具体实施方式
〔实施方式1〕
以下,基于图1~图4,对本发明的第一实施方式进行说明。
(带有框架的转印膜10)
首先,以下参照图2对本实施方式的生物体分子分析装置所使用的带有框架的转印膜进行说明。图2的(a)是对带有框架的转印膜10的概要进行说明的图。图2的(b)是图2的(a)中的线A以及线B上的剖视图。
如图2的(a)所示,带有框架的转印膜10通过一对框架(框架部件)2分别独立地支承转印膜1的一边(第一边)和与该一边对置的一边(第二边)。
如图2的(b)的线A以及线B上的剖视图所示,带有框架的转印膜10更为优选作为一对框架2中的嵌合部3,设置有贯通框架2的开口状的嵌合部(贯通孔)。嵌合部3分别能够与对应的凸型的形状的嵌合部嵌合。由此,能够通过嵌合部3将带有框架的转印膜10和生物体分子分析装置固定。
带有框架的转印膜10通过平行地固定一对框架2,并相互分离,能够无松弛地扩张转印膜1。另外,由于能够预先通过框架2对被切断为规定的形状的转印膜1进行固定,所以能够将简单并且适当的张力施加给转印膜1并且将带有框架的转印膜10安装于生物体分子分析装置。因此,能够固定于生物体分子分析装置,并在通过排出转印转印分析物时防止印迹的失真。
另外,在带有框架的转印膜10中,作为转印膜1的重物,能够使用框架2。因此,能够防止在振动筛等的试剂槽中,转印膜1在试剂中活动,而在抗体反应上产生不均。进一步,由于带有框架的转印膜10是由转印膜1和一对框架2构成的简单的结构,所以例如与通过框架对外周全部进行固定从而将转印膜平坦地扩展并固定的结构、通过弯曲的框架对转印膜进行扩展并固定的结构相比较,不笨重,例如,能够减少进行免疫印迹法时所使用的抗体的量。
(转印膜1)
转印膜1是用于吸附并保持通过生物体分子分析装置的分离部分离出的生物体分子样本(分析物)的膜。在这里,优选转印膜1是能够长期稳定地保存通过分离部分离出的生物体分子样本(分析物),并且容易进行之后的分析的生物体分子样本的吸附/保持体。作为转印膜1的材质,优选具有较高的强度,并且样本结合能(每单位面积能够吸附的重量)较高的材质。作为转印膜1,在样本是蛋白质的情况下,适合聚偏氟乙烯(PVDF)膜等。此外,优选PVDF膜预先使用甲醇等来进行亲水化处理。此外,也能够使用硝酸纤维素膜或者尼龙膜等,以往利用于蛋白质、DNA以及核酸的吸附的膜。
作为可以在生物体分子分析装置中被分离以及吸附的生物体分子样本,能够举出蛋白质、DNA以及RNA,但并不限定于这些。例如,来自生物材料(例如,生物个体、体液、细胞株、组织培养物或组织片段)的调制物、或者市售的试剂等也包含于样本例。进一步而言,多肽或者核苷酸也是样本的一种。
(框架2)
一对框架2也可以分别为框架2的长度比被固定的转印膜1的一边的长度长。另外,优选框架2由绝缘性的材料构成。作为绝缘性材料,能够使用聚甲基丙烯酸甲酯(丙烯酸)、聚苯乙烯、聚乙烯、聚丙烯、聚对苯二甲酸乙二酯(PET)、聚甲醛(POM)、聚醚醚酮(PEEK)等树脂、或者玻璃。
另外,框架2更为优选对表面实施亲水性处理。例如,也可以在由上述材质构成的框架2的表面设置表面涂层。由此,能够防止从分离部的排出部排出的蛋白质等分析物附着于框架2的表面,并能够防止框架2被污染。
此外,优选框架2的表面的对水接触角是90°以下,更为优选是60°以下。通过使框架2的表面的对水接触角成为90°以下,能够适当地防止框架2被分析物污染。
(生物体分子分析装置200)
接下来,参照图3对本发明的一实施方式的生物体分子分析装置200进行详细说明。图3是对本发明的一实施方式的生物体分子分析装置200的概要进行说明的图。如该图所示,生物体分子分析装置200具备夹钳20、阳极缓冲槽30(缓冲槽)、阳极工作台31、阴极缓冲槽40、电泳凝胶芯片50(分离部)、以及输送部。
在生物体分子分析装置200中,阳极缓冲槽30以能够拆装的状态固定于阳极工作台31。在阳极缓冲槽30内配置有夹钳20,带有框架的转印膜10在阳极缓冲槽30内被夹钳20固定。阴极缓冲槽40以能够拆装的状态固定于阳极缓冲槽30。电泳凝胶芯片50以相互对置的两端部中的一端部位于阳极缓冲槽30内,另一端部位于阴极缓冲槽40内的方式,配置于生物体分子分析装置200。
生物体分子分析装置200的概要如下。电泳凝胶芯片50通过电泳对被导入分离凝胶52的分析物进行分离,并使分离出的分析物通过处于电泳凝胶芯片50的一端的排出部50a排出至转印膜1。输送部在输送方向X(从设置有带有框架的转印膜10的框架2的一边(第一边)朝向设置有框架2的另一边(第二边)的方向)上输送转印膜1。由此,被排出的分析物被吸附于转印膜1上的与被排出的时机相应的位置(在被排出的时机与电泳凝胶芯片50对置的位置)。由此,将被分离出的分析物转印至转印膜1。
(夹钳20)
如图3所示,夹钳20具备前部夹钳20a以及20b、后部夹钳21a以及21b、和夹钳框架22。前部夹钳20a以及20b配置于输送转印膜1时的输送结束地点侧,另一方面,后部夹钳21a以及21b配置于输送开始地点侧。
在夹钳20中,前部夹钳20a和前部夹钳20b被固定为能够通过夹具释放。在前部夹钳20a上的2个位置设置有未图示的嵌合部,使设置于图2的(a)所示的一方的框架2的2个位置的嵌合部3分别与上述嵌合部嵌合。之后,通过前部夹钳20a和前部夹钳20b夹住一方的框架2并对其固定。
同样地,在夹钳20中,后部夹钳21a和后部夹钳21b被固定为能够通过夹具释放。在后部夹钳21a的2个位置设置有未图示的嵌合部,使设置于图2的(a)所示的另一方的框架2的2个位置的嵌合部3分别与上述嵌合部嵌合。之后,通过后部夹钳21a和后部夹钳21b夹住另一方的框架2并对其进行固定。
夹钳框架22将前部夹钳20a和后部夹钳21a以分离了一定的距离的状态固定。因此,在通过夹钳20对带有框架的转印膜10进行了固定时,转印膜1以无松弛地扩张的状态被固定。并且,夹钳框架22从转印膜1的输送方向侧方(未被框架2支承的2个边的外侧)固定前部夹钳20a和后部夹钳21a。由此,能够在经由夹钳20将带有框架的转印膜10固定于生物体分子分析装置200时,以在转印膜1的输送路径上夹钳框架22不与电泳凝胶芯片50以及引导装置33及34接触的方式,配置带有框架的转印膜10。
载体23设置于前部夹钳20b。在将夹钳20安装于阳极缓冲槽30的内侧时,能够将夹钳20以能够通过载体23拆装的状态固定于配置于阳极缓冲槽30的外部的导向柱66。
(阳极缓冲槽30)
在图3中,用虚线表示阳极缓冲槽30。如图3所示,阳极缓冲槽30具备阳极(电极)32、引导装置(支承部件)33及34、以及阳极罩35(电极罩)。
阳极缓冲槽30中充满阳极缓冲剂。作为阳极缓冲剂,例如能够使用Tris/甘氨酸缓冲液、醋酸缓冲溶液、碳酸钠缓冲溶液、CAPS缓冲液、Tris/硼酸/EDTA缓冲液、Tris/醋酸/EDTA缓冲液、MOPS、磷酸缓冲液、Tris/Tricine等缓冲液。被夹钳20固定的带有框架的转印膜10被设置在充满阳极缓冲槽30内的阳极缓冲剂中。
阳极32是由白金线等构成的细长的棒状的电极。阳极32以其长度方向与带有框架的转印膜10的输送方向X垂直的方式,设置于阳极缓冲槽30的底部。阳极32不是配置于电泳凝胶芯片50的排出部50a的正下方,而是配置于在输送方向X上与排出部50a分离了一定距离的位置。该位置是在设置有带有框架的转印膜10时,能够从转印膜1的与电泳凝胶芯片50对置侧的背面,对阳极32与阴极41之间施加电压的位置。
引导装置33以及34是从转印膜1的与电泳凝胶芯片50相反侧分别支承从输送方向的前后夹持转印膜1上电泳凝胶芯片50抵接(接触)的位置的一对位置的支承部件。引导装置33以及34在阳极缓冲槽30的底部,设置在输送带有框架的转印膜10的输送路径上。引导装置33以及34以各自的高度方向与电泳凝胶芯片50的面内方向平行,并且与输送带有框架的转印膜10的输送方向X垂直相交的方式配置。由此,引导装置33以及34从转印膜1的与电泳凝胶芯片50对置的一侧的背面与电泳凝胶芯片50中的排出部50a侧的端部的长度方向平行地支承转印膜1。
(阳极罩35)
阳极罩35在阳极32的上部与阳极32抵接或者与阳极32分离地设置。虽然详细内容后述,但生物体分子分析装置200通过具备阳极罩35,能够使从阳极32由电极产生的气泡在阳极缓冲槽30的上部逸出,所以能够防止气泡给转印膜1与电泳凝胶芯片50的抵接位置带来负面影响。
阳极罩35由绝缘性的材料构成。作为绝缘性材料,能够使用聚甲基丙烯酸甲酯(丙烯酸)、聚苯乙烯、聚乙烯、聚丙烯、聚对苯二甲酸乙二酯(PET)、聚甲醛(POM)、聚醚醚酮(PEEK)等树脂、或者玻璃。
另外,阳极罩35更为优选对表面实施亲水性处理。例如,也可以在由上述材质构成的框架2的表面例如设置表面涂层。由此,能够更容易地使从阳极32产生的气泡沿着阳极罩35的表面通过阳极缓冲槽30的上部逸出。
此外,优选阳极罩35的表面的对水接触角是90°以下,更为优选是60°以下。通过使阳极罩35的表面的对水接触角成为90°以下,能够更容易地使气泡沿着阳极罩35的表面逸出。
(阴极缓冲槽40)
如图3所示,阴极缓冲槽40具备阴极41以及锁42。阴极41是由白金线等构成的细长的棒状的电极。阴极41以其长度方向与转印膜1的输送方向正交的方式,配置在阴极缓冲槽40的内侧的上部(分离凝胶52的正上方)。即阴极41的长度方向与阳极32的长度方向平行。
在阴极缓冲槽40中充满阴极缓冲剂。阴极缓冲剂能够使用与阳极缓冲剂相同的缓冲液。
在阴极缓冲槽40内,电泳凝胶芯片50被锁42固定。此时,电泳凝胶芯片50中的与排出部50a相反侧的端部被浸渍于充满至阴极缓冲槽40的阴极缓冲剂。另一方面,电泳凝胶芯片50中的排出部50a侧的端部被浸渍于充满至阳极缓冲槽30的阳极缓冲剂。
如图3所示,分离凝胶52中的与排出部50a侧相反侧的端部与阴极41对置。另一方面,分离凝胶52的排出部50a侧的端部未与阳极32对置。这样,分离凝胶52的排出部50a侧的端部在转印膜1的输送方向上与阳极32分离一定距离。
(电泳凝胶芯片50)
如图3所示,电泳凝胶芯片50具备绝缘板51、分离凝胶52、以及绝缘板53。绝缘板51以及绝缘板53例如通过由玻璃以及丙烯酸等绝缘体构成的板形成。在绝缘板51与绝缘板53之间形成有分离凝胶52。
分离凝胶52是用于根据分子量对被导入的生物体分子样本(分析物)进行分离的凝胶。作为分离凝胶52的例子,可举出聚丙烯酰胺凝胶以及琼脂糖凝胶等,优选上述的合适的组成使用与缓冲液匹配的凝胶。分离凝胶52能够在将电泳凝胶芯片50安装于阴极缓冲槽40之前填充至电泳凝胶芯片50内而形成。
电泳凝胶芯片50以与转印膜1相垂直地抵接的方式配置于生物体分子分析装置200。进一步,电泳凝胶芯片50铅垂地配置。电泳凝胶芯片50的排出部50a与转印膜1的表面接触。在电泳凝胶芯片50中,通过与排出部50a对置并且配置在阴极缓冲槽40中的端部,对分离凝胶52供给生物体分子样本。在供给了生物体分子样本后,通过对阳极32与阴极41之间施加电压,来进行电泳。其结果,分析物通过排出部50a被转印至转印膜1。
(输送部)
如图3所示,输送部具备马达62、滚珠丝杠63、导向轴64、轴支架65、以及导向柱66。
在输送部中,通过马达62使滚珠丝杠63旋转,从而能够使轴支架65沿着导向轴64在转印方向X上移动。在轴支架65上固定有导向柱66,导向柱66从阳极缓冲槽30的外部支承设置于夹钳20的载体23。
输送部通过上述结构使马达62旋转,从而经由配置于阳极缓冲槽30的外部的导向柱66,使配置在阳极缓冲槽30的内部的带有框架的转印膜10在转印方向X上移动。
(生物体分子分析装置200的动作)
以下对生物体分子分析装置200的动作进行说明。首先,通过夹钳20对带有框架的转印膜10进行固定,并将带有框架的转印膜10配置在充满阳极缓冲剂的阳极缓冲槽30的内侧。带有框架的转印膜10的转印膜1固定为被引导装置33以及引导装置34从下侧支承的状态。
之后,将通过锁42对电泳凝胶芯片50进行了固定的阴极缓冲槽40固定在阳极缓冲槽30的上部。此时,阴极缓冲槽40被设置为将电泳凝胶芯片50按压于转印膜1的上侧的状态。由此,转印膜1通过与引导装置33、引导装置34以及电泳凝胶芯片50接触,被固定为折弯为向与电泳凝胶芯片50相反侧成为凸(沿折痕向内侧折状)的状态。
接下来,通过在阳极32与阴极41之间施加电压,在阳极缓冲剂中,带有框架的转印膜10的转印膜1以保持转印有通过电泳凝胶芯片50排出的分析物并且按压电泳凝胶芯片50的排出部的状态,在图3所示的转印方向X上被输送。因此,在输送转印膜1时产生的张力集中于设置在电泳凝胶芯片50的端部的排出部。即、转印膜1以通过一定的力按压电泳凝胶芯片50的排出部的状态,在转印方向X上被输送。
因此,在带有框架的转印膜10中,能够防止在输送转印膜1时,在转印膜1与电泳凝胶芯片50的分析物的排出部之间产生间隙。因此,能够抑制从电泳凝胶芯片50的排出部排出的分析物在被转印至转印膜1之前扩散到阳极缓冲剂中。由此,能够减少被转印至转印膜1的分析物的波段的波动,并能够提高生物体分子分析装置的灵敏度。
(阳极罩35的配置)
图1是表示本实施方式的生物体分子分析装置200中的阳极罩35的配置的图。在该图中,仅图示有生物体分子分析装置200所具备的一部分部件。在图1的例子中,阳极罩35具有平坦的板形状。
阳极罩35具有相互对置的端部35a以及端部35b。在输送方向X上,端部35a比端部35b更接近转印膜1与电泳凝胶芯片50的抵接位置(与排出部50a一致)。换言之,在输送方向X上,端部35b比端部35a更远离排出部50a。
