CN106229098A - 一种基于三维网状石墨烯的热敏电阻器及其应用 - Google Patents

一种基于三维网状石墨烯的热敏电阻器及其应用 Download PDF

Info

Publication number
CN106229098A
CN106229098A CN201610649758.7A CN201610649758A CN106229098A CN 106229098 A CN106229098 A CN 106229098A CN 201610649758 A CN201610649758 A CN 201610649758A CN 106229098 A CN106229098 A CN 106229098A
Authority
CN
China
Prior art keywords
graphene
thermal resistor
dimensional
parts
dimensional netted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610649758.7A
Other languages
English (en)
Other versions
CN106229098B (zh
Inventor
汪洋
陈启志
危国慧
权惠玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANHUI NINGGUO TIANCHENG ELECTRICAL APPLIANCES Co Ltd
Original Assignee
ANHUI NINGGUO TIANCHENG ELECTRICAL APPLIANCES Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANHUI NINGGUO TIANCHENG ELECTRICAL APPLIANCES Co Ltd filed Critical ANHUI NINGGUO TIANCHENG ELECTRICAL APPLIANCES Co Ltd
Priority to CN201610649758.7A priority Critical patent/CN106229098B/zh
Publication of CN106229098A publication Critical patent/CN106229098A/zh
Application granted granted Critical
Publication of CN106229098B publication Critical patent/CN106229098B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种基于三维网状石墨烯的热敏电阻器及其应用,涉及石墨烯基热敏电阻器及其应用技术领域,所述基于三维网状石墨烯的热敏电阻器,包括烃类气体、聚四氟乙烯、甲基丙烯酸树脂、有机溶剂、偶联剂、阻燃剂、抗氧化剂、润滑剂、抗紫外线剂,三维石墨烯不仅具有优良的导电和导热性,由于其连贯的骨架网络结构,它还有导电均匀性和带热均匀性,不会造成某一部分的电阻过大或过小,导致由导电不均匀和导热不均匀造成的热量累积,此外,由于其特殊的结构,使热敏电阻动作时间明显减短,灵敏度显著增加,无残压,安全性高,使其在家用电器的加热器上具有广泛的应用前景。

