水浴下活化2h,使其内壁上的硅羟基打开,再用去离子水冲洗至中性,最后用无水乙醇冲洗掉内壁上的水,120℃下干燥2h备用。
B、准备两个干净的小烧杯记为A和B,向烧杯A中加入10ml无水乙醇、2.5-10ml钛酸丁酯、3-5ml冰醋酸,搅拌均匀;向烧杯B中加入10ml无水乙醇、2ml水,加入0.5-4ml的PEG-400,放入0-5℃冰水浴中,磁力搅拌下将溶液A加入到溶液B中,继续搅拌20min形成均匀透明的前躯体溶液。
C、将上述溶液用注射器注入活化好的毛细管柱中,用橡皮塞封端后放入50℃水浴中反应6h,再放入120℃干燥箱中凝胶、干燥3h。
D、将制备好的毛细管柱放入马弗炉中煅烧,5℃/min升温到500℃保温5h,形成锐钛矿型TiO2
E、将罗丹明B溶液注入制备好的二氧化钛毛细管柱,紫外光照射下进行光催化降解实验。
本发明的原理:
以钛酸丁酯为钛源,使其在乙醇中水解生成钛溶胶[Ti(OH)x],加入醋酸控制反应速度,生成的钛溶胶与毛细管柱中含有的Si-OH通过羟基缩合使得TiO2键合到毛细管内壁上。但二氧化钛层长到一定厚度就会在高温下裂开并脱落,只能形成单层的纳米二氧化钛颗粒层,通过加入PEG作分散剂防止裂痕的出现,通过改变其加入量控制二氧化钛层的厚度。最后高温煅烧除去聚乙二醇,并形成具有光催化作用的锐钛矿型纳米二氧化钛层。
(1)一般情况下,钛酸丁酯遇水极易水解,为了控制钛酸丁醋的水解速率,用乙醇作溶剂,并用冰醋酸作稳定剂,先与钛酸丁酯形成配位化合物,从而可起到延缓水解反应的作用。
其反应式为:
Ti(OC4H9)4+XCH3COOH→Ti(OC4H9)4-x(CH3COO)x+XC4H9OH
Ti(OC4H9)4-x(CH3COO)x+4H2O→Ti(OH)4
另一方面,冰醋酸在水溶液中还能起解胶作用,可作为胶溶剂。由于冰醋酸能提供H+,H+浓度的大小会影响水解产物所形成的胶粒双电层结构,并进而影响溶胶的稳定性。H+吸附在粒子表面,形成的双电层使粒子间产生相互排斥作用,当排斥力大于粒子间的吸引力时,聚集的粒子分散成小粒子形成溶胶。因而在体系中醋酸能够很好的控制钛酸丁酯的水解和缩聚。
(2)当二氧化钛层生长到一定厚度时,由于结构太过致密在高温煅烧时很容易发生断裂并脱落,影响催化效果及材料的可重复利用性。因此加入聚乙二醇作分散剂防止断裂,使毛细管内壁形成一层致密均匀的纳米二氧化钛层,并通过改变聚乙二醇的量来控制二氧化钛层的厚度。
本发明的有益效果是:
(1)用钛酸丁酯作钛源,乙醇作溶剂,少量的水作反应物制备钛溶胶,通过控制醋酸的量使得整个制备过程可控并且更加经济。通过改变PEG的加入量控制TiO2层的厚度,与常用的旋转涂膜法、射频磁控溅射法相比具有成本低廉、操作简单的优点。
(2)首次将毛细管柱作二氧化钛的载体用于光催化研究,其内壁上生长的纳米二氧化钛薄膜均匀致密,厚度均一,光催化效果良好。并实现了催化剂的回收再利用。
附图说明
图1是实施例一的横截面扫描电镜图(SEM)
图2是实施例二的横截面扫描电镜图(SEM)
图3是实施例三的横截面扫描电镜图(SEM)
图4是毛细管内壁二氧化钛层宏观图(SEM)
图5是毛细管内壁二氧化钛层放大图(SEM)
图6是煅烧到500℃二氧化钛粉末的XRD图
图7罗丹明B原溶液质谱图
图8是实施例1降解10mg/L罗丹明B溶液2h后的质谱图
图9是实施例2降解10mg/L罗丹明B溶液2h后的质谱图
