CN106847311B - 一种基于相变纳米线的集成型全光存储器件及其制备方法 - Google Patents

一种基于相变纳米线的集成型全光存储器件及其制备方法 Download PDF

Info

Publication number
CN106847311B
CN106847311B CN201611137819.8A CN201611137819A CN106847311B CN 106847311 B CN106847311 B CN 106847311B CN 201611137819 A CN201611137819 A CN 201611137819A CN 106847311 B CN106847311 B CN 106847311B
Authority
CN
China
Prior art keywords
waveguide
phase change
change nanowire
nanowire
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611137819.8A
Other languages
English (en)
Other versions
CN106847311A (zh
Inventor
吕业刚
徐培鹏
沈祥
戴世勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201611137819.8A priority Critical patent/CN106847311B/zh
Publication of CN106847311A publication Critical patent/CN106847311A/zh
Application granted granted Critical
Publication of CN106847311B publication Critical patent/CN106847311B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of groups 13, 14, 15 or 16 of the Periodic System, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/257Multistable switching devices, e.g. memristors based on radiation or particle beam assisted switching, e.g. optically controlled devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/2431Metals or metalloids group 13 elements (B, Al, Ga, In)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)

Abstract

本发明公开了一种基于相变纳米线的集成型全光存储器件及其制备方法,特点是包括波导、与波导两端相连的布拉格光栅垂直耦合器以及、波导上且与波导平行的相变纳米线,其制备方法步骤包括在硅基底上利用曝光刻蚀工艺制备出波导及其两端的布拉格光栅耦合器,将纳米线转移至波导上,并且与波导平行,采用擦/写光脉冲从波导一端的布拉格光栅耦合器耦合至波导,通过波导上的倏逝场使相变纳米线发生相变,探测光通过波导另一端布拉格光栅耦合器耦合至波导,实时监测器件透过率的变化来读取存储的数据,优点是本器件可以用于高速、高密度、低功耗的全光网络集成存储芯片。

Description

一种基于相变纳米线的集成型全光存储器件及其制备方法
技术领域
本发明涉及用于光存储的纳米器件领域,尤其是涉及一种基于相变纳米线的集成型全光存储器件及其制备方法。
背景技术
电子芯片在通信电子线路中消耗的能量日益递增,使得在通信领域基于CMOS处理器的发展面临瓶颈。光通信因具有较低的能耗、更快的传输速率而备受关注。光位存储器的提出对光通信至关重要,因为电子存储器和处理器之间的通信难以实现片内集成。然而,光存储器被认为是芯片内光电器件中最难实现的光部件之一,因为我们需要同时实现高位速率操作、大规模集成及低功耗性能。目前,国际上已有研究组报道了集成光位存储芯片。绝大多数的这些存储器是基于光学双稳态,即利用功能材料的光学非线性。例如基于光子晶体纳米微腔的光随机存储器能实现40Gbits s-1的光信号,功耗降低至40nW,写脉冲不超过10fJ。尽管如此,这些光双稳态存储器需要偏置电源才能保持状态,就像DRAM那样,是易失性的。基于光双稳态的存储器难以实现非易失性,而许多便携式光电产品需要非易失性来存储数据。
近年来,相变材料广泛应用于大容量可擦写的光存储介质,例如可擦写DVD和蓝光盘。这得益于相变材料两个稳定的状态,即非晶态和晶态。这两个状态在光、电性质上表现出巨大的差异。在外部光或电的激励下,晶态和非晶态能在纳秒级的时间内完成切换。因其超快的速度及优良的微缩性,基于相变材料的相变存储器被国际上公认为下一代非易失性存储器。尤其是,基于相变纳米线的存储器具有更低的功耗、更快的速度。目前,国内外还没有利用相变纳米线用于光存储的报道。
发明内容
本发明所要解决的技术问题是提供一种可以实现全光存储,降低功耗,便于集成且数据是非易失性的基于相变纳米线的集成型全光存储器件及其制备方法。
本发明解决上述技术问题所采用的技术方案为:
1、一种基于相变纳米线的集成型全光存储器件,包括波导,所述的波导两端分别连接有光栅垂直耦合器,所述的波导上设置有相变纳米线,所述的相变纳米线与所述的波导平行。
所述的波导为硅基平面光波导,其宽为0.2-20μm,厚度为10-1000nm;所述的光栅垂直耦合器的光栅是布拉格光栅,其耦合效率为1-50%;所述的相变纳米线为Sb基或Te基相变材料,其直径为20-600nm,长度为1-10μm。
所述的硅基包括Si、Si3N4和SiC硅基,所述的相变纳米线包括Ge-Te、Sb-Te、Ge-Sb、Sb-Se、Ga-Sb和In-Sb。
所述的相变纳米线具有至少两个稳定的状态,即晶态和非晶态,且这两个状态对探测光具有明显不同的吸收系数,所述的相变纳米线在波导倏逝场耦合作用下发生晶态至非晶态的可逆相变。
2、上述基于相变纳米线的集成型全光存储器件的制备方法,包括以下步骤在硅基底上利用曝光刻蚀工艺制备出波导及其两端的光栅耦合器,将纳米线转移至波导上,并且与波导平行,具体如下:
(1)在硅基底上旋涂光刻胶正胶,然后采用电子束曝光-显影工艺在硅基底上形成对准标记图形;
(2)在硅基底上镀上Cr和Au薄膜,去胶后,得到Cr/Au对准标记;
(3)在硅基底上旋涂光刻胶负胶,然后再次采用电子束曝光显影工艺在硅基底上形成平面波导以及分别位于波导两端的光栅垂直耦合器图形;
(4)采用反应离子机刻蚀出相应的波导和光栅垂直耦合器,再利用氧等离子体刻蚀将波导和光栅耦合器上方的负胶完全去掉;
(5)将纳米线转移至波导上并平行于波导,即得到基于相变纳米线的集成型全光存储器件。
所述的波导为硅基平面光波导,其宽为0.2-20μm,厚度为10-1000nm;所述的光栅垂直耦合器的光栅是布拉格光栅,其耦合效率为1-50%;所述的相变纳米线为Sb基或Te基相变材料,其直径为20-600nm,长度为1-10μm。
所述的硅基包括Si、Si3N4和SiC硅基,所述的相变纳米线包括Ge-Te、Sb-Te、Ge-Sb、Sb-Se、Ga-Sb和In-Sb。
所述的Cr/Au薄膜的厚度范围为50-300nm。
所述的相变纳米线具有至少两个稳定的状态,即晶态和非晶态,且这两个状态对探测光具有明显不同的吸收系数,所述的相变纳米线在波导倏逝场耦合作用下发生晶态至非晶态的可逆相变。
与现有技术相比,本发明的优点在于:发明一种基于相变纳米线的集成型全光存储器件及其制备方法,该其基于相变纳米线的波导器件是利用相变纳米线转移至易集成的波导上来实现光存储,是一种新型的非易失性存储技术。因相变纳米线较小的编程体积、较低的熔点、较快的结晶速度,其波导器件有利于实现较低的功耗和超快的操作速度的光存储。本发明的器件为高速、高密度、低功耗的全光网络集成存储芯片提供了选择方案。
附图说明
图1为实施例1的基于GeTe纳米线的存储器件的扫描电镜图(ScanningElectronic Microscope ,简称SEM)照片一;
图2为实施例1的基于GeTe纳米线的存储器件的扫描电镜图(ScanningElectronic Microscope ,简称SEM)照片二;
图3为实施例1的基于GeTe纳米线的存储器件的在写操作下的透过率变化;
图4为实施例1的基于GeTe纳米线的存储器件的在擦操作下的透过率变化。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
一、具体实施例
实施例1
在Si3N4/SiO2/Si基底上旋涂正胶PMMA8.0,厚度约800nm,然后采用电子束曝光工艺曝光出对准标记,并用甲基异丁基甲酮与异丙醇的混合液(其中甲基异丁基甲酮与异丙醇体积比1:3)作为显影液,获得对准标记图形;利用脉冲激光沉积法,在Si基底上镀上约5nm的Cr和100nm的Au作为对准标记,再将样品侵入丙酮去胶,即可得到Cr/Au对准标记;
在拥有对准标记的Si3N4/SiO2/Si基底上旋涂负胶Ma-N2403,经过200℃,120s坚膜后,再次利用电子束曝光技术曝光出平面波导和布拉格光栅耦合器图形,波导宽为1300nm,厚度为330nm,波导与布拉格光栅总的长度为250μm。利用反应离子机刻蚀出相应的波导和布拉格光栅耦合器,再利用氧等离子体刻蚀将波导和光栅耦合器上方的掩护胶Ma-N2403完全去掉。采用气-液-固法制备GeTe纳米线样品,得到的GeTe纳米线直径范围为100-400nm,长度约为8μm。通过物理转移方法将纳米线转移至波导表面,方向与波导平行,器件的扫描电子显微镜图如图1所示。
泵浦光,即擦/写脉冲,从波导一端的光栅耦合器耦合至波导,通过波导上的倏逝场作用于纳米线,使相变纳米线发生相变。探测光通过波导另一端光栅耦合器耦合至波导,实时监测器件透过率的变化来读取存储的数据。
波长为1550nm的激光源,经光电调制后得到的50ns光脉冲作为擦写脉冲。擦写脉冲经过光放大器,由器件的左端布拉格光栅耦合器耦合至波导,驱动纳米线相变后,由右端耦合器输出。另一激光源发出波长为1560nm、功率为1μW的连续激光作为探测光。从器件的右端耦合器进入,经过GeTe纳米线吸收后,从左端耦合器出来的探测光由光电探测器收集,测试结果如图2和图3所示。
实施例2
同实施例1,其区别点在于,在Si基底上镀上约5nm的Cr和150nm的Au作为对准标记,在拥有对准标记的Si3N4/SiO2/Si基底上旋涂负胶氢基硅氧烷(HSQ),刻蚀出来的波导宽为1500nm。
实施例3
同实施例1,其区别点在于,在Si3N4/SiO2/Si基底上旋涂正胶ZEP520A,采用对二甲苯作为显影液,在Si基底上镀上约5nm的Cr和200nm的Au作为对准标记,在拥有对准标记。
实施例4
同实施例1,其区别点在于,在Si3N4/SiO2/Si基底上旋涂正胶MMA,在Si基底上镀上约10nm的Cr和180nm的Au作为对准标记。采用直径为500nm,长度约为13μm的GeTe纳米线作为存储介质。
上述制备过程中纳米线的转移除现有的公知方法外,还可以采用以下方法,具体步骤如下:
(1)分散纳米线:取一干净的硅片,依次用乙醇、去离子水在超声波中清洗,并用高纯氮气吹干;将纳米线样品微力压印并摩擦已洗净的硅片,硅片上得到少量且平行于硅片表面的纳米线;
(2)纳米线转移至有机膜:采用旋涂法在分布纳米线的硅片上镀上一层有机胶薄膜,轻微划开硅片边缘四周的有机胶薄膜并保持有机胶薄膜的完整,将硅片边缘的有机胶薄膜与硅片分离;
(3)有机膜脱离:将硅片放入含水的培养皿中静置,将硅片上表面与水平面齐平且将有机胶薄膜露出水面,使水渗入硅片与有机胶薄膜的间隙,并用气枪轻微吹有机胶薄膜边缘,使有机胶薄膜脱离硅片,将硅片表面的纳米线转移至有机胶薄膜的下表面,将少量水注入培养皿,使带有纳米线的有机胶薄膜浮在水面上;
(4)有机膜移至带孔托盘:通过聚二甲基硅氧烷粘附剂将有机胶薄膜的上表面粘附在有孔的托盘上,同时将有机胶薄膜的纳米线区域置于托盘孔的位置;
(5)波导器件上的光刻胶开窗口:将波导器件上旋涂一层光刻胶,通过曝光-显影工艺,在需要转移纳米线的波导器件位置处开一个裸露出波导器件的窗口,窗口尺寸略大于待转移纳米线尺寸;
(6)转移纳米线至窗口:将托盘放置于光学显微镜下的高度固定的框架上,框架下可升降的样品台粘上需要转移纳米线的波导器件;在光学显微镜下,透过孔能够依次观察到纳米线和波导器件;通过光学显微镜选定要转移的纳米线,调整托盘角度,将待转移纳米线对准波导器件上的窗口,缓慢升高样品台直至待转移纳米线嵌入窗口,即待转移纳米线接触至指定位置;
(7)有机膜脱离聚二甲基硅氧烷:将样品台上的波导器件加热到60-120℃,并保持10-60分钟以上,直至有机胶薄膜趋于软化,降低样品台直至波导器件与聚二甲基硅氧烷脱离,并将波导器件移出样品台;此时波导器件上有纳米线,纳米线上方覆盖着有机胶薄膜;窗口里的纳米线粘附在波导器件指定位置上,其它未选取的纳米线夹在波导器件上的光刻胶和有机胶薄膜之间;
(8)增加纳米线与波导的黏附力:将波导器件放入退火炉,控制退火温度小于纳米线熔点或晶化温度,处理10-60分钟,充分增加窗口内的纳米线与波导器件的黏附力;
(9)移除有机薄膜及光刻胶:将波导器件放置在丙酮中,使光刻胶和有机胶薄膜充分溶解,夹在光刻胶和有机胶薄膜之间的纳米线脱离波导器件,同时,转移的纳米线牢牢固定在窗口的波导器件上,通过丙酮和乙醇的冲洗,波导器件上只留下转移的纳米线,即完成单根纳米线的转移。
二、实验结果分析
图1和图2为本发明器件的扫描电镜(SEM)图。该器件主要由Si3N4波导、分别与波导两端相连的光栅垂直耦合器,以及波导上方的GeTe纳米线组成,纳米线方向与波导平行。为了制备相关结构,该器件上还包括了对准标记。GeTe纳米线直径范围为100-400nm,长度约为8μm,对齐在波导正上方。图3是器件在写操作下的透过率变化。通过施加”写”光脉冲(10ns,1.1mW),器件内的GeTe纳米线在波导倏逝场的耦合作用下发生从晶态到非晶态的相变。相比晶态,非晶态具有较小的吸收系数。因而,纳米线发生相变后,器件透过率会从低值态跳变至高值态。图4是擦操作下的透过率变化。通过施加”擦”光脉冲(50ns,1.3mW),器件的纳米线从非晶态回到晶态,因而,透过率从高值态返回到低值态。透过率的高、低状态分别对应二进制的“1”和“0”数据,本发明器件实现了数据的存储和读取。此外,在擦/写操作后,数据状态一直被保持,因而存储的数据是非易失性的,无需外置电源维持数据状态,有利于降低功耗。
综上所述,本发明的器件可以实现全光存储,器件内光路在波导内传输,便于集成,且数据是非易失性的。本器件可以用于高速、高密度、低功耗的全光网络集成存储芯片。
上述说明并非对本发明的限制,本发明也并不限于上述举例。本技术领域的普通技术人员在本发明的实质范围内作出的变化、改型、添加或替换,也应属于本发明的保护范围,本发明的保护范围以权利要求书为准。

Claims (7)

1.一种基于相变纳米线的集成型全光存储器件,其特征在于:包括波导,所述的波导两端分别连接有光栅垂直耦合器,所述的波导上设置有相变纳米线,所述的相变纳米线与所述的波导平行,所述的波导为硅基平面光波导,其宽为0.2-20μm,厚度为10-1000nm;所述的光栅垂直耦合器的光栅是布拉格光栅,其耦合效率为1-50%;所述的相变纳米线为Sb基或Te基相变材料,其直径为20-600nm,长度为1-10μm。
2.根据权利要求1所述的一种基于相变纳米线的集成型全光存储器件,其特征在于:所述的硅基包括Si、Si3N4和SiC硅基,所述的相变纳米线包括Ge-Te、Sb-Te、Ge-Sb、Sb-Se、Ga-Sb和In-Sb。
3.根据权利要求2所述的一种基于相变纳米线的集成型全光存储器件,其特征在于:所述的相变纳米线具有至少两个稳定的状态,即晶态和非晶态,且这两个状态对探测光具有明显不同的吸收系数,所述的相变纳米线在波导倏逝场耦合作用下发生晶态至非晶态的可逆相变。
4.一种权利要求1所述的基于相变纳米线的集成型全光存储器件的制备方法,其特征在于包括以下步骤在硅基底上利用曝光刻蚀工艺制备出波导及其两端的光栅耦合器,将纳米线转移至波导上,并且与波导平行,具体如下:
(1)在硅基底上旋涂光刻胶正胶,然后采用电子束曝光-显影工艺在硅基底上形成对准标记图形;
(2)在硅基底上镀上Cr和Au薄膜,去胶后,得到Cr/Au对准标记;
(3)在硅基底上旋涂光刻胶负胶,然后再次采用电子束曝光显影工艺在硅基底上形成平面波导以及分别位于波导两端的光栅垂直耦合器图形;其中所述的波导为硅基平面光波导,其宽为0.2-20μm,厚度为10-1000nm;所述的光栅垂直耦合器的光栅是布拉格光栅,其耦合效率为1-50%;所述的相变纳米线为Sb基或Te基相变材料,其直径为20-600nm,长度为1-10μm;
(4)采用反应离子机刻蚀出相应的波导和光栅垂直耦合器,再利用氧等离子体刻蚀将波导和光栅耦合器上方的负胶完全去掉;
(5)将纳米线转移至波导上并平行于波导,即得到基于相变纳米线的集成型全光存储器件。
5.根据权利要求4所述的一种基于相变纳米线的集成型全光存储器件的制备方法,其特征在于:所述的硅基包括Si、Si3N4和SiC硅基,所述的相变纳米线包括Ge-Te、Sb-Te、Ge-Sb、Sb-Se、Ga-Sb和In-Sb。
6.根据权利要求4所述的一种基于相变纳米线的集成型全光存储器件的制备方法,其特征在于:所述的Cr/Au薄膜的厚度范围为50-300nm。
7.根据权利要求4-6中任一项所述的一种基于相变纳米线的集成型全光存储器件的制备方法,其特征在于:所述的相变纳米线具有至少两个稳定的状态,即晶态和非晶态,且这两个状态对探测光具有明显不同的吸收系数,所述的相变纳米线在波导倏逝场耦合作用下发生晶态至非晶态的可逆相变。
CN201611137819.8A 2016-12-12 2016-12-12 一种基于相变纳米线的集成型全光存储器件及其制备方法 Active CN106847311B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611137819.8A CN106847311B (zh) 2016-12-12 2016-12-12 一种基于相变纳米线的集成型全光存储器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611137819.8A CN106847311B (zh) 2016-12-12 2016-12-12 一种基于相变纳米线的集成型全光存储器件及其制备方法

Publications (2)

Publication Number Publication Date
CN106847311A CN106847311A (zh) 2017-06-13
CN106847311B true CN106847311B (zh) 2019-05-21

Family

ID=59139478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611137819.8A Active CN106847311B (zh) 2016-12-12 2016-12-12 一种基于相变纳米线的集成型全光存储器件及其制备方法

Country Status (1)

Country Link
CN (1) CN106847311B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470575B (zh) * 2018-03-23 2020-07-03 北京工业大学 基于Ge2Sb2Te5的仿神经全光记忆器件
CN113628653B (zh) * 2021-07-12 2023-11-10 华中科技大学 基于相变材料的全光布尔逻辑器件及其二元逻辑实现方法
CN113629187B (zh) * 2021-08-04 2024-01-02 北京航空航天大学 一种光电神经突触忆阻器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547268A (zh) * 2003-12-12 2004-11-17 中国科学院上海微系统与信息技术研究 相变存储器中纳米量级单元器件的制备方法
CN101764195A (zh) * 2008-12-24 2010-06-30 中国科学院半导体研究所 一种制作纳米尺寸相变存储器的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543627B2 (en) * 2013-11-19 2017-01-10 Electronics And Telecommunications Research Institute Microwave device using magnetic material nano wire array and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547268A (zh) * 2003-12-12 2004-11-17 中国科学院上海微系统与信息技术研究 相变存储器中纳米量级单元器件的制备方法
CN101764195A (zh) * 2008-12-24 2010-06-30 中国科学院半导体研究所 一种制作纳米尺寸相变存储器的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
相变存储器材料研究;吴良才; 宋志棠、周夕淋、饶峰、封松林;《中国科学:物理学 力学 天文学》;20161020;全文

Also Published As

Publication number Publication date
CN106847311A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
Ríos et al. Integrated all-photonic non-volatile multi-level memory
Chu et al. Laser-induced phase transitions of Ge 2 Sb 2 Te 5 thin films used in optical and electronic data storage and in thermal lithography
US11099456B2 (en) Photonic device
CN101356454B (zh) 光学元件、光学元件制作用原盘的制造方法以及光电转换装置
CN106847311B (zh) 一种基于相变纳米线的集成型全光存储器件及其制备方法
US8663772B2 (en) Minute structure and information recording medium
CN103011058B (zh) 利用激光直写制备三维中空微纳米功能结构的方法
Chang et al. Local electrical characterization of laser-recorded phase-change marks on amorphous Ge 2 Sb 2 Te 5 thin films
Chen et al. Neuromorphic Photonic Memory Devices Using Ultrafast, Non‐Volatile Phase‐Change Materials
CN108376642A (zh) Ge2Sb2Te5硫系相变薄膜材料正负胶两用湿法刻蚀方法
Chu et al. Fabrication of phase-change Ge 2 Sb 2 Te 5 nano-rings
CN111258001A (zh) 基于Si-Ge2Sb2Te5混合波导的片上光子多级开关
Zhou et al. Artificial biphasic synapses based on nonvolatile phase‐change photonic memory cells
CN103217874A (zh) 基于胶体微球纳米透镜的无掩模光刻系统
CN1601694A (zh) 器件的制造方法和观察方法
CN106782645B (zh) 一种基于相变纳米线的集成型光电存储器件及其测试方法
He et al. Low-loss ultrafast and nonvolatile all-optical switch enabled by all-dielectric phase change materials
JP5026967B2 (ja) 3次元フォトニック結晶の製造方法
Wei et al. Laser heat-mode lithography characteristics and mechanism of ZnS-SiO2 thin films
CN106227000B (zh) 激光诱导瞬态热探针的纳米光刻方法
CN116249436A (zh) 一种基于狭缝相变复合波导的全光相变多级存储器
Liu et al. Nanoscale fabrication using thermal lithography technique with blue laser
Zhou et al. Non-volatile silicon photonic devices enabled by phase change material
Seoane et al. Ultra-high endurance silicon photonic memory using vanadium dioxide
Wei et al. Principles of Laser Heat-Mode Lithography

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant