CN106229103B - 一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法 - Google Patents

一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法 Download PDF

Info

Publication number
CN106229103B
CN106229103B CN201610751902.8A CN201610751902A CN106229103B CN 106229103 B CN106229103 B CN 106229103B CN 201610751902 A CN201610751902 A CN 201610751902A CN 106229103 B CN106229103 B CN 106229103B
Authority
CN
China
Prior art keywords
powder
powder core
alloy
preparation
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610751902.8A
Other languages
English (en)
Other versions
CN106229103A (zh
Inventor
朱正吼
徐玉华
宋晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Evertech Magnetics Co ltd
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201610751902.8A priority Critical patent/CN106229103B/zh
Publication of CN106229103A publication Critical patent/CN106229103A/zh
Application granted granted Critical
Publication of CN106229103B publication Critical patent/CN106229103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法,其制备方法为:(1)采用中频熔炼炉熔炼Fe95Si1B2P0.5Cu1.5母合金;母合金在铸铁金属模具或石墨模具中浇注成块状铸锭;(2)制粉:母合金铸锭经破碎机破碎后,在球磨机中球磨制成合金粉;(3)粉体表面处理:粉体与正硅酸乙脂按质量比10:1~20:1比例混合,充分搅拌以确保正硅酸乙脂在合金粉颗粒表面上形成均匀完整的包覆层;(4)压制磁粉芯;(5)热处理。本发明提供的制备方法制备的磁粉芯的直流叠加特性好,满足了电子设备行业对软磁材料具备小型化、轻量化、高频化的同时,具有更好的直流叠加特性的更高要求。