图10是实施例3降解10mg/L罗丹明B溶液2h后的质谱图
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例1
A、取30cm长、内径500微米的毛细管柱,用注射器注入1mol/L的NaOH溶液,橡皮塞封端,60℃水浴下活化2h,使其内壁上的硅羟基打开,再用去离子水冲洗至中性,最后用无水乙醇冲洗掉内壁上的水,120℃下干燥2h备用。
B、准备两个干净的小烧杯记为A和B,向烧杯A中加入10ml无水乙醇、4ml钛酸丁酯、4.5ml冰醋酸,搅拌均匀;向烧杯B中加入10ml无水乙醇、2ml水,放入0-5℃冰水浴中,磁力搅拌下将溶液A加入到溶液B中,继续搅拌20min形成均一透明的前躯体溶液。
C、将上述溶液用注射器注入活化好的内径500微米毛细管柱中,用橡皮塞封端后放入50℃水浴中反应6h,再放入120℃干燥箱中凝胶、干燥3h。
D、将制备好的毛细管柱放入马弗炉中煅烧,5℃/min升温到500℃保温5h,形成锐钛矿型TiO2
E、将罗丹明B溶液注入制备好的二氧化钛毛细管柱,5W紫外灯光照下(距离为10cm,以下实施例同),进行光催化降解实验,并用高效液相色谱-串联质谱仪检测降解物的成分。
实施例2
A、取30cm长、内径500微米的毛细管柱,用注射器注入1mol/L的NaOH溶液,橡皮塞封端,60℃水浴下活化2h,使其内壁上的硅羟基打开,再用去离子水冲洗至中性,最后用无水乙醇冲洗掉内壁上的水,120℃下干燥2h备用。
B、准备两个干净的小烧杯记为A和B,向烧杯A中加入10ml无水乙醇、4ml钛酸丁酯、4.5ml冰醋酸,搅拌均匀;向烧杯B中加入10ml无水乙醇、2ml水,1.0ml PEG-400,放入0-5℃冰水浴中,磁力搅拌下将溶液A加入到溶液B中,继续搅拌20min形成均一透明的前躯体溶液。
C、将上述溶液用注射器注入活化好的内径500微米毛细管柱中,用橡皮塞封端后放入50℃水浴中反应6h,在放入120℃干燥箱中凝胶、干燥3h。
D、将制备好的毛细管柱放入马弗炉中煅烧,5℃/min升温到500℃保温5h,形成锐钛矿型TiO2,同时除去聚乙二醇。
E、将罗丹明B溶液注入制备好的二氧化钛毛细管柱,5W紫外灯光照下进行光催化降解实验,并用高效液相色谱-串联质谱仪检测降解物的成分。
实施例3
A、取30cm长、内径500微米的毛细管柱,用注射器注入1mol/L的NaOH溶液,橡皮塞封端,60℃水浴下活化2h,使其内壁上的硅羟基打开,再用去离子水冲洗至中性,最后用无水乙醇冲洗掉内壁上的水,120℃下干燥2h备用。
B、准备两个干净的小烧杯记为A和B,向烧杯A中加入10ml无水乙醇、4ml钛酸丁酯、4.5ml冰醋酸,搅拌均匀;向烧杯B中加入10ml无水乙醇、2ml水,2.0ml PEG-400,放入0-5℃冰水浴中,磁力搅拌下将溶液A加入到溶液B中,继续搅拌20min形成均一透明的前躯体溶液。
C、将上述溶液用注射器注入活化好的内径500微米毛细管柱中,用橡皮塞封端后放入50℃水浴中反应6h,在放入120℃干燥箱中凝胶、干燥3h。
D、将制备好的毛细管柱放入马弗炉中煅烧,5℃/min升温到500℃保温5h,形成锐钛矿型TiO2,同时除去聚乙二醇。
E、将罗丹明B溶液注入制备好的二氧化钛毛细管柱,5W紫外灯光照下进行光催化降解实验,并用高效液相色谱-串联质谱仪检测降解物的成分。

Claims (1)

1.纳米TiO2毛细管柱的制备方法,其特征在于:
A、取内径100-500微米的毛细管柱,用注射器注入1-2mol/L的NaOH溶液,橡皮塞封端,60℃水浴下活化2h,使其内壁上的硅羟基打开,再用去离子水冲洗至中性,最后用无水乙醇冲洗掉内壁上的水,120℃下干燥2h备用;
B、准备两个干净的小烧杯记为A和B,向烧杯A中加入10ml无水乙醇、2.5-10ml钛酸丁酯、3-5ml冰醋酸,搅拌均匀;向烧杯B中加入10ml无水乙醇、2ml水,加入0.5-4ml的PEG-400,放入0-5℃冰水浴中,磁力搅拌下将溶液A加入到溶液B中,继续搅拌20min形成均匀透明的前躯体溶液;
C、将上述溶液用注射器注入活化好的毛细管柱中,用橡皮塞封端后放入50℃水浴中反应6h,再放入120℃干燥箱中凝胶、干燥3h;
D、将制备好的毛细管柱放入马弗炉中煅烧,5℃/min升温到500℃保温5h,形成锐钛矿型TiO2
CN201610515185.9A 2016-07-02 2016-07-02 纳米TiO2毛细管柱的制备方法 Pending CN106238027A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610515185.9A CN106238027A (zh) 2016-07-02 2016-07-02 纳米TiO2毛细管柱的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610515185.9A CN106238027A (zh) 2016-07-02 2016-07-02 纳米TiO2毛细管柱的制备方法

Publications (1)

Publication Number Publication Date
CN106238027A true CN106238027A (zh) 2016-12-21

Family

ID=57613626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610515185.9A Pending CN106238027A (zh) 2016-07-02 2016-07-02 纳米TiO2毛细管柱的制备方法

Country Status (1)

Country Link
CN (1) CN106238027A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019051734A1 (zh) * 2017-09-14 2019-03-21 季春柳 一种TiO2毛细管整体柱的制备方法
CN109507321A (zh) * 2018-11-28 2019-03-22 浙江博瑞电子科技有限公司 一种提高高纯氯化氢中特殊杂质检测灵敏度的方法
CN110436792A (zh) * 2019-08-21 2019-11-12 吉林大学 一种制备具有二氧化钛纳米粒子涂层的石英毛细管的方法
CN111253227A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 对甲氧基甲苯制备对甲氧基苯甲醛的制备方法
CN111250116A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 一种催化剂及其制备方法、应用
CN112742468A (zh) * 2019-10-30 2021-05-04 中国石油化工股份有限公司 一种含钛分子筛及其制备方法、催化剂和选择性氧化烃类的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322676A (zh) * 2001-04-12 2001-11-21 上海交通大学 中孔纳米二氧化钛的溶胶凝胶低温制备工艺
CN101406828A (zh) * 2008-11-04 2009-04-15 齐齐哈尔大学 一种涂敷纳米二氧化钛的开管电泳柱的制备方法及其应用
US20100093102A1 (en) * 2008-09-26 2010-04-15 Song Jin Mesoporous metal oxide materials for phosphoproteomics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322676A (zh) * 2001-04-12 2001-11-21 上海交通大学 中孔纳米二氧化钛的溶胶凝胶低温制备工艺
US20100093102A1 (en) * 2008-09-26 2010-04-15 Song Jin Mesoporous metal oxide materials for phosphoproteomics
CN101406828A (zh) * 2008-11-04 2009-04-15 齐齐哈尔大学 一种涂敷纳米二氧化钛的开管电泳柱的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHAO-TING WANG, ET AL: "Facile preparation of SiO2/TiO2 composite monolithic capillary column and its application in enrichment of phosphopeptides", 《ANALYTICAL CHEMISTRY》 *
钱瑞,等: "利用溶胶-凝胶技术制备钛胶HPLC整体柱及其表征", 《材料导报B:研究篇》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019051734A1 (zh) * 2017-09-14 2019-03-21 季春柳 一种TiO2毛细管整体柱的制备方法
CN109507321A (zh) * 2018-11-28 2019-03-22 浙江博瑞电子科技有限公司 一种提高高纯氯化氢中特殊杂质检测灵敏度的方法
CN109507321B (zh) * 2018-11-28 2021-03-16 浙江博瑞电子科技有限公司 一种提高高纯氯化氢中特殊杂质检测灵敏度的方法
CN111253227A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 对甲氧基甲苯制备对甲氧基苯甲醛的制备方法
CN111250116A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 一种催化剂及其制备方法、应用
CN110436792A (zh) * 2019-08-21 2019-11-12 吉林大学 一种制备具有二氧化钛纳米粒子涂层的石英毛细管的方法
CN112742468A (zh) * 2019-10-30 2021-05-04 中国石油化工股份有限公司 一种含钛分子筛及其制备方法、催化剂和选择性氧化烃类的方法

Similar Documents

Publication Publication Date Title
CN106238027A (zh) 纳米TiO2毛细管柱的制备方法
Wei et al. TiO 2-based heterojunction photocatalysts for photocatalytic reduction of CO 2 into solar fuels
Zarrin et al. Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants
Wang et al. Bioinspired synthesis of photocatalytic nanocomposite membranes based on synergy of Au-TiO2 and polydopamine for degradation of tetracycline under visible light
Dahl et al. Composite titanium dioxide nanomaterials
CN101791565B (zh) 一种TiO2@石墨相氮化碳异质结复合光催化剂及其制备方法
CN103143380B (zh) 以溶剂挥发法醇溶剂制备石墨相氮化碳/{001}面暴露锐钛矿相二氧化钛纳米复合材料
Hao et al. Boosting the piezocatalytic performance of Bi 2 WO 6 nanosheets towards the degradation of organic pollutants
Liu et al. Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties, and applications
Zhang et al. Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation
Liang et al. Photocatalytical properties of TiO2 nanotubes
CN103100398B (zh) 一种制备高催化活性天然沸石负载一维TiO2纳米线的方法
Li et al. Visible-light photochemical activity of heterostructured core–shell materials composed of selected ternary titanates and ferrites coated by TiO2
CN105170173B (zh) 一种钙钛矿材料/有机聚合物复合光催化剂、制备及应用
CN103285861B (zh) 一种具有可见光活性的Ag3VO4/TiO2复合纳米线其制备方法及应用
CN103657623B (zh) 微球型二氧化钛光催化剂及其制备方法
CN101966452B (zh) 一种可见光响应的LaVO4与TiO2复合纳米管的制备方法
CN104071836B (zh) 一种二氧化钛空心纳米球及其制备方法
CN103922395A (zh) 一种TiO2纳米棒阵列薄膜材料及其制备方法
Wang et al. When MoS 2 meets TiO 2: facile synthesis strategies, hybrid nanostructures, synergistic properties, and photocatalytic applications
CN104759273A (zh) 一种原位碳掺杂中空二氧化钛可见光催化剂的制备方法
Liu et al. In situ formation of porous TiO2 nanotube array with MgTiO3 nanoparticles for enhanced photocatalytic activity
Rabin et al. A procession on photocatalyst for solar fuel production and waste treatment
CN103894163B (zh) 一种高性能纳米TiO2光催化剂材料及其制备方法
CN105836796A (zh) 一种铃铛型核壳结构纳米TiO2@void@SiO2粉体的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161221

RJ01 Rejection of invention patent application after publication