Description

一种基于三维网状石墨烯的热敏电阻器及其应用
技术领域
本发明涉及石墨烯基热敏电阻器及其应用技术领域,具体涉及一种基于三维网状石墨烯的热敏电阻器及其应用。
背景技术
PTC材料为正温度系数热敏材料,它具有电阻率随温度升高而增大的特性。材料的电阻率在临界转变温度前基本保持不变,而当温度达到一定的温度即居里温度时,电阻率会在几度或者十几度狭窄的温度范围内迅速增大103~109数量级。
目前,使用的PTC材料主要分为以BaTiO3、V2O3为主的陶瓷基PTC材料和高分子聚合物与导电材料组成的聚合物基PTC材料。陶瓷基PTC材料主要由经掺杂铅、锶等微量元素的钛酸钡构成,由于环境中的铅是对人体健康威胁最大的有害元素之一,大量的陶瓷基PTC元件已逐渐被禁止使用。聚合物基PTC复合材料不仅环境友好,而且具有重量轻、加工性能好、外形易控制等优点,正逐渐取代传统的含铅陶瓷基PTC材料,被广泛地应用在工业电子设备、通讯器材及家用电器等领域。聚合物基PTC材料综合了无机导电填料的导电性和高分子材料优良的力学性能和加工性能,还具有上述两单组分不具有的新性能-PTC性能,充分体现了复合材料的优点和特点。
目前,关于用炭黑或碳纳米管与聚合物复合制备PTC热敏电阻的研究已有报道。炭黑能增加热敏电阻的热稳定性,但是由于炭黑量较少使得PTC的导电性不佳,炭黑量过多又导致PTC的灵敏度和循环性降低;碳纳米管虽然可以缩短动作时间,使其对于温度更为敏感,然而碳纳米管之间容易相互缠结,当基体受热膨胀时形成的导电网络不易断开,因此复合材料的PTC强度较低。石墨烯是一种由碳原子构成的单层石墨片状结构的新材料,是一种由碳原子以sp2杂化轨道组成的六角形呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯具有优良的导电性,电子迁移率高达2×105cm2v-1s-1,导热系数高达5300Wm-1K-1,高于碳纳米管和炭黑,常温下其电子迁移率超过15000cm2V-1s-1,而电阻率只约10-6Ωcm-1。同时,石墨烯具有较大的径厚比和比表面积,这些优良性能增大了石墨烯在复合材料基体中彼此连接的几率以及形成有效导通电路的概率,特别是石墨烯的片层结构使得其不易互相缠结,当温度达到PTC转变温度时,导电网络更易断开,因此是作为聚合物PTC的理想导电填料。
发明内容
针对现有技术的不足,本发明提供了一种以三维石墨烯为网络骨架的热敏电阻器,它具有动作时间短、灵敏度高,残压低的特点,且结构均匀稳定。
为实现以上目的,本发明通过以下技术方案予以实现:
一种基于三维网状石墨烯的热敏电阻器,包括以下重量份的物质:烃类气体30~60份、聚四氟乙烯80~100份、甲基丙烯酸树脂40~62份、有机溶剂120~180份、偶联剂0.3~0.5份、阻燃剂0.1~0.5份、抗氧化剂0.1~0.5份、润滑剂0.1~0.3份、抗紫外线剂0.1~0.3份。
一种基于三维网状石墨烯的热敏电阻器,包括以下重量份的物质:烃类气体50份、聚四氟乙烯100份、甲基丙烯酸树脂42份、有机溶剂150份、偶联剂0.3份、阻燃剂0.3份、抗氧化剂0.2份、润滑剂0.1份、抗紫外线剂0.1份。
优选的,所述烃类气体为甲烷、乙烯、乙炔中的一种。
优选的,所述聚四氟乙烯与甲基丙烯酸树脂的质量比为1.6~2:1.
优选的,所述有机溶剂为丙二醇甲醚醋酸酯、乙二醇乙醚醋酸酯、甲苯、二甲苯、N,N二甲基吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃、甲基四氢呋喃、甲基异丙酮、对氯苯酚、丙酮、丁醇、吡啶、三乙醇胺中的一种或多种。
优选的,所述基于三维网状石墨烯的热敏电阻器的制备方法,包括以下步骤:
(1)通过化学气相沉积法在泡沫镍表面沉积石墨烯,然后将其置于稀盐酸中,浸泡1~2h,除去镍单质,即得到三维泡沫镍,所述化学气相沉积的温度为900~1000℃,压力为500~2000Pa,载气为氢气;
(2)将聚四氟乙烯粉末和甲基丙烯酸树脂混合均匀后,加入有机溶剂进行搅拌、超声,至完全溶解,然后加热回流20~30min,加入偶联剂、阻燃剂、抗氧化剂、润滑剂、抗紫外线剂球磨15~30min,将三维石墨烯完全进入混合物中,超声10~15min,取出三维石墨烯,将其置于γ-射线下辐射,剂量为30~50Mrad,然后在50~60℃烘3~5h,得到石墨烯基复合材料;
(3)在石墨烯基复合材料边缘贴敷金属截流条,压合所述金属截流条和所述片材,压合压力为0.5~8MPa,温度为120~140℃,获得基于三维网状石墨烯的热敏电阻器。
一种基于三维网状石墨烯的热敏电阻器在家用电器加热器上的应用。
本发明的有益效果:本发明提供了一种以三维石墨烯为骨架的热敏电阻器,三维石墨烯不仅具有优良的导电和导热性,由于其连贯的骨架网络结构,它还有导电均匀性和带热均匀性,不会造成某一部分的电阻过大或过小,导致由导电不均匀和导热不均匀造成的热量累积,此外,由于其特殊的结构,使热敏电阻的动作时间明显减短,灵敏度显著增加,无残压,安全性高,使其在家用电器的加热器上具有广泛的应用前景。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种应用于家用电器加热器上的基于三维网状石墨烯的热敏电阻器的制备方法,包括以下步骤:
(1)以50份甲烷为原料,通过化学气相沉积法在泡沫镍表面沉积石墨烯,然后将其置于稀盐酸中,浸泡1~2h,除去镍单质,即得到三维泡沫镍,所述化学气相沉积的温度为900~1000℃,压力为500~2000Pa,载气为氢气;
(2)将100份聚四氟乙烯粉末和42份甲基丙烯酸树脂混合均匀后,加入150份丙二醇甲醚醋酸酯进行搅拌、超声,至完全溶解,然后加热回流20~30min,加入0.3份偶联剂、0.3份阻燃剂、0.2份抗氧化剂、0.1份润滑剂、0.1份抗紫外线剂球磨15~30min,将三维石墨烯完全进入混合物中,超声10~15min,取出三维石墨烯,将其置于γ-射线下辐射,剂量为30~50Mrad,然后在50~60℃烘3~5h,得到石墨烯基复合材料;
(3)在石墨烯基复合材料边缘贴敷金属截流条,压合所述金属截流条和所述片材,压合压力为0.5~8MPa,温度为120~140℃,获得基于三维网状石墨烯的热敏电阻器。
实施例2:
一种应用于家用电器加热器上的基于三维网状石墨烯的热敏电阻器的制备方法,包括以下步骤:
(1)以30份甲烷为原料,通过化学气相沉积法在泡沫镍表面沉积石墨烯,然后将其置于稀盐酸中,浸泡1~2h,除去镍单质,即得到三维泡沫镍,所述化学气相沉积的温度为900~1000℃,压力为500~2000Pa,载气为氢气;
(2)将80份聚四氟乙烯粉末和40份甲基丙烯酸树脂混合均匀后,加入80份乙二醇乙醚醋酸酯、40份甲苯的混合溶液中进行搅拌、超声,至完全溶解,然后加热回流20~30min,加入0.3份偶联剂、0.1份阻燃剂、0.5份抗氧化剂、0.1份润滑剂、0.1份抗紫外线剂球磨15~30min,将三维石墨烯完全进入混合物中,超声10~15min,取出三维石墨烯,将其置于γ-射线下辐射,剂量为30~50Mrad,然后在50~60℃烘3~5h,得到石墨烯基复合材料;
(3)在石墨烯基复合材料边缘贴敷金属截流条,压合所述金属截流条和所述片材,压合压力为0.5~8MPa,温度为120~140℃,获得基于三维网状石墨烯的热敏电阻器。
实施例3:
一种应用于家用电器加热器上的基于三维网状石墨烯的热敏电阻器的制备方法,包括以下步骤:
(1)以60份乙炔为原料,通过化学气相沉积法在泡沫镍表面沉积石墨烯,然后将其置于稀盐酸中,浸泡1~2h,除去镍单质,即得到三维泡沫镍,所述化学气相沉积的温度为900~1000℃,压力为500~2000Pa,载气为氢气;
(2)将100份聚四氟乙烯粉末和62份甲基丙烯酸树脂混合均匀后,加入100份N,N二甲基吡咯烷酮、80份吡啶的混合溶液中进行搅拌、超声,至完全溶解,然后加热回流20~30min,加入0.3份偶联剂、0.2份阻燃剂、0.3份抗氧化剂、0.30.3份润滑剂、份抗紫外线剂球磨15~30min,将三维石墨烯完全进入混合物中,超声10~15min,取出三维石墨烯,将其置于γ-射线下辐射,剂量为30~50Mrad,然后在50~60℃烘3~5h,得到石墨烯基复合材料;
(3)在石墨烯基复合材料边缘贴敷金属截流条,压合所述金属截流条和所述片材,压合压力为0.5~8MPa,温度为120~140℃,获得基于三维网状石墨烯的热敏电阻器。
实施例4:
一种应用于家用电器加热器上的基于三维网状石墨烯的热敏电阻器的制备方法,包括以下步骤:
(1)以45份乙烯为原料,通过化学气相沉积法在泡沫镍表面沉积石墨烯,然后将其置于稀盐酸中,浸泡1~2h,除去镍单质,即得到三维泡沫镍,所述化学气相沉积的温度为900~1000℃,压力为500~2000Pa,载气为氢气;