阳极罩35相对于转印膜1的输送方向X倾斜一定的角度。这里所说的一定的角度是在与转印膜1的面内方向正交的方向上,端部35a比端部35b接近阳极32(阳极缓冲槽30的底部)的角度。换言之,是在与转印膜1的面内方向正交的方向上,端部35b比端部35a接近阳极缓冲剂的水面的角度。
由于如图1所示阳极罩35倾斜,所以能够使在阳极32中产生的气泡沿着阳极罩35的表面向转印膜1的卷绕方向Y逸出。即、气泡向远离排出部50a的方向逸出,而未向端部35a侧(排出部50a侧)移动。其结果,气泡不会给转印膜1与电泳凝胶芯片50的抵接位置带来负面影响。
(电力线的集中)
如上所述,阳极32不是配置于排出部50a的正下方,而是配置于在输送方向X上与排出部50a分离了一定距离的位置。因此,若没有阳极罩35,则在电泳时从排出部50a产生的电力线37像图4所示那样大范围地扩展。图4是表示没有阳极罩35的情况下产生的电力线37的扩展的图。如该图所示,若产生大范围地扩展的电力线37,则从排出部50a排出的分析物较大地扩散,其结果,存在使分析物的分离能大幅降低的可能性。
另一方面,在本实施方式中,如图1所示,阳极罩35的端部35a位于电泳凝胶芯片50与转印膜1的抵接位置上的阳极32侧的端部的下部。由于阳极罩35由绝缘性的材料构成,所以从排出部50a产生的电力线36被存在于排出部50a的附近的阳极罩35阻碍,不会朝向阳极32扩展。其结果,如图1所示,能够从排出部50a产生被集中的电力线36。由此,能够使分析物的分离能大幅提高。
另外,阳极罩35能够很容易地从生物体分子分析装置200取下。因此,能够定期地容易地清扫或者清洗阳极罩35。进一步而言,也能够将老化的阳极罩35更换为新品。
〔实施方式2〕
以下,基于图5对本发明的第二实施方式进行说明。
图5是表示集中部件38的配置、以及从排出部50a产生的电力线39的图。如该图所示,本实施方式的生物体分子分析装置200除了第一实施方式的生物体分子分析装置200所具备的各部件以外,还具备集中部件38(第二绝缘性的部件)。
集中部件38由绝缘性的材料构成。在本实施方式中,集中部件38的材料与阳极罩35的材料相同,但未必限定于此。
集中部件38以垂直于转印膜1的方式配置于排出部50a的与阳极32侧相反侧的端部的下部。由于集中部件38是绝缘性的,所以从排出部50a产生的电力线39被集中部件38阻碍,而不能够向与阳极32侧相反侧扩展。其结果,能够使电力线39比在没有集中部件38的情况下产生的图1所示的电力线36进一步集中。由此,能够使分析物的分离能进一步大幅提高。
〔实施方式3〕
以下基于图6对本发明的第三实施方式进行说明。
图6是表示本实施方式的生物体分子分析装置200中的阳极罩35的结构的图。
图6的(a)或者(b)所示的生物体分子分析装置200所具备的各部件与第一实施方式的生物体分子分析装置200相同。但是,在阳极罩35与阳极缓冲槽30的底面之间设置有狭缝70(间隙)的点,与第一实施方式不同。
在图6的(a)中,在阳极罩35的端部35a与阳极缓冲槽30的底面之间设置有狭缝70。该狭缝70相对于输送方向X配置为垂直方向、或者配置于比阳极32靠下。并且,狭缝70配置于排出部50a的正下方。
如图6的(a)所示,阳极罩35的端部35b侧配置于比阳极32靠上方。由此,在阳极罩35的端部354b侧形成有较宽的开口部71。在电泳时,在阳极32产生热以及气泡。通过该热,在阳极32的周围产生阳极缓冲剂的对流。由于开口部71比狭缝70宽,所以通过热的对流,包含气泡的阳极缓冲剂容易从狭缝70向开口部71移动。其结果,能够进一步防止从阳极32产生的气泡朝向排出部50a。
在图6的(b)中,阳极罩35在排出部50a的下部弯曲,端部35a配置在阳极32的下部。因此,设置在端部35a与阳极缓冲槽30的底面之间的狭缝70配置于比阳极32靠下。通过该结构,从排出部50a产生的电力线72被阳极罩35阻碍,而不会朝向阳极32扩展。即、电力线72朝向处于阳极32的下方的狭缝70,沿着阳极罩35集中。由此,能够使分析物的分离能大幅提高。
在这里,在图6的(b)所示的结构中,也在阳极罩35的端部35b侧形成有较宽的开口部71。因此,与图6的(a)所示的结构相同,能够进一步防止从阳极32产生的气泡朝向排出部50a。
图6的(c)所示的生物体分子分析装置200除了第一实施方式的生物体分子分析装置200所具备的各部件以外,还具备设置于阳极缓冲槽30的底面的纵向细长的绝缘性的直立部件73(第一绝缘性的部件)。直立部件73在排出部50a的阳极32侧的端部的下部,配置为垂直于转印膜1。阳极罩35延伸到直立部件73的上部。
在图6的(c)所示的结构中,在阳极罩35的端部35a与阳极缓冲槽30的底面之间未形成狭缝70。代替此,在比阳极罩35的端部35a稍微靠端部35b侧的位置与直立部件73之间设置有狭缝74。即、狭缝74设置在与阳极缓冲槽30的底面分离了一定距离(与直立部件73的高度相等)的位置。
在这里,在图6的(c)所示的结构中,也在阳极罩35的端部35b侧形成有较宽的开口部71。因此,与图6的(a)所示的结构相同,其结果,能够进一步防止从阳极32产生的气泡朝向排出部50a。
〔实施方式4〕
以下基于图7对本发明的第四实施方式进行说明。
本实施方式的生物体分子分析装置200所具备的各部件与第一实施方式的生物体分子分析装置200相同。但是,阳极罩35的倾斜方向与第一实施方式不同。
图7的(a)是表示从输送方向X的左侧观察生物体分子分析装置200的情况下的阳极罩35的配置的图。该图所示,阳极罩35没有相对于输送方向X倾斜。
图7的(b)是从输送方向X的终点侧观察生物体分子分析装置200的情况下的阳极罩35的配置的图。如该图所示,阳极罩35相对于与输送方向X正交并且与转印膜1的面内方向平行的方向以一定的角度倾斜。具体而言,在与转印膜1的面内方向正交的方向上,阳极罩35所具有的一对端部35c以及35d中的位于输送方向X的左侧的端部35c比位于输送方向X的右侧的端部35d更接近阳极32。换言之,在与转印膜1的面内方向正交的方向上,端部35d比端部35c更接近阳极缓冲剂的水面。
由于如图7的(b)所示阳极罩35倾斜,所以能够使在阳极32中产生的气泡向阳极罩35的端部35d侧,即、与转印膜1的卷绕方向Y垂直的方向逸出。其结果,由于气泡不向排出部50a侧移动,所以气泡不会给转印膜1与电泳凝胶芯片50的抵接位置带来负面影响。
此外,阳极罩35的倾斜并不限于图7的(b)所示的方式。阳极罩35也可以以端部35c比端部35d更接近阳极缓冲剂的水面的角度倾斜。在该情况下,能够使在阳极32中产生的气泡向端部35c侧逸出。
〔实施方式5〕
以下基于图8~图11对本发明的实施方式5进行说明。
(带有框架的转印膜110)
首先,以下参照图9对本实施方式的生物体分子分析装置所使用的带有框架的转印膜进行说明。图9的(a)是对带有框架的转印膜110的概要进行说明的图。图9的(b)是图9的(a)中的线A以及线B上的剖视图。
如图9的(a)所示,带有框架的转印膜110通过一对框架(框架部件)102分别独立地支承转印膜101的一边(第一边)和与该一边对置的一边(第二边)。
如图9的(b)的线A以及线B上的剖视图所示,带有框架的转印膜110更为优选作为一对框架102的嵌合部103,设置有贯通框架102的开口状的嵌合部(贯通孔)。嵌合部103分别能够与对应的凸型的形状的嵌合部嵌合。由此,能够通过嵌合部103将带有框架的转印膜110和生物体分子分析装置固定。
带有框架的转印膜110通过将一对框架102平行地固定,并使其相互分离,能够无松弛地扩张转印膜101。另外,由于能够通过框架102对预先切断为规定的形状的转印膜101进行固定,所以能够对转印膜101施加简单并且适当的张力,并且将带有框架的转印膜110安装于生物体分子分析装置。因此,能够在固定于生物体分子分析装置,并通过排出转印来转印分析物时防止印迹的失真。
另外,在带有框架的转印膜110中,作为转印膜101的重物能够使用框架102。因此,能够防止在振动筛等的试剂槽中,转印膜101在试剂中活动,而在抗体反应中产生不均。进一步,由于带有框架的转印膜110是由转印膜101和一对框架102构成的简单的结构,所以例如与通过框架对外周全部进行固定从而将转印膜平坦地扩展并固定的结构、通过弯曲的框架将转印膜扩展并固定的结构相比较,不笨重,例如,能够减少进行免疫印迹法时所使用的抗体的量。
(转印膜101)
转印膜101是用于吸附并保持通过生物体分子分析装置的分离部分离出的生物体分子样本(分析物)的膜。在这里,优选转印膜101是能够长期稳定地保存通过分离部分离出的生物体分子样本(分析物),并且容易进行之后的分析的生物体分子样本吸附/保持体。作为转印膜101的材质,优选具有较高的强度,并且样本结合能(每单位面积能够吸附的重量)较高的材质。作为转印膜101,在样本是蛋白质的情况下,适合聚偏氟乙烯(PVDF)膜等。此外,优选PVDF膜预先使用甲醇等进行亲水化处理。此外,也能够使用硝酸纤维素膜或者尼龙膜等,以往利用于蛋白质、DNA以及核酸的吸附的膜。
作为可以在生物体分子分析装置中被分离以及吸附的生物体分子样本,能够举出蛋白质、DNA以及RNA,但并不限定于这些。例如,来自生物材料(例如,生物个体、体液、细胞株、组织培养物、或组织片断)的调制物、或者市售的试剂等也包含于样本的例子。进一步而言,多肽或者核苷酸也是样本的一种。
(框架102)
一对框架102也可以分别为框架102的长度比被固定的转印膜101的一边的长度长。另外,优选框架102由绝缘性的材料构成。作为绝缘性材料,能够使用聚甲基丙烯酸甲酯(丙烯酸)、聚苯乙烯、聚乙烯、聚丙烯、聚对苯二甲酸乙二酯(PET)、聚甲醛(POM)、聚醚醚酮(PEEK)等树脂、或者玻璃。
另外,更为优选框架102对表面实施亲水性处理。例如,也可以在由上述材质构成的框架102的表面设置表面涂层。由此,能够防止从分离部的排出部排出的蛋白质等分析物附着于框架102的表面,并能够防止框架102被污染。
此外,优选框架102的表面的对水接触角是90°以下,更为优选是60°以下。通过使框架102的表面的对水接触角成为90°以下,能够适当地防止框架102被分析物污染。
(生物体分子分析装置201)
接下来,参照图10对本发明的一实施方式的生物体分子分析装置201进行详细说明。图10是对本发明的一实施方式的生物体分子分析装置201的概要进行说明的图。如该图所示,生物体分子分析装置201具备夹钳120、阳极缓冲槽130(缓冲槽)、阳极工作台131、阴极缓冲槽140、电泳凝胶芯片150(分离部)、以及输送部,在阳极缓冲槽130的底部设置有第一凹部130a。
在生物体分子分析装置201中,阳极缓冲槽130以能够拆装的状态固定于阳极工作台131。在阳极缓冲槽130内配置有夹钳120,带有框架的转印膜110在阳极缓冲槽130内被夹钳120固定。阴极缓冲槽140以能够拆装的状态固定于阳极缓冲槽130。电泳凝胶芯片150以相互对置的两端部中的一端部位于阳极缓冲槽130内,另一端部位于阴极缓冲槽140内的方式,配置于生物体分子分析装置201。
生物体分子分析装置201的概要如下。电泳凝胶芯片150通过电泳对被导入分离凝胶152的分析物进行分离,并将分离出的分析物通过处于电泳凝胶芯片150的一端的排出部150a排出至转印膜101。输送部在输送方向X(从设置有带有框架的转印膜110的框架102的一边(第一边)朝向设置有框架102的另一边(第二边)的方向)输送转印膜101。由此,被排出的分析物吸附于转印膜101的与排出的时机相应的位置(在排出的时机与电泳凝胶芯片150对置的位置)。由此,将被分离出的分析物转印至转印膜101。
(夹钳120)
如图10所示,夹钳120具备前部夹钳120a以及120b、后部夹钳121a以及121b、和夹钳框架122。前部夹钳120a以及120b配置于输送转印膜101时的输送结束地点侧,另一方面,后部夹钳121a以及121b配置于输送开始地点侧。
在夹钳120中,前部夹钳120a和前部夹钳120b以能够通过夹具释放的方式被固定。在前部夹钳120a的2个位置设置有未图示的嵌合部,使设置于图9的(a)所示的一方的框架102的2个位置的嵌合部103分别与上述嵌合部嵌合。之后,通过前部夹钳120a和前部夹钳120b夹住一方的框架102对其进行固定。
同样地,在夹钳120中,后部夹钳121a和后部夹钳121b以能够通过夹具释放的方式被固定。在后部夹钳121a的2个位置设置有未图示的嵌合部,使设置于图9的(a)所示的另一方的框架102的2个位置的嵌合部103分别与上述嵌合部嵌合。之后,通过后部夹钳121a和后部夹钳121b夹住另一方的框架102对其进行固定。
夹钳框架122将前部夹钳120a和后部夹钳121a以分离了一定的距离的状态进行固定。因此,在通过夹钳120对带有框架的转印膜110进行了固定时,转印膜101以无松弛地扩张的状态被固定。并且,夹钳框架122从转印膜101的输送方向侧方(未被框架102支承的2个边的外侧)对前部夹钳120a和后部夹钳121a进行固定。由此,在经由夹钳120将带有框架的转印膜110固定于生物体分子分析装置201时,能够以在转印膜101的输送路径上夹钳框架122不与电泳凝胶芯片150以及引导装置133及134接触的方式,配置带有框架的转印膜110。
载体123设置于前部夹钳120b。在将夹钳120安装于阳极缓冲槽130的内侧时,能够以可通过载体123拆装的状态将夹钳120固定于配置于阳极缓冲槽130的外部的导向柱166。
(阳极缓冲槽130)
在图10中,用虚线表示阳极缓冲槽(缓冲液槽)130。如图10所示,阳极缓冲槽130具备阳极(电极)132、引导装置(支承部件)133及134、以及阳极罩135(电极罩)。另外,在阳极缓冲槽130的底部设置有凹部130a。
在阳极缓冲槽130中充满阳极缓冲剂。作为阳极缓冲剂,例如能够使用Tris/甘氨酸缓冲液、醋酸缓冲溶液、碳酸钠缓冲溶液、CAPS缓冲液、Tris/硼酸/EDTA缓冲液、Tris/醋酸/EDTA缓冲液、MOPS、磷酸缓冲液、Tris/Tricine等缓冲液。被夹钳120固定的带有框架的转印膜110设置于充满阳极缓冲槽130内的阳极缓冲剂中。
阳极132是由白金线等构成的细长的棒状的电极。阳极132以其长度方向与带有框架的转印膜110的输送方向X垂直的方式,设置于阳极缓冲槽130的底部。阳极132未配置于电泳凝胶芯片150的排出部150a的正下方,而是配置于在输送方向X上与排出部150a分离了一定距离的位置。该位置是在设置有带有框架的转印膜110时,能够从与转印膜101的电泳凝胶芯片150对置的一侧的背面对阳极132与阴极141之间施加电压的位置。
引导装置133以及134是从转印膜101的与电泳凝胶芯片150相反侧分别支承从输送方向的前后夹持在转印膜101上电泳凝胶芯片150抵接(接触)的位置的一对位置的支承部件。引导装置133以及134在阳极缓冲槽130的底部,设置在输送带有框架的转印膜110的输送路径上。引导装置133以及134以各自的高度方向与电泳凝胶芯片150的面内方向平行,并且与输送带有框架的转印膜110的输送方向X垂直相交的方式配置。由此,引导装置133以及134从转印膜101的与电泳凝胶芯片150对置的一侧的背面,与电泳凝胶芯片150的排出部150a侧的端部的长度方向平行地支承转印膜101。
(阳极罩135)
阳极罩135与阳极132抵接或者与阳极132分离地设置在阳极132与转印膜101和电泳凝胶芯片150的抵接位置之间。详细内容后述,由于通过生物体分子分析装置201具备阳极罩135,能够使从阳极132由电极产生的气泡在阳极缓冲槽130的上部逸出,所以能够防止气泡给转印膜101与电泳凝胶芯片150的抵接位置带来负面影响。
阳极罩135由绝缘性的材料构成。作为绝缘性材料,能够使用聚甲基丙烯酸甲酯(丙烯酸)、聚苯乙烯、聚乙烯、聚丙烯、聚对苯二甲酸乙二酯(PET)、聚甲醛(POM)、聚醚醚酮(PEEK)等树脂、或者玻璃。
另外,更为优选阳极罩135对表面实施亲水性处理。例如,也可以在由上述材质构成的框架102的表面例如设置表面涂层。由此,能够更容易使从阳极132产生的气泡沿着阳极罩135的表面在阳极缓冲槽130的上部逸出。
此外,优选阳极罩135的表面的对水接触角是90°以下,更为优选是60°以下。通过使阳极罩135的表面的对水接触角成为90°以下,能够更容易使气泡沿着阳极罩135的表面逸出。
(阴极缓冲槽140)
如图10所示,阴极缓冲槽140具备阴极141以及锁142。阴极141是由白金线等构成的细长的棒状的电极。阴极141以其长度方向与转印膜101的输送方向正交的方式,配置在阴极缓冲槽140的内侧的上部(分离凝胶152的正上方)。即、阴极141的长度方向与阳极132的长度方向平行。
在阴极缓冲槽140中充满阴极缓冲剂。阴极缓冲剂能够使用与阳极缓冲剂相同的缓冲液。
在阴极缓冲槽140内,电泳凝胶芯片150被锁142固定。此时,电泳凝胶芯片150中的与排出部150a相反侧的端部浸渍于充满至阴极缓冲槽140的阴极缓冲剂。另一方面,电泳凝胶芯片150中的排出部150a侧的端部浸渍于充满至阳极缓冲槽130的阳极缓冲剂。
如图10所示,分离凝胶152的与排出部150a侧相反侧的端部与阴极141对置。另一方面,分离凝胶152的排出部150a侧的端部不与阳极132对置。这样,分离凝胶152的排出部150a侧的端部在转印膜101的输送方向上与阳极132分离一定距离。
(电泳凝胶芯片150)
如图10所示,电泳凝胶芯片150具备绝缘板151、分离凝胶152、以及绝缘板153。绝缘板151以及绝缘板153例如通过由玻璃以及丙烯酸等绝缘体构成的板形成。在绝缘板151与绝缘板153之间形成有分离凝胶152。
分离凝胶152是用于根据分子量对被导入的生物体分子样本(分析物)进行分离的凝胶。作为分离凝胶152的例子,可举出聚丙烯酰胺凝胶以及琼脂糖凝胶等,优选上述的合适的组成使用与缓冲液匹配的凝胶。分离凝胶152能够在将电泳凝胶芯片150安装于阴极缓冲槽140之前填充至电泳凝胶芯片150内而形成。
电泳凝胶芯片150以与转印膜101垂直地抵接的方式,配置于生物体分子分析装置201。并且,电泳凝胶芯片150配置为铅垂。电泳凝胶芯片150的排出部150a与转印膜101的表面接触。在电泳凝胶芯片150中,通过与排出部150a对置并且配置于阴极缓冲槽140中的端部,对分离凝胶152供给生物体分子样本。在供给了生物体分子样本后,通过对阳极132与阴极141之间施加电压,来进行电泳。其结果,分析物通过排出部150a被转印至转印膜101。
(输送部)
如图10所示,输送部具备马达162、滚珠丝杠163、导向轴164、轴支架165、导向柱166。
在输送部中,通过马达162使滚珠丝杠163旋转,从而能够使轴支架165沿着导向轴164在转印方向X上移动。在轴支架165固定有导向柱166,导向柱166从阳极缓冲槽130的外部支承设置于夹钳120的载体123。
输送部通过上述结构,使马达162旋转,从而经由配置于阳极缓冲槽130的外部的导向柱166,使配置于阳极缓冲槽130的内部的带有框架的转印膜110在转印方向X上移动。
(生物体分子分析装置201的动作)
以下,对生物体分子分析装置201的动作进行说明。首先,通过夹钳120对带有框架的转印膜110进行固定,并将带有框架的转印膜110配置于充满阳极缓冲剂的阳极缓冲槽130的内侧。带有框架的转印膜110的转印膜101被固定为从下侧被引导装置133以及引导装置134支承的状态。
之后,将通过锁142对电泳凝胶芯片150进行了固定的阴极缓冲槽140固定在阳极缓冲槽130的上部。此时,阴极缓冲槽140被设置为将电泳凝胶芯片150按压于转印膜101的上侧的状态。由此,转印膜101通过与引导装置133、引导装置134以及电泳凝胶芯片150接触,被固定为折弯为向与电泳凝胶芯片150相反侧成为凸(沿折痕向内侧折状)的状态。
接下来,通过对阳极132与阴极141之间施加电压,在阳极缓冲剂中,带有框架的转印膜110的转印膜101以保持转印有通过电泳凝胶芯片150排出的分析物并且按压电泳凝胶芯片150的排出部的状态,在图10所示的转印方向X上被输送。因此,在输送转印膜101时产生的张力集中于设置在电泳凝胶芯片150的端部的排出部。即、转印膜101通过一定的力按压电泳凝胶芯片150的排出部,并且在转印方向X上被输送。
因此,在带有框架的转印膜110中,能够防止在输送转印膜101时,在转印膜101与电泳凝胶芯片150的分析物的排出部之间产生间隙。因此,能够抑制从电泳凝胶芯片150的排出部排出的分析物在被转印至转印膜101之前扩散到阳极缓冲剂中。由此,能够减少被转印至转印膜101的分析物的波段的波动,而能够提高生物体分子分析装置的灵敏度。
(阳极罩135的配置)
图8是表示本实施方式的生物体分子分析装置201中的阳极罩135的配置的图。在该图中,仅图示有生物体分子分析装置201所具备的一部分部件。在图8的例子中,阳极罩135成为底面在转印膜101的输送方向上倾斜的梯形。
阳极罩135在其底面具有与输送方向X正交,且相互对置的端边(端部)135a以及端边135b。在输送方向X上,端边135a比端边135b更接近转印膜101与电泳凝胶芯片150的抵接位置(与排出部150a一致)。换言之,在输送方向X上,端边135b比端边135a远离排出部150a。
阳极罩135的底面以端边135a比端边135b更接近阳极缓冲槽130的底部的方式倾斜。换言之,阳极罩135的底面以端边135b比端边135a更接近阳极缓冲剂的水面的方式倾斜。对于倾斜的角度并没有特别限定,可以是一定的角度,也可以根据位置倾斜角发生变化。
另外,在转印膜101与电泳凝胶芯片150的抵接位置的下部,在阳极缓冲槽130上设置有槽状的第一凹部130a,该第一凹部130a的长边方向与转印膜101的输送方向正交。第一凹部130a具有深度为2~3mm左右的深度。
阳极罩135的端边135a朝向第一凹部130a垂下。优选阳极罩135的端边135a以沿着第一凹部130a的长边方向松散地插入第一凹部130a。由此,将阳极罩135的端边135a配置在比配置阳极132的阳极缓冲槽130的底面低的位置,并且在阳极罩135与第一凹部130a之间形成狭路。
由于如图8所示,阳极罩135的底面倾斜,所以能够使在阳极132产生的气泡沿着阳极罩135的表面向转印膜101的卷绕方向Y逸出。另外,由于阳极罩135的端边135a配置于比阳极132的底部低的位置,所以从阳极132产生的气泡不会通过由端边135a和第一凹部130a形成的狭路。因此,气泡向远离排出部150a的方向逸出,而不会向端边135a侧(排出部150a侧)移动。其结果,气泡不会给转印膜101与电泳凝胶芯片150的抵接位置带来负面影响。
(电力线的集中)
如上所述,阳极132不是配置于排出部150a的正下方,而是配置于在输送方向X上与排出部150a分离了一定距离的位置。因此,若没有阳极罩135,则在电泳时从排出部150a产生的电力线会大范围扩展。若电力线大范围扩展,则从排出部150a排出的分析物会大范围扩散,其结果,存在使分析物的分离能大幅降低的可能性。
另一方面,在本实施方式中,如图8所示,阳极罩135的端边135a配置于在阳极缓冲槽130的底部设置为位于电泳凝胶芯片150与转印膜101的抵接位置的阳极132侧的端部的下部的第一凹部130a的上方。由于阳极罩135是由绝缘性的材料构成的,所以从排出部150a产生的电力线170被存在于排出部150a的附近的阳极罩135阻碍,而不会朝向阳极132扩展。另外,由阳极罩135的端边135a和阳极缓冲槽130的第一凹部130a形成的狭路在阳极132与排出部150a之间连通,在阳极缓冲槽130的底部朝向排出部150a开放。其结果,如图8所示,能够从排出部150a产生集中的电力线170。由此,能够使分析物的分离能大幅提高。
另外,阳极罩135能够很容易地从生物体分子分析装置201取下。因此,能够定期且容易地清扫或者清洗阳极罩135。进一步而言,也能够将老化的阳极罩135更换为新品。
〔变形例〕
本实施方式的生物体分子分析装置所具备的阳极罩并不限定于上述实施方式。例如,如图11的(a)以及(b)所示,阳极罩135与引导装置133也可以形成为一体。图11的(a)是对本发明的一变形例的带有支承部件的阳极罩的概要进行说明的图,图11的(b)是图11的(a)的A线上的剖视图。
如图11的(a)所示,引导装置133的两个支承部133b被固定于阳极罩135的长边方向上的侧面的两端,通过该两个支承部133b支承轴部133a。
如图11的(b)所示,阳极罩135在端边135b侧的侧面固定有支承部133b,被支承部133b支承的轴部133a的下部没有遮挡物是开放的。另外,在阳极罩135的长边方向的两端部设置有沿着与端边135a以及端边135b相交的2个边,与阳极罩135的底面垂直的侧壁部135c(在图11的(b)中示出了在里面可以看见的侧壁部135c)。
在生物体分子分析装置201中,引导装置133被配置为通过轴部133a支承在输送方向上被输送的转印膜101,将阳极罩135的端边135a配置于阳极缓冲槽130的凹部130a的上方,且相对于转印膜101与电泳凝胶芯片150的抵接位置,将端边135b配置于比端边135a远的位置。另外,阳极罩135的侧壁部135c沿着转印膜101的输送方向配置。
能够防止从阳极132产生的气泡通过阳极罩135的侧壁部135c,从沿着阳极罩135的输送方向的2个边侧朝向转印膜101与电泳凝胶芯片150的抵接位置流动。因此,从阳极132产生的气泡沿着阳极罩135的底面以及侧壁部135c,从阳极罩135的端边135a侧朝向端边135b侧移动,并从引导装置133的轴部133a的下部朝向阳极缓冲槽130的上部逸出。由于阳极罩135的端边135b配置于远离转印膜101与电泳凝胶芯片150的抵接位置的位置,所以从引导装置133的轴部133a的下部逸出的气泡不会到达抵接位置。
〔实施方式6〕
以下基于图12对本发明的实施方式6进行说明。
如图12的(a)所示,生物体分子分析装置202的各部件与实施方式5的生物体分子分析装置201相同。但是,在阳极缓冲槽130中,第二凹部130b被设置在与凹部130a在输送方向上分离了一定距离的位置,阳极132配置在第二凹部130b的内侧的点,与实施方式5不同。
第二凹部130b被设置在与第一凹部130a在输送方向上分离了与在实施方式5中配置有阳极132的位置相同程度的位置。
如图12的(b)所示,在第二凹部130b的内侧配置阳极132,从而能够防止在电泳时,从阳极132产生的微小的气泡B向阳极132的水平方向扩展且移动。另外,能够使从阳极132产生的微小的气泡B在第二凹部130b的内侧聚集,而生长为更大的气泡B。由此,能够使气泡B朝向第二凹部130b的上部更加适当地上浮,并沿着阳极罩135的底面移动。由此,能够进一步防止从阳极132产生的微小的气泡B朝向排出部150a移动。因此,气泡B不会给转印膜101与电泳凝胶芯片150的抵接位置带来负面影响。
此外,第二凹部130b的深度也可以是在内侧能够收纳阳极132的程度的深度,但由于比阳极132的高度深会使气泡更加适当地聚集,所以优选。
〔实施方式7〕
以下基于图13对本发明的实施方式7进行说明。
图13是表示本实施方式的生物体分子分析装置203以及204中的各阳极罩以及阳极缓冲槽的结构的图。
图13的(a)所示的生物体分子分析装置203代替阳极罩135,具备阳极罩136。在阳极罩136的底面与阳极罩135的底面不同,沿着排出部150a侧的端边,设置有朝向第一凹部130a垂下的凸部136a。凸部136a的长边方向与第一凹部130a的长边方向平行。在转印膜101的输送方向上,与设置在第二凹部130b的内侧的阳极132相比,凸部136a配置于接近排出部150a的位置。
凸部136a松散地插入第一凹部130a,由此,在阳极缓冲槽130的底面,阳极罩136与第一凹部130a形成狭路。
由于在阳极罩136中,凸部136a朝向第一凹部的内侧突出,所以能够将凸部136a较深地松散地插入第一凹部130a的内侧。因此,在从阳极132产生的气泡朝向阳极罩136的底面上浮时,能够通过凸部136a防止该气泡朝向排出部150a侧移动,并能够使该气泡沿着阳极罩136的底面朝向端边136b侧移动。因此,能够进一步防止气泡给转印膜101与电泳凝胶芯片150的抵接位置带来负面影响。
另外,由凸部136a和第一凹部130a形成的狭路在转印膜101与电泳凝胶芯片150的抵接位置的下部开放。因此,能够从排出部150a产生集中的电力线。
图13的(b)所示的生物体分子分析装置204代替阳极罩135,具备阳极罩137。与阳极罩135的底面不同,在阳极罩137的底面,在转印膜101的输送方向上,在比端边137a远离排出部150a,且比阳极132接近排出部150a的位置设置有凸部137a′。凸部137a′松散地插入在阳极缓冲槽130上设置于与凸部137a′对置的位置的第一凹部130a。由此,通过从阳极罩137的底面的凸部137a′到端边137a的部位与包含第一凹部130a的阳极缓冲槽130的底面的一部分形成狭路。因此,能够通过设置于比端边137a远离排出部150a的位置的凸部137a′防止从阳极132产生的气泡向排出部150a侧移动。
另外,通过从凸部137a′到端边137a的部位、和包含第一凹部130a的阳极缓冲槽130的底面的一部分形成的狭路在排出部150a的下部开放。因此,能够从排出部150a产生集中的电力线。
〔实施方式8〕
以下基于图14对本发明的实施方式8进行说明。
图14的(a)是表示本实施方式的生物体分子分析装置205中的各阳极罩以及阳极缓冲槽的结构的图。
图14的(a)所示的生物体分子分析装置205代替阳极罩136,具备阳极罩138。另外,在阳极缓冲槽130的底部设置有由凹部130a以及130a′构成的第一凹部。在阳极缓冲槽130的底部的排出部150a的下部设置有凹部130a,在凹部130a与第二凹部130b之间设置有130a′。凹部130a以及130a′以长边方向与转印膜101的输送方向正交的方式相互平行地设置。
在阳极罩138的底面,代替阳极罩136的凸部136a,与凹部130a以及130a′的长边方向平行地设置有多个凸部138a以及138a′。阳极罩137的凸部138a松散地插入凹部130a,凸部138a′松散地插入凹部130a′。由此,通过阳极罩137的凸部138a以及138a′与阳极缓冲槽130的凹部130a以及130a′形成狭路。
如图14的(b)所示,在阳极罩138中,能够将凸部138a以及138a′分别独立地朝向凹部130a以及130a′的内侧较深地松散地插入。因此,即使从阳极132产生的气泡B超过凸部138a′朝向排出部150a侧移动,也能够使超过了凸部138a′的气泡B在狭路内随时上浮,并停留在凸部138a与凸部138a′之间,而与泳动缓冲液的流动隔离。由此,能够使气泡B通过泳动缓冲液的流动,而难以朝向排出部150a侧流动。因此,能够进一步防止从阳极132产生的气泡B朝向排出部150a侧移动。
另外,由于通过阳极罩138的凸部138a以及138a′和阳极缓冲槽130的第一凹部130a以及130a′形成的狭路在排出部150a的下部开放,所以能够从排出部150a产生集中的电力线。
〔其它的实施例方式〕
此外,本发明的生物体分子分析装置并不限定于上述实施例方式。例如,在其它实施方式的生物体分子分析装置中,侧面视的第一凹部的形状既可以是半圆形,也可以是矩形、V字形(锥)等。另外,在缩减电极罩朝向第一凹部垂下的凸部的情况下,该凸部的侧面视的形状也可以是半圆形,也可以是矩形、V字形(锥)等。只要能够在电极罩与第一凹部之间形成与分离部和转印膜的抵接位置连通的狭路,就不对电极罩以及第一凹部的形状进行限定。
另外,在另一其它实施例方式的生物体分子分析装置中,在缓冲液槽中,配置于第一凹部侧的电极罩的端边(端部)在第一凹部上,配置为与缓冲液槽的底面相同的高度。根据上述结构,能够防止从电极产生的气泡通过第一凹部的上方流动到转印膜和电泳凝胶芯片的抵接位置并且通过电极罩和第一凹部形成狭路。
另外,在另一个其它实施例方式的生物体分子分析装置中,也可以不对转印膜101设置框架102,夹钳120也可以直接对转印膜101进行固定。
〔附记事项〕
本发明的实施方式1的生物体分子分析装置的特征在于,具备:
转印膜;
输送部,其沿着规定的输送方向输送上述转印膜;
分离部,其相对于上述转印膜垂直地抵接并且铅垂地设置,通过电泳对分析物进行分离,并将分离出的上述分析物排出至上述转印膜;
电极,其配置于与上述分离部和上述转印膜的抵接位置在上述输送方向上分离了一定距离的位置;以及
绝缘性的电极罩,其在上述电极的上部,与上述电极抵接或者与上述电极分离地配置。
根据上述结构,通过电极罩防止在电泳时从电极产生的气泡朝向分离部与转印膜的抵接位置移动。由此,从电极产生的气泡不会给转印膜与分离部的抵接位置带来负面影响。
在本发明的实施方式2的生物体分子分析装置中,在上述实施方式1中,其特征在于,
上述电极罩的一端部处于上述抵接位置上的上述电极侧的端部的下部。
根据上述结构,能够防止在电泳时从分离部的抵接位置产生电力线向电极侧扩展。其结果,能够提高分析物的分离能。
在本发明的实施方式3的生物体分子分析装置中,在上述实施方式2中,其特征在于,
还具备缓冲槽,该缓冲槽配置上述电极,
在上述电极罩的上述一端部与上述缓冲槽的底面之间形成有狭缝。
根据上述结构,能够进一步防止在电泳时从电极产生的气泡朝向狭缝侧(即、分离部与转印膜的抵接位置侧)移动。
在本发明的实施方式4的生物体分子分析装置中,在上述实施方式1中,其特征在于,
还具备缓冲槽,该缓冲槽配置上述电极,
上述电极罩以上述电极罩的一端部位于上述电极的下部的方式,在上述抵接位置的上述电极侧的端部的下部向上述电极侧弯曲,
在上述电极罩的上述一端部与上述缓冲槽的底面之间形成有狭缝。
根据上述结构,能够使分析物的分离能大幅提高,并且进一步防止在电泳时从电极产生的气泡朝向狭缝侧(即、分离部与转印膜的抵接位置侧)移动。
在本发明的实施方式5的生物体分子分析装置中,在上述实施方式1中,其特征在于,
还具备第一绝缘性的部件,该第一绝缘性的部件以与上述转印膜垂直的方式配置于上述抵接位置的上述电极侧的端部的下部,
上述电极罩延伸到上述第一绝缘性的部件的上部,
在上述电极罩与上述第一绝缘性的部件之间形成有狭缝。
根据上述结构,能够进一步防止在电泳时从电极产生的气泡朝向狭缝侧(即、分离部与转印膜的抵接位置侧)移动。
在本发明的实施方式6的生物体分子分析装置中,在上述实施方式1~5中任意一项中,其特征在于,
还具备绝缘性的部件,该绝缘性的部件以垂直于上述转印膜的方式配置于上述抵接位置的与上述电极侧相反侧的端部的下部。
根据上述结构,能够防止在电泳时从分离部的抵接位置产生的电力线向与电极相反侧扩展。其结果,能够提高分析物的分离能。
在本发明的实施方式7的生物体分子分析装置中,在上述实施方式1~6的任意一项中,其特征在于,
上述电极罩相对于上述输送方向倾斜,
上述电极罩的更远离上述抵接位置的端部与上述电极罩的更接近上述抵接位置的端部相比,在与上述转印膜的面内方向正交的方向上更远离上述电极。
根据上述结构,能够使从电极产生的气泡向远离抵接位置的方向逸出。
在本发明的实施方式8的生物体分子分析装置中,在上述实施方式1~6的任意一项中,
上述电极罩相对于与上述输送方向正交并且与上述转印膜的面内方向平行的方向倾斜。
根据上述结构,能够使从电极产生的气泡向远离抵接位置的方向逸出。
在本发明的实施方式9的生物体分子分析装置中,在上述实施方式1~8的任意一项中,
上述电极罩的表面的对水接触角是90°以下
根据上述结构,能够更加容易地使从电极产生的气泡沿着电极罩的表面逸出。
本发明的实施方式10的生物体分子分析装置,其特征在于,具备:
缓冲液槽;
转印膜,其配置在上述缓冲液槽内;
输送部,其沿着规定的输送方向输送上述转印膜;
分离部,其相对于上述转印膜垂直并与上述转印膜抵接并且设置为铅垂,通过电泳对分析物进行分离,并将分离出的上述分析物排出至上述转印膜;
电极,其配置于与上述分离部和上述转印膜的抵接位置在上述输送方向上分离了一定距离的位置;以及
绝缘性的电极罩,其配置在上述电极与上述抵接位置之间,
在上述缓冲液槽的底部的被上述电极和上述抵接位置夹持的位置设置第一凹部,
上述电气罩朝向上述第一凹部垂下。
根据上述结构,能够通过电极罩防止在电泳时从电极产生的气泡朝向分离部与转印膜的抵接位置移动。另外,由于电极罩朝向设置于缓冲液槽的底部的第一凹部垂下,所以能够防止从电极产生的气泡超过第一凹部,并朝向分离部与转印膜的抵接位置移动。由此,从电极产生的气泡不会给转印膜与分离部的抵接位置带来负面影响。
另外,由于分离部和转印膜的抵接位置侧与电极侧通过由绝缘性的电极罩和第一凹部形成的狭路连通,所以能够使从抵接位置朝向狭路的电力线集中。
在本发明的实施方式11的生物体分子分析装置中,在上述实施方式10中,其特征在于,
上述缓冲液槽在与上述第一凹部在上述输送方向上分离了一定距离的位置设置有第二凹部,
在上述第二凹部配置有上述电极。
根据上述结构,能够通过第二凹部防止在电泳时从电极产生的气泡向水平方向扩展。另外,能够在第二凹部的内侧,使从电极产生的微小的气泡聚集,而生长成更大的气泡。因此,能够进一步防止从电极产生的气泡通过由第一凹部和电极罩形成的狭路,朝向转印膜与分离部的抵接位置移动。
在本发明的实施方式12的生物体分子分析装置中,在上述实施方式10或者11中,其特征在于,
上述电极罩具备朝向上述第一凹部垂下的凸部。
根据上述结构,能够通过凸部进一步防止从电极产生的气泡沿着电极罩的底面朝向分离部与转印膜的抵接位置移动。
在本发明的实施方式13的生物体分子分析装置中,在上述实施方式12中,其特征在于,
上述电极罩的上述凸部由多个凸部构成,
上述缓冲液槽的上述第一凹部由多个凹部构成,
上述多个凸部以向上述多个凹部分别独立地垂下的方式配置。
根据上述结构,能够通过多个凸部进一步防止从电极产生的气泡沿着电极罩的底面朝向分离部与转印膜的抵接位置移动。
在本发明的实施方式14的生物体分子分析装置中,在上述实施方式10或者11中,其特征在于,
上述电极罩的端部松散地插入上述第一凹部。
根据上述结构,能够进一步防止从电极产生的气泡通过由电极罩的端部和第一凹部形成的狭路,朝向转印膜与分离部的抵接位置移动。
另外,在本发明的实施方式15的生物体分子分析装置中,在上述实施方式12或者13中,其特征在于,上述电极罩的上述凸部松散地插入上述第一凹部。
根据上述结构,能够进一步防止从电极产生的气泡通过由电极罩的凸部和第一凹部形成的狭路,朝向转印膜与分离部的抵接位置移动。
在本发明的实施方式16的生物体分子分析装置中,在上述实施方式10~15的任意一项中,
上述第一凹部设置于上述抵接位置的上述电极侧的端部的下部。
根据上述结构,能够防止在电泳时从分离部的抵接位置产生电力线向电极侧扩展。其结果,能够提高分析物的分离能。
在本发明的实施方式17的生物体分子分析装置中,在上述实施方式10~16的任意一项中,
上述电极罩的与上述缓冲液槽对置的面相对于上述输送方向倾斜,
与上述缓冲液槽对置的面的更远离上述抵接位置的端部与上述电极罩的更接近上述抵接位置的端部相比,在与上述转印膜的面内方向正交的方向上更远离上述电极。
根据上述结构,能够使从电极产生的气泡向远离抵接位置的方向逸出。
在本发明的实施方式18的生物体分子分析装置中,在上述实施方式10~17的任意一项中,其特征在于,
上述电极罩具有侧壁部,该侧壁部沿着与上述输送方向平行的2个边朝向上述缓冲液槽的底面扩展。
根据上述结构,能够防止从电极产生的气泡从电极罩的沿着转印膜的输送方向的2个边侧朝向转印膜与分离部的抵接位置移动。
在本发明的方式19的生物体分子分析装置中,在上述方式10~18的任意一项中,其特征在于,
上述电极罩的表面的对水接触角是90°以下。
根据上述结构,能够更容易地使从电极产生的气泡沿着电极罩的表面逸出。
本发明并不限定于上述的各实施方式,能够在技术方案所示的范围内进行各种变更,对于将在不同的实施方式中分别公开的技术手段适当地组合而得到的实施方式也包含于本发明的技术范围内。并且,通过对在各实施方式中分别公开的技术手段进行组合,能够形成新的技术特征。
本发明能够适用于二维电泳装置。
附图标记的说明
1…转印膜;2…框架;10…带有框架的转印膜;20…夹钳;32…阳极(电极);35…阳极罩(电极罩);36、37…电力线;38…集中部件(第二绝缘性的部件);41…阴极;50…电泳凝胶芯片(分离部);50a…排出部;52…分离凝胶;70…狭缝;71…开口部;72…电力线;73…直立部件(第一绝缘性的部件);74…狭缝;101…转印膜;130…阳极缓冲槽(缓冲液槽);130a、130a′…第一凹部;130b…第二凹部;132…阳极(电极);135、136、137、138…阳极罩(电极罩);135a…端边(端部);136a、137a、137a′、138a、138a′…凸部;141…阴极;150…电泳凝胶芯片(分离部);150a…排出部;152…分离凝胶;200、201、202、203、204、205…生物体分子分析装置。