Description

一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备 方法
技术领域
本发明涉及一种磁粉芯的制备方法,具体是一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法。
背景技术
FeSi系金属磁粉芯具有高的有效导磁率、低损耗、频率稳定性好及直流叠加特性、成本低等优异的综合性能,作为电感滤波器、扼流线圈等器件被广泛应用于电子通讯、雷达、电源开关、脉冲变压器等领域,已成为软磁材料重要的组成部分。
随着信息化技术的高速发展,对电子设备提出了更加小型化、轻量化、高频化,并具有好的直流叠加特性等的高要求。与块体材料相比,FeSi系金属磁粉芯的高频损耗值较低,具有显著应用优势,但其直流叠加特性仍然有待进一步提高,影响了器件的小型化,所以研究FeSi系金属磁粉芯在大外加磁场条件下的直流叠加特性意义大。
所谓大外加磁场条件下的直流叠加特性是指磁粉芯材料因受电路中大直流电信号引起的大外加磁场作用时,其电感值变化情况。大外加磁场H值已经普遍达到6000~10000A/m。目前,文献在这方面研究很少,但应用需求却非常大。
目前,改善磁粉芯大外加磁场条件下的直流叠加特性的措施很少,主要是对FeSi系金属磁粉芯的粉体成分进行修改。FeSi系金属粉体中添加Al和Ni等元素制备合金粉末和相应的磁粉芯以降低高频损耗、提高磁粉芯的综合性能研究较多,而在FeSi系合金粉体中加入P、Cu元素制备磁粉芯的报道较少。对于晶体结构的FeSiBPCu金属磁粉芯的研究尚未报道。
发明内容
本发明的目的是针对上述问题,提供一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法。
本发明是这样来实现的,一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法,其制备方法及步骤为:
(1)磁粉芯用合金粉体成分设计:采用中频熔炼炉熔炼Fe95Si1B2P0.5Cu1.5成分(摩尔比)的母合金;母合金在铸铁金属模具或石墨模具中浇注成块状铸锭。
(2)制粉:母合金铸锭经破碎机破碎后,在球磨机中球磨制成合金粉;筛分出100~400目的合金粉体,粉体形貌为多角形片状。
(3)粉体表面处理:粉体与正硅酸乙脂按质量比10:1~20:1比例混合,充分搅拌以确保正硅酸乙脂在合金粉颗粒表面上形成均匀完整的包覆层,得到表面包覆正硅酸乙脂的合金粉体。
(4)压制磁粉芯:经过表面处理的合金粉在模具中压制成环形磁粉芯;压制的压力≥1000MPa;
(5)热处理:采用退火处理,保温温度为400℃~500℃,保温时间为50~70min,保温后在空气中冷却。
进一步的,步骤(1)中的粉体成分设计为Fe95Si1B2P0.5Cu1.5
进一步的,步骤(3)中的粉体表面处理具体是正硅酸乙脂在合金粉颗粒表面上形成均匀完整的包覆层。
进一步的,步骤(5)中的退火处理工艺是,保温温度为400℃~500℃,最佳的退火处理温度分别为450℃,保温时间为50~70min,保温后在空气中冷却。
工艺实验与分析测试:
制备过程中,Fe95Si1B2P0.5Cu1.5粉体的物相结构和磁粉芯的残余内应力,采用荷兰帕纳科Empyrean X射线衍射仪(XRD,Cu Kαand Co Kα)进行测试分析(管压为40KV,电流为40mA,步长为0.02°);合金粉体的形貌和软磁性能分别采用Nikon YS2-H偏光显微镜(×100)和振动样品磁强计(VSM)进行测试分析;用TH2816B LCR数字电桥和TH1778直流偏置电流源测量样品的电感L和直流叠加特性,测量时用直径Φ0.35mm的漆包线均匀缠绕试样匝数分别为20匝和25匝。所有的测试都在室温下进行。
一、Fe95Si1B2P0.5Cu1.5粉体的形貌及相结构
利用偏光显微镜观察的合金粉形貌。母合金在震动球磨过程中,颗粒间互相剧烈碰撞、冲击挤压而破碎成细小的扁平状不规则的多边形片状颗粒。
利用荷兰帕纳科Empyrean X射线衍射仪测试其衍射特性,并绘制Fe95Si1B2P0.5Cu1.5粉末退火处理前后的X射线衍射图谱。
采用Lake Shore 7300型振动样品磁强计测试了合金粉的磁性能,合金粉的饱和磁化强度(Ms)达到140emu/g。说明制备的合金粉具有良好的软磁性能,为制备性能优异的磁粉芯奠定了基础。
二、 Fe95Si1B2P0.5Cu1.5磁粉芯磁性能
采用数字电桥(TH2816B LCR)测试了不同温度退火处理后磁粉芯的有效磁导率µe随频率f的变化曲线,实验中随着退火温度上升,磁粉芯的有效磁导率µe先升后降,在450℃其有效磁导率µe最佳,原因是合理的退火工艺制度可以使压制过程中产生的内应力得到充分的释放,使磁粉芯结构更均匀,促进磁畴的移动,从而提高了磁导率。当退火温度升至500℃时,其有效磁导率µe提升的幅度很小,继续升高退火温度至550℃时,磁粉芯的有效磁导率µe出现下降且频率稳定性明显变差,这可能是因为过高的退火温度使得包覆层发生了“烧蚀”或碳化,使得颗粒表面层连带发生氧化或碳化,从而导致磁粉芯有效磁导率µe下降。从XRD图谱中出现的FeO的峰也可以证明。由此可知,磁粉芯的最佳有效退火温度为450℃。
磁粉芯的致密度直接影响其软磁性能的好坏,磁粉芯致密度的影响因素较多,但最直接的影响因素则是成型压力。试验中通过设置不同压力下制备的磁粉芯有效磁导率随频率变化曲线,设定磁粉芯的热处理温度为450℃,保温1h,磁粉芯在测试频率1~200KHz具有良好的稳定性,当成型压力从0.99GPa增加到1.24GPa时,有效磁导率从43增加到48,继续增加成型压力到1.49GPa时,有效磁导率为51,其增长的幅度约达20%。当成型压力增加至1.74GPa时,有效磁导率为53,其增加的幅度为23%,因此,成型压力能明显地提升磁粉芯的有效磁导率。但是成型压力达到一定值(1.49GPa)时,继续增加成型压力(1.74GPa)对磁粉芯的有效磁导率的增长幅度不大,综合模具使用寿命、压力对有效磁导率增长幅度的大小及其它因素考虑,认为磁粉芯的最佳成型压力为1.49GPa。
经过试验测定,本发明制备的片状Fe95Si1B2P0.5Cu1.5合金粉体,该合金粉体具有良好的软磁性能,其饱和磁化强度达到140emu/g。 Fe95Si1B2P0.5Cu1.5磁粉芯在1~200kHz频率范围内具有良好的频率稳定性,经过450℃×1h退火处理后,磁粉芯残余内应力得到了充分的释放,有效磁导率µe达到最大值约53。 Fe95Si1B2P0.5Cu1.5磁粉芯具有良好的直流叠加特性。随着外加直流磁场强度的逐渐变大,磁粉芯的有效磁导率µe逐渐下降。在外加直流磁场强度为4000A/m时,磁粉芯的有效磁导率µe保持有70%以上,约为34,当外加直流磁场继续增大到10400A/m时,磁粉芯的磁导率仍然大于20,是常规Fe-6.5%Si磁粉芯的2倍以上。
本发明的有益效果在于:通过本发明提供的制备方法制备的磁粉芯的直流叠加特性好,满足了电子设备行业对软磁材料具备小型化、轻量化、高频化的同时,具有更好的直流叠加特性的更高要求。
具体实施方式
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。
1.磁粉芯制备方法
实施例1:
一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法,其制备方法及步骤为:
(1)磁粉芯用合金粉体成分设计:采用中频熔炼炉熔炼Fe95Si1B2P0.5Cu1.5成分(摩尔比)的母合金;母合金在石墨模具中浇注成长条形铸锭,铸锭厚度为5mm。
(2)制粉:母合金铸锭经破碎机破碎后,在振动球磨机中制成合金粉;筛分出100目的片状多角形的合金粉体。
(3)粉体表面处理:合金粉体与正硅酸乙脂按质量比20:1的比例混合,充分搅拌以确保正硅酸乙脂在合金粉颗粒表面上形成均匀完整的包覆层,得到表面包覆正硅酸乙脂的合金粉体。
(4)压制磁粉芯:经过表面处理的合金粉在模具中压制成环形磁粉芯;压制的压力1000MPa;
(5)热处理:采用退火处理,保温温度为400℃,保温时间为50min,保温后在空气中冷却。
实施例2:
一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法,其制备方法及步骤为:
(1)磁粉芯用合金粉体成分设计:采用中频熔炼炉熔炼Fe95Si1B2P0.5Cu1.5成分(摩尔比)的母合金;母合金在石墨模具中浇注成长条形铸锭,铸锭厚度3mm。
(2)制粉:母合金铸锭经破碎机破碎后,在振动球磨机中制成合金粉;筛分出200目的片状多角形的合金粉体。
(3)粉体表面处理:合金粉体与正硅酸乙脂按质量比15:1的比例混合,充分搅拌以确保正硅酸乙脂在合金粉颗粒表面上形成均匀完整的包覆层,得到表面包覆正硅酸乙脂的合金粉体。
(4)压制磁粉芯:经过表面处理的合金粉在模具中压制成环形磁粉芯;压制的压力1.49GPa;
(5)热处理:采用退火处理,保温温度为450℃,保温时间为60min,保温后在空气中冷却。
实施例3:
一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法,其制备方法及步骤为:
(1)磁粉芯用合金粉体成分设计:采用中频熔炼炉熔炼Fe95Si1B2P0.5Cu1.5成分(摩尔比)的母合金;母合金在石墨模具中浇注成长条形铸锭,铸锭厚度为2mm。
(2)制粉:母合金铸锭经破碎机破碎后,在振动球磨机中制成合金粉;筛分出400目的片状多角形的合金粉体。
(3)粉体表面处理:合金粉体与正硅酸乙脂按质量比10:1的比例混合,充分搅拌以确保正硅酸乙脂在合金粉颗粒表面上形成均匀完整的包覆层,得到表面包覆正硅酸乙脂的合金粉体。
(4)压制磁粉芯:经过表面处理的合金粉在模具中压制成环形磁粉芯;压制的压力2000MPa;
(5)热处理:采用退火处理,保温温度为500℃,保温时间为70min,保温后在空气中冷却。
2.磁粉芯性能
Fe95Si1B2P0.5Cu1.5磁粉芯在1~200kHz频率范围内具有良好的频率稳定性,经450℃×1h退火处理后,磁粉芯内部残余内应力得到充分的释放,其有效磁导率µe得到大幅的提升,最大值达到53。随着外加直流磁场强度的逐渐变大,磁粉芯的磁导率逐渐下降,当外加直流磁场强度H=4000A/m时,有效磁导率µe维持在70%以上,约为36,当H继续增大到10400A/m时,µe仍大于20,此性能是Fe93.5Si6.5金属磁粉芯的2倍以上,表明磁粉芯具有良好的直流叠加特性。
图1为偏光显微镜下观察的合金粉形貌。粉体为扁平状不规则的多边形片状颗粒。
图2为Fe95Si1B2P0.5Cu1.5粉末退火处理前后的X射线衍射图谱。未退火处理和退火处理后的粉体均为唯一的α-Fe相(图2)。
图3为合金粉的静态磁滞回线,采用Lake Shore 7300型振动样品磁强计测试了合金粉的磁性能,合金粉的饱和磁化强度(Ms)达到140emu/g。说明制备的合金粉具有良好的软磁性能,为制备性能优异的磁粉芯奠定了基础。
图4为采用数字电桥(TH2816B LCR)测试了不同温度退火处理后磁粉芯的有效磁导率µe随频率f的变化曲线。退火处理温度分别为450℃、500、550℃,保温时间为1h,成型压力为1.49GPa。磁粉芯的最佳有效退火温度为450℃。
在200KHz频率下,经450℃退火处理1小时后磁粉芯的磁导率随直流叠加磁场(dc-bias)的变化曲线如图5所示。
从图5中可以看出,磁粉芯的磁导率随着外加直流磁场强度的逐渐变大,磁粉芯的磁导率逐渐下降。因为随着外加直流磁场强度的增大,使得磁畴壁发生移动,磁畴范围变小,导致磁导率变小。在外加直流磁场强度较低(4000A/m)时,磁粉芯的磁导率仍保持在70%以上;成型压力为0.99GPa, 磁粉芯的磁导率为31.94,继续增加成型压力到1.49GPa和1.74GPa,其有效磁导率分别为34.45,36.27。但随着外加直流磁场强度继续增大到10400A/m时,磁粉芯的磁导率最大下降了56%,但仍大于20。与传统的Sendust和MPP磁粉芯相比,在外加磁场4000A/m时,磁导率下降了40%-50%。由此可见,该磁粉芯具有良好的直流叠加特性。
与Fe93.5Si6.5金属磁粉芯相比,Fe95Si1B2P0.5Cu1.5磁粉芯的直流叠加特性提高的原因有两点,一是Fe95Si1B2P0.5Cu1.5母合金粉体的Bs值显著大于Fe93.5Si6.5粉体,使磁粉芯抗饱和能力大大提高;二是采用片状粉体替代由喷雾法制备的球形粉体,尽管磁粉芯密度不高,但由于片状粉体的“搭桥”作用磁粉芯的有效磁导率仍然得到保持。
应当说明的是,以上所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。本领域普通技术人员在没有做创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

Claims (2)

1.一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法,其特征在于:其制备方法及步骤为:
(1)磁粉芯用合金粉体成分设计:采用中频熔炼炉熔炼按原子百分比设计的Fe95Si1B2P0.5Cu1.5成分的母合金;母合金在铸铁金属模具或石墨模具中浇注成块状铸锭;
(2)制粉:母合金铸锭经破碎机破碎后,在球磨机中球磨制成合金粉;筛分出100~400目的合金粉体,粉体形貌为多角形片状;
(3)粉体表面处理:粉体与正硅酸乙脂按比例混合,充分搅拌以确保正硅酸乙脂在合金粉颗粒表面上形成均匀完整的包覆层,得到表面包覆正硅酸乙脂的合金粉体;粉体/正硅酸乙脂=100g/(5~10)g;
(4)压制磁粉芯:经过表面处理的合金粉在模具中压制成环形磁粉芯;压制的压力≥1000MPa;
(5)热处理:采用退火处理,保温温度为400℃~500℃,保温时间为50~70min,保温后在空气中冷却。
2.根据权利要求1所述的一种具有良好直流叠加特性的磁粉芯的制备方法,其特征在于:步骤(5)中的退火处理工艺,保温温度为450℃,保温时间为50~70min,保温后在空气中冷却。
CN201610751902.8A 2016-08-30 2016-08-30 一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法 Active CN106229103B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610751902.8A CN106229103B (zh) 2016-08-30 2016-08-30 一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610751902.8A CN106229103B (zh) 2016-08-30 2016-08-30 一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法

Publications (2)

Publication Number Publication Date
CN106229103A CN106229103A (zh) 2016-12-14
CN106229103B true CN106229103B (zh) 2018-02-23

Family

ID=57556032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610751902.8A Active CN106229103B (zh) 2016-08-30 2016-08-30 一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法

Country Status (1)

Country Link
CN (1) CN106229103B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653273A (zh) * 2016-12-30 2017-05-10 江西艾特磁材有限公司 一种铁硅铝‑铁氧体复合磁芯及其制备方法
CN106862574B (zh) * 2017-01-05 2019-04-12 南昌大学 一种高温化学处理工艺制备片状FeSiN合金粉体的方法
CN111375756B (zh) * 2018-12-29 2023-10-13 洛阳尖端技术研究院 一种薄膜包覆的软磁性片状化FeNi合金制备方法
CN112086257B (zh) * 2019-10-24 2023-07-25 中国科学院宁波材料技术与工程研究所 高磁导率高品质因数磁粉芯及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967736A (zh) * 2006-10-20 2007-05-23 南昌大学 一种铁基非晶、纳米晶磁粉芯制备方法
CN101834046A (zh) * 2009-03-10 2010-09-15 中国科学院宁波材料技术与工程研究所 高饱和磁化强度铁基纳米晶软磁合金材料及其制备方法
CN105097163A (zh) * 2014-05-08 2015-11-25 Lg伊诺特有限公司 软磁合金、含其的无线电力传送装置和无线电力接收装置
JP2016003366A (ja) * 2014-06-17 2016-01-12 Necトーキン株式会社 軟磁性合金粉末並びにそれを用いた圧粉磁芯及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967736A (zh) * 2006-10-20 2007-05-23 南昌大学 一种铁基非晶、纳米晶磁粉芯制备方法
CN101834046A (zh) * 2009-03-10 2010-09-15 中国科学院宁波材料技术与工程研究所 高饱和磁化强度铁基纳米晶软磁合金材料及其制备方法
CN105097163A (zh) * 2014-05-08 2015-11-25 Lg伊诺特有限公司 软磁合金、含其的无线电力传送装置和无线电力接收装置
JP2016003366A (ja) * 2014-06-17 2016-01-12 Necトーキン株式会社 軟磁性合金粉末並びにそれを用いた圧粉磁芯及びその製造方法

Also Published As

Publication number Publication date
CN106229103A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
Garibaldi et al. Relationship between laser energy input, microstructures and magnetic properties of selective laser melted Fe-6.9% wt Si soft magnets
JP6662436B2 (ja) 圧粉磁心の製造方法
CN106229103B (zh) 一种具有良好直流叠加特性的Fe95Si1B2P0.5Cu1.5磁粉芯的制备方法
US10991495B2 (en) Soft magnetic alloy and magnetic component
CN106158340B (zh) 一种Fe‑Si‑Al粉芯环形磁体及其制备方法
JP6501005B1 (ja) 軟磁性合金および磁性部品
CN102142309B (zh) 一种块体非晶/铁氧体软磁复合材料及其制备方法
US11505845B2 (en) Soft high-silicon steel sheet and manufacturing method thereof
JPWO2011077601A1 (ja) 圧粉磁心及びその製造方法
JP2022549384A (ja) サブナノスケールの秩序クラスターを含む鉄基アモルファス合金、その調製方法及びそれを用いたナノ結晶合金誘導体
Li et al. Magnetic behavior of soft magnetic composites constructed by rapidly quenched flake-like FeSiAl alloy
CN105014065B (zh) 一种铁硅铝软磁粉末
CN103745791A (zh) 一种具有超高磁导率的铁基纳米晶磁粉芯的制备方法
Larimian et al. Bulk-nano spark plasma sintered Fe-Si-B-Cu-Nb based magnetic alloys
JP2010153638A (ja) 複合軟磁性材料、複合軟磁性材料の製造方法及び電磁気回路部品
CN114694908A (zh) 一种耐低温纳米晶软磁合金铁芯、制造方法及应用
Li et al. Microstructure and magnetic properties of the FeSiAl soft magnetic composite with a NiFe2O4-doped phosphate insulation coating
KR102073233B1 (ko) 압분 자심용 절연 피복 철분
CN103451578A (zh) 铁基非晶带材及其制造方法、变压器铁芯和变压器
CN105903951A (zh) 一种软磁合金粉末的制备方法
JP2022008547A (ja) SiO2含有被膜を備えたSi含有Fe基合金粉及びその製造方法
CN109741931A (zh) 一种铁基纳米晶粉芯磁环的制备方法
KR101633611B1 (ko) 자기적 성질이 우수한 고규소 강판 및 그 제조방법
JPWO2020196608A1 (ja) アモルファス合金薄帯、アモルファス合金粉末、及びナノ結晶合金圧粉磁心、並びにナノ結晶合金圧粉磁心の製造方法
JP2994318B2 (ja) Fe系非晶質軟磁性材料およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190823

Address after: 336000 Yichun Economic and Technological Development Zone, Yuanzhou District, Yichun City, Jiangxi Province

Patentee after: JIANGXI EVERTECH MAGNETICS CO.,LTD.

Address before: 330031 No. 999, Xuefu Avenue, Nanchang, Jiangxi

Patentee before: Nanchang University

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation method of Fe95Si1b2P0.5Cu1.5with good DC superposition characteristics

Effective date of registration: 20200921

Granted publication date: 20180223

Pledgee: Yichun branch of Bank of China Ltd.

Pledgor: JIANGXI EVERTECH MAGNETICS Co.,Ltd.

Registration number: Y2020980006259

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20210926

Granted publication date: 20180223

Pledgee: Yichun branch of Bank of China Ltd.

Pledgor: JIANGXI EVERTECH MAGNETICS Co.,Ltd.

Registration number: Y2020980006259

PC01 Cancellation of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation method of Fe95Si1b2P0.5Cu1.5magnetic particle core with good DC superposition characteristics

Effective date of registration: 20210929

Granted publication date: 20180223

Pledgee: Yichun branch of Bank of China Ltd.

Pledgor: JIANGXI EVERTECH MAGNETICS Co.,Ltd.

Registration number: Y2021980010272

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20220920

Granted publication date: 20180223

Pledgee: Yichun branch of Bank of China Ltd.

Pledgor: JIANGXI EVERTECH MAGNETICS CO.,LTD.

Registration number: Y2021980010272

PC01 Cancellation of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation method of Fe95Si1B2P0.5Cu1.5magnetic powder core with good DC superposition characteristics

Effective date of registration: 20220922

Granted publication date: 20180223

Pledgee: Yichun branch of Bank of China Ltd.

Pledgor: JIANGXI EVERTECH MAGNETICS CO.,LTD.

Registration number: Y2022980016173

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Granted publication date: 20180223

Pledgee: Yichun branch of Bank of China Ltd.

Pledgor: JIANGXI EVERTECH MAGNETICS CO.,LTD.

Registration number: Y2022980016173

PC01 Cancellation of the registration of the contract for pledge of patent right