(2)将90份聚四氟乙烯粉末和50份甲基丙烯酸树脂混合均匀后,加入60份二甲基亚砜、100份三乙醇胺进行搅拌、超声,至完全溶解,然后加热回流20~30min,加入0.5份偶联剂、0.5份阻燃剂、0.1份抗氧化剂、0.1份润滑剂、0.3份抗紫外线剂球磨15~30min,将三维石墨烯完全进入混合物中,超声10~15min,取出三维石墨烯,将其置于γ-射线下辐射,剂量为30~50Mrad,然后在50~60℃烘3~5h,得到石墨烯基复合材料;
(3)在石墨烯基复合材料边缘贴敷金属截流条,压合所述金属截流条和所述片材,压合压力为0.5~8MPa,温度为120~140℃,获得基于三维网状石墨烯的热敏电阻器。
综上,本发明实施例具有如下有益效果:本发明提供了一种以三维石墨烯为骨架的热敏电阻器,三维石墨烯不仅具有优良的导电和导热性,由于其连贯的骨架网络结构,它还有导电均匀性和带热均匀性,不会造成某一部分的电阻过大或过小,导致由导电不均匀和导热不均匀造成的热量累积,此外,由于其特殊的结构,使热敏电阻的动作时间明显减短,灵敏度显著增加,无残压,安全性高,使其在家用电器的加热器上具有广泛的应用前景。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种基于三维网状石墨烯的热敏电阻器,其特征在于,包括以下重量份的物质:烃类气体30~60份、聚四氟乙烯80~100份、甲基丙烯酸树脂40~62份、有机溶剂120~180份、偶联剂0.3~0.5份、阻燃剂0.1~0.5份、抗氧化剂0.1~0.5份、润滑剂0.1~0.3份、抗紫外线剂0.1~0.3份。
2.如权利要求1所述的基于三维网状石墨烯的热敏电阻器,其特征在于,包括以下重量份的物质:烃类气体50份、聚四氟乙烯100份、甲基丙烯酸树脂42份、有机溶剂150份、偶联剂0.3份、阻燃剂0.3份、抗氧化剂0.2份、润滑剂0.1份、抗紫外线剂0.1份。
3.如权利要求2所述的基于三维网状石墨烯的热敏电阻器,其特征在于,所述烃类气体为甲烷、乙烯、乙炔中的一种。
4.如权利要求3所述的基于三维网状石墨烯的热敏电阻器,其特征在于,所述聚四氟乙烯与甲基丙烯酸树脂的质量比为1.6~2:1。
5.如权利要求4所述的基于三维网状石墨烯的热敏电阻器,其特征在于,所述有机溶剂为丙二醇甲醚醋酸酯、乙二醇乙醚醋酸酯、甲苯、二甲苯、N,N二甲基吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃、甲基四氢呋喃、甲基异丙酮、对氯苯酚、丙酮、丁醇、吡啶、三乙醇胺中的一种或多种。
6.如权利要求5所述的基于三维网状石墨烯的热敏电阻器,其特征在于,所述基于三维网状石墨烯的热敏电阻器的制备方法,包括以下步骤:
(1)通过化学气相沉积法在泡沫镍表面沉积石墨烯,然后将其置于稀盐酸中,浸泡1~2h,除去镍单质,即得到三维泡沫镍,所述化学气相沉积的温度为900~1000℃,压力为500~2000Pa,载气为氢气;
(2)将聚四氟乙烯粉末和甲基丙烯酸树脂混合均匀后,加入有机溶剂进行搅拌、超声,至完全溶解,然后加热回流20~30min,加入偶联剂、阻燃剂、抗氧化剂、润滑剂、抗紫外线剂球磨15~30min,将三维石墨烯完全进入混合物中,超声10~15min,取出三维石墨烯,将其置于γ-射线下辐射,剂量为30~50Mrad,然后在50~60℃烘3~5h,得到石墨烯基复合材料;
(3)在石墨烯基复合材料边缘贴敷金属截流条,压合所述金属截流条和所述片材,压合压力不大于0.5~8MPa,温度为120~140℃,获得基于三维网状石墨烯的热敏电阻器。
7.一种如权利要求1~6任一所述的基于三维网状石墨烯的热敏电阻器的应用,其特征在于,所述基于三维网状石墨烯的热敏电阻器在家用电器加热器上的应用。
CN201610649758.7A 2016-08-09 2016-08-09 一种基于三维网状石墨烯的热敏电阻器及其应用 Active CN106229098B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610649758.7A CN106229098B (zh) 2016-08-09 2016-08-09 一种基于三维网状石墨烯的热敏电阻器及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610649758.7A CN106229098B (zh) 2016-08-09 2016-08-09 一种基于三维网状石墨烯的热敏电阻器及其应用

Publications (2)

Publication Number Publication Date
CN106229098A true CN106229098A (zh) 2016-12-14
CN106229098B CN106229098B (zh) 2018-08-31

Family

ID=57548324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610649758.7A Active CN106229098B (zh) 2016-08-09 2016-08-09 一种基于三维网状石墨烯的热敏电阻器及其应用

Country Status (1)

Country Link
CN (1) CN106229098B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222743A (zh) * 1996-07-16 1999-07-14 上海维安热电材料有限公司 层片状高分子聚合物正温度系数热敏电阻器
CN101528829A (zh) * 2006-08-08 2009-09-09 沙伯基础创新塑料知识产权有限公司 导热率改善的聚合物正温度系数组合物
CN103756103A (zh) * 2014-02-19 2014-04-30 中国科学院金属研究所 石墨烯/高密度聚乙烯热敏电阻复合材料及制备方法
CN104925790A (zh) * 2015-05-19 2015-09-23 北京航空航天大学 一种三维石墨烯骨架-柱状氧化锌纳米晶阵列复合结构及其制备方法
CN105387927A (zh) * 2015-11-23 2016-03-09 南京邮电大学 一种新型柔性振动传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222743A (zh) * 1996-07-16 1999-07-14 上海维安热电材料有限公司 层片状高分子聚合物正温度系数热敏电阻器
CN101528829A (zh) * 2006-08-08 2009-09-09 沙伯基础创新塑料知识产权有限公司 导热率改善的聚合物正温度系数组合物
CN103756103A (zh) * 2014-02-19 2014-04-30 中国科学院金属研究所 石墨烯/高密度聚乙烯热敏电阻复合材料及制备方法
CN104925790A (zh) * 2015-05-19 2015-09-23 北京航空航天大学 一种三维石墨烯骨架-柱状氧化锌纳米晶阵列复合结构及其制备方法
CN105387927A (zh) * 2015-11-23 2016-03-09 南京邮电大学 一种新型柔性振动传感器

Also Published As

Publication number Publication date
CN106229098B (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
Sun et al. Humidification of high-performance and multifunctional polyimide/carbon nanotube composite foams for enhanced electromagnetic shielding
Yan et al. Electrical conductivity and major mechanical and thermal properties of carbon nanotube‐filled polyurethane foams
Shehzad et al. All-organic PANI–DBSA/PVDF dielectric composites with unique electrical properties
Zhang et al. P-doped PANI/AgMWs nano/micro coating towards high-efficiency flame retardancy and electromagnetic interference shielding
CN107722417B (zh) 复合高导热缓冲辐照交联聚乙烯泡棉及其制备方法
Xu et al. Temperature dependence of electric and dielectric behaviors of Ni/polyvinylidene fluoride composites
Gao et al. Millefeuille‐Inspired Thermal Interface Materials based on Double Self‐Assembly Technique for Efficient Microelectronic Cooling and Electromagnetic Interference Shielding
Kim et al. Electromagnetic Interference Shielding and Electrothermal Performance of MXene‐Coated Cellulose Hybrid Papers and Fabrics Manufactured by a Facile Scalable Dip‐Dry Coating Process
KR101859005B1 (ko) 복합 방열 필름
Al‐Ghamdi et al. Electromagnetic wave shielding and microwave absorbing properties of hybrid epoxy resin/foliated graphite nanocomposites
JP6465368B2 (ja) 混合グラファイトを用いた放熱材およびその製造方法
CN104861273A (zh) 用于热敏电阻的复合材料及其制备方法和应用
CN103756103B (zh) 石墨烯/高密度聚乙烯热敏电阻复合材料及制备方法
Jia et al. Microcellular conductive carbon black or graphene/PVDF composite foam with 3D conductive channel: a promising lightweight, heat‐insulating, and EMI‐shielding material
KR101628755B1 (ko) 고열전도성 방열 복합소재 제조방법 및 이로부터 제조된 복합소재를 이용한 고방열 필름
Li et al. Paving 3D interconnected Cring-C3N4@ rGO skeleton for polymer composites with efficient thermal management performance yet high electrical insulation
Tian et al. Rapid electrothermal response and excellent flame retardancy of ethylene‐vinyl acetate electrothermal film
Jiang et al. Electrical Breakdown‐Induced Tunable Piezoresistivity in Graphene/Polyimide Nanocomposites for Flexible Force Sensor Applications
Yang et al. Polymer composites designed with 3D fibrous CNT “tracks” achieving excellent thermal conductivity and electromagnetic interference shielding efficiency
Tsao et al. Effect of argon plasma treatment on the PTC and NTC behaviors of HDPE/carbon black/aluminum hydroxide nanocomposites for over-voltage resistance positive temperature coefficient (PTC)
JPWO2017018493A1 (ja) 混合グラファイトを用いた放熱材およびその製造方法
Katheria et al. Fe3O4@ g-C3N4 and MWCNT embedded highly flexible polymeric hybrid composite for simultaneous thermal control and suppressing microwave radiation
Svoboda et al. A study on electrical and thermal conductivities of ethylene–octene copolymer/expandable graphite composites
Schettini et al. Microwave dielectric properties and EMI shielding effectiveness of poly (styrene‐b‐styrene‐butadiene‐styrene) copolymer filled with PAni. Dodecylbenzenesulfonic acid and carbon black
Mei et al. Multifunctional starch/carbon nanotube composites with segregated structure: Electrical conductivity, electromagnetic interference shielding effectiveness, thermal conductivity, and electro‐thermal conversion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant