CN106227000A - 激光诱导瞬态热探针的纳米光刻方法 - Google Patents

激光诱导瞬态热探针的纳米光刻方法 Download PDF

Info

Publication number
CN106227000A
CN106227000A CN201610580128.9A CN201610580128A CN106227000A CN 106227000 A CN106227000 A CN 106227000A CN 201610580128 A CN201610580128 A CN 201610580128A CN 106227000 A CN106227000 A CN 106227000A
Authority
CN
China
Prior art keywords
nano
induced
probe
thin film
thermal transient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610580128.9A
Other languages
English (en)
Other versions
CN106227000B (zh
Inventor
魏劲松
魏涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201610580128.9A priority Critical patent/CN106227000B/zh
Publication of CN106227000A publication Critical patent/CN106227000A/zh
Application granted granted Critical
Publication of CN106227000B publication Critical patent/CN106227000B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种基于激光诱导瞬态热探针的纳米光刻方法,其特征在于当准直的激光束聚焦到非线性材料时,诱导出材料的非线性特性。由于激光强度的高斯分布特点,使激光中心区域的能量最高,并沿着径向逐渐减弱,激光能量转化为材料的温度差,从而在非线性材料内部诱导产生瞬态热探针。在光刻过程中,激光束打开,热探针形成;激光束关闭,热探针消失。形成的热探针随着激光束自由移动,热探针的形成与关闭是动态的、可逆的。本发明简单实用,不需要复杂的操作,特别适用于透明材料的微纳结构制造,能获得纳米尺度的特征线宽。

Description

激光诱导瞬态热探针的纳米光刻方法
技术领域
本发明涉及纳米光刻方法,基于激光诱导瞬态热探针的纳米光刻方法。
背景技术
随着光电子及信息技术的发展,光电子器件、光学元件的特征尺寸需要不断减小,目前已经进入到纳米尺度。因此,发展纳米光刻技术刻不容缓。目前,电子束光刻是一种非常有潜力的纳米制造技术,其刻写的最小线宽低于10nm。但是,电子束刻写需要在高真空环境下进行,操作复杂;而且光刻系统成本昂贵,不利于小批量,个性化的纳米制备。扫描探针光刻是另外一种功能强大的纳米制备方法。其能实现纳米尺度的特征尺寸(<10nm)、不需要复杂的操作流程,可实现各种材料的刻写。但是,扫描探针光刻技术仍存在不足之处:刻写速度低、探针寿命短(由于探针与材料表面直接接触,容易损坏)。因此,本发明提出一种基于激光诱导瞬态热探针的纳米光刻方法。该方法利用材料的非线性效应,在材料内部形成类似针尖的热探针,利用形成的热探针对下层的热刻蚀薄膜进行加热,使其发生物理及化学变化,进行纳米结构刻写。随后通过湿法刻蚀工艺移除上层的非线性薄膜,并对热刻蚀薄膜进行湿法显影,从而得到所需的纳米结构。该方法结合了传统的扫描探针光刻技术与材料的非线性特征,巧妙地避免了扫描探针容易损坏问题,同时实现了高速纳米刻写。
发明内容
本发明的目的在于提供一种激光诱导瞬态热探针的纳米光刻方法。
本发明的原理是:在进行纳米光刻时,聚焦光束首先进入一层非线性薄膜(如AIST薄膜),在非线性薄膜内部形成瞬态的热探针效应,该薄膜底部的热探针针尖对下层的热刻蚀薄膜进行加热,使其发生物理及化学变化,最后通过湿法刻蚀移除上层的非线性薄膜,并对下层的热刻蚀薄膜进行湿法显影,继而得到所需的纳米结构。由于激光束呈现高斯分布,其中心区域的强度高,而边缘的激光强度低。利用材料的非线性吸收特征使得其作用区域也呈现出中心吸收的能量高,而边缘吸收的能量少,在非线性材料内部诱导产生瞬态热探针效应,实现纳米光刻。
为达到上述目的,本发明的技术解决方案是:
一种激光诱导瞬态热探针的纳米光刻方法,其特点在于该方法包括以下几个步骤:
a)在基片上用磁控溅射的方法镀上一层热刻蚀薄膜;
b)在所述的热刻蚀薄膜上再镀上一层非线性薄膜构成待刻样品;
c)利用激光直写系统对所述的待刻样品的热刻蚀薄膜进行纳米光刻;
d)对待刻样品进行湿法刻蚀,去除所述的非线性薄膜;
e)对待刻样品进行湿法显影得到具有所需的纳米结构的样品。
所述的热刻蚀薄膜的材料为包括ZnS-SiO2和Si。
所述的热刻蚀薄膜的厚度在100nm到500nm之间。
所述的基片为石英玻璃和硅片。
所述的非线性薄膜的材料为Sb、Te、Sb2Te3、GeTe、Ge2Sb2Te5或AgInSbTe。
所述的非线性薄膜的厚度为10nm~100nm。
所述的激光直写系统的激光波长为405nm,透镜的数值孔径为0.25~0.95。
所述的湿法刻蚀采用的溶液为17wt.%硫化铵的水溶液。
所述的湿法显影所用溶液为氟化铵与氟化氢的混合水溶液,其中氟化铵的浓度为1~10mol%,而氟化氢的浓度为2~20mol%。
本发明的技术效果如下:
本发明通过激光直写光刻系统,利用Sb、Te、Sb2Te3、GeTe、Ge2Sb2Te5或AgInSbTe材料的非线性特征,当激光束通过非线性材料以后,在非线性材料内部诱导产生瞬态热探针,然后对热刻蚀薄膜进行热探针刻写,再利用湿法刻蚀移除非线性材料,并对热刻蚀薄膜进行湿法显影,得到纳米图形结构。其优点是:
1)光刻系统操作简便,成本低廉。
2)利用热探针能够实现高速刻写。
3)能够得到纳米尺度的结构。
附图说明
图1是本发明基片上镀热刻蚀薄膜及非线性薄膜后的结构示意图;
图2是本发明激光诱导瞬态热探针纳米光刻示意图;
具体实施方式
下面通过实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
实施例1:
一种基于激光诱导瞬态热探针的纳米光刻方法,其步骤包括:
a)用磁控溅射法在石英片上镀上一层200nm厚的ZnS-SiO2热刻蚀薄膜;
b)在所述的ZnS-SiO2热刻蚀薄膜上再镀上一层30nm厚的Ge2Sb2Te5非线性薄膜;
c)利用激光直写系统对上述石英片进行纳米光刻,所用激光波长为405nm;透镜的数值孔径为0.65.
d)将上述石英片浸入质量分数为17wt.%的硫化铵水溶液中5分钟去除Ge2Sb2Te5薄膜;
e)将上述石英片浸入1.5mol%氟化铵与0.5mol%氟化氢的混合水溶液中显影30秒,最后得到所需的纳米结构。
镀有热刻蚀薄膜和非线性薄膜的基片示意图如图1所示,实例中采用ZnS-SiO2作为热刻蚀薄膜,厚度为200nm,镀于基片表面,在上述基片上继续镀上一层非线性Ge2Sb2Te5薄膜,厚度为30nm。
当聚焦激光束通过非线性薄膜以后,基于Ge2Sb2Te5材料的非线性饱和吸收特性,即截面呈现高斯分布的激光束通过薄膜时,Ge2Sb2Te5材料对截面上光强较强的部分吸收能量弱,而对截面上光强的部分吸收能量强,因此当激光束通过非线性薄膜以后诱导产生瞬态热探针,并且小于光斑的衍射极限,如图2所示。利用热探针光刻最终得到的线条特征尺寸低至200nm,远小于衍射极限光斑尺寸(1μm)。

Claims (9)

1.一种激光诱导瞬态热探针的纳米光刻方法,其特征在于该方法包括以下几个步骤:
a)在基片上用磁控溅射的方法镀上一层热刻蚀薄膜;
b)在所述的热刻蚀薄膜上再镀上一层非线性薄膜构成待刻样品;
c)利用激光直写系统对所述的待刻样品的热刻蚀薄膜进行纳米光刻;
d)对待刻样品进行湿法刻蚀,去除所述的非线性薄膜;
e)对待刻样品进行湿法显影得到具有所需的纳米结构的样品。
2.根据权利要求1所述的激光诱导瞬态热探针的纳米光刻方法,其特征在于所述的热刻蚀薄膜的材料为包括ZnS-SiO2和Si。
3.根据权利要求1所述的激光诱导瞬态热探针的纳米光刻方法,其特征在于所述的热刻蚀薄膜的厚度在100nm到500nm之间。
4.根据权利要求1所述的激光诱导瞬态热探针的纳米光刻方法,其特征在于所述的基片为石英玻璃和硅片。
5.根据权利要求1所述的激光诱导瞬态热探针的纳米光刻方法,其特征在于所述的非线性薄膜的材料为Sb、Te、Sb2Te3、GeTe、Ge2Sb2Te5或AgInSbTe。
6.根据权利要求1所述的激光诱导瞬态热探针的纳米光刻方法,其特征在于所述的非线性薄膜的厚度为10nm~100nm。
7.根据权利要求1所述的激光诱导瞬态热探针的纳米光刻方法,其特征在于所述的激光直写系统的激光波长为405nm,透镜的数值孔径为0.25~0.95。
8.根据权利要求1所述的激光诱导瞬态热探针的纳米光刻方法,其特征在于所述的湿法刻蚀采用的溶液为17wt.%硫化铵的水溶液。
9.根据权利要求1至8任一项所述的激光诱导瞬态热探针的纳米光刻方法,其特征在于所述的湿法显影所用溶液为氟化铵与氟化氢的混合水溶液,其中氟化铵的浓度为1~10mol%,而氟化氢的浓度为2~20mol%。
CN201610580128.9A 2016-07-22 2016-07-22 激光诱导瞬态热探针的纳米光刻方法 Active CN106227000B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610580128.9A CN106227000B (zh) 2016-07-22 2016-07-22 激光诱导瞬态热探针的纳米光刻方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610580128.9A CN106227000B (zh) 2016-07-22 2016-07-22 激光诱导瞬态热探针的纳米光刻方法

Publications (2)

Publication Number Publication Date
CN106227000A true CN106227000A (zh) 2016-12-14
CN106227000B CN106227000B (zh) 2018-04-13

Family

ID=57531291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610580128.9A Active CN106227000B (zh) 2016-07-22 2016-07-22 激光诱导瞬态热探针的纳米光刻方法

Country Status (1)

Country Link
CN (1) CN106227000B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109444053A (zh) * 2018-12-25 2019-03-08 南京大学 瞬态传热显微镜及其进行微区热测量的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036373A (ja) * 2000-07-25 2002-02-05 Sanyo Electric Co Ltd 光造形装置
CN1550905A (zh) * 2003-05-13 2004-12-01 Asml荷兰有限公司 光刻装置和器件制造方法
CN102338986A (zh) * 2011-08-19 2012-02-01 中国科学院上海光学精密机械研究所 有机无机复合激光热刻蚀薄膜和微纳图形制备的方法
CN105425536A (zh) * 2015-11-12 2016-03-23 中国科学院上海光学精密机械研究所 激光直写用超分辨掩膜板及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036373A (ja) * 2000-07-25 2002-02-05 Sanyo Electric Co Ltd 光造形装置
CN1550905A (zh) * 2003-05-13 2004-12-01 Asml荷兰有限公司 光刻装置和器件制造方法
CN102338986A (zh) * 2011-08-19 2012-02-01 中国科学院上海光学精密机械研究所 有机无机复合激光热刻蚀薄膜和微纳图形制备的方法
CN105425536A (zh) * 2015-11-12 2016-03-23 中国科学院上海光学精密机械研究所 激光直写用超分辨掩膜板及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109444053A (zh) * 2018-12-25 2019-03-08 南京大学 瞬态传热显微镜及其进行微区热测量的方法
CN109444053B (zh) * 2018-12-25 2020-10-02 南京大学 瞬态传热显微镜及其进行微区热测量的方法

Also Published As

Publication number Publication date
CN106227000B (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
Sugioka Progress in ultrafast laser processing and future prospects
Huang et al. Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification
Kuznetsov et al. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays
Choi et al. Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique
Wang et al. Angle effect in laser nanopatterning with particle-mask
CN101635147B (zh) 信号检测装置和信号检测方法
CN102320553A (zh) 利用激光双光子直写技术制作微纳结构器件的方法
CN107244669B (zh) 一种激光诱导石墨烯微纳结构的加工方法及其系统
CN108376642A (zh) Ge2Sb2Te5硫系相变薄膜材料正负胶两用湿法刻蚀方法
Rahimian et al. Spatially controlled nano-structuring of silicon with femtosecond vortex pulses
Gil-Villalba et al. Single shot femtosecond laser nano-ablation of CVD monolayer graphene
EP2378360A1 (en) Metal optical grayscale mask and manufacturing method thereof
Afanasiev et al. Two-color beam improvement of the colloidal particle lens array assisted surface nanostructuring
Chu et al. Fabrication of phase-change Ge 2 Sb 2 Te 5 nano-rings
Chen et al. Surface birefringence of regular periodic surface structures produced on glass coated with an indium tin oxide film using a low-fluence femtosecond laser through a cylindrical lens
CN106227000B (zh) 激光诱导瞬态热探针的纳米光刻方法
Kryuchyn et al. Formation of nanoscale structures on chalcogenide films
Paz-Buclatin et al. Circularly symmetric nanopores in 3D femtosecond laser nanolithography with burst control and the role of energy dose
CN106847311B (zh) 一种基于相变纳米线的集成型全光存储器件及其制备方法
JP5026967B2 (ja) 3次元フォトニック結晶の製造方法
Quentin et al. Optical trap assisted laser nanostructuring in the near-field of microparticles
JP2010228989A (ja) ドーピング方法、光学デバイスの製造方法、および、ナノ粒子生成方法
Moisset et al. Saturable absorption optimization of silica protected thin Sb2Te3 layers towards super-resolution applications
Wei et al. Manipulation and simulations of thermal field profiles in laser heat-mode lithography
Park et al. Massively parallel direct writing of nanoapertures using multi-optical probes and super-resolution near-fields

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant