CN106222726B - 一种钛及其合金表面耐磨、低摩擦复合涂层及其制备方法 - Google Patents

一种钛及其合金表面耐磨、低摩擦复合涂层及其制备方法 Download PDF

Info

Publication number
CN106222726B
CN106222726B CN201610807049.7A CN201610807049A CN106222726B CN 106222726 B CN106222726 B CN 106222726B CN 201610807049 A CN201610807049 A CN 201610807049A CN 106222726 B CN106222726 B CN 106222726B
Authority
CN
China
Prior art keywords
titanium
wear
oxidation
composite coating
resisting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610807049.7A
Other languages
English (en)
Other versions
CN106222726A (zh
Inventor
姚正军
陶学伟
罗西希
杜文博
刘莹莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201610807049.7A priority Critical patent/CN106222726B/zh
Publication of CN106222726A publication Critical patent/CN106222726A/zh
Application granted granted Critical
Publication of CN106222726B publication Critical patent/CN106222726B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种钛及其合金表面耐磨、低摩擦复合涂层及其制备方法,包括以下步骤:采用微弧氧化技术在钛或其合金试件表面制得含有石墨的前驱体氧化涂层;对前驱体氧化涂层进行等离子渗氮处理。本发明提供的一种复合涂层不仅可以提高钛及其合金的耐磨性能,而且具有较低的摩擦系数,有效减缓了摩擦副的磨损失效,扩大了钛及其合金的应用范围。

Description

一种钛及其合金表面耐磨、低摩擦复合涂层及其制备方法
技术领域
本发明涉及表面防护涂层材料领域,具体涉及一种钛及其合金表面耐磨、低摩擦复合涂层及其制备方法。
背景技术
钛及其合金是优异的轻型结构材料,拥有高比强度、无磁性以及突出的耐海水和海洋大气腐蚀等优势,因而在各类海洋工程具有广泛的适用性,被誉为海洋“奇材”。尽管钛材作为海洋工程用材料拥有很多优异的性能,但也并非全然美好,在应用过程中存在的耐磨性能不足等问题,因而,制约了钛材的应用。目前提高钛及其合金耐磨性的方法有微弧氧化、激光熔覆等。尽管采用上述方法所制备的硬质陶瓷涂层具有优异的耐蚀性能,但是涂层的摩擦系数较高,易加快摩擦副磨损失效。为此,中国专利号CN201310025662.X,公开了名称为一种钛合金自润滑复合膜及其制备方法的专利,其通过微弧氧化和反复涂覆的方法制备出陶瓷氧化膜与环氧树脂复合自润滑膜层,有效提高了钛材耐磨性,减小了涂层的摩擦系数,但树脂基膜层易发生老化。E.E.Sukuroglu等采用磁控溅射在微弧氧化膜表面沉积了一层低摩擦系数的DLC膜,有效改善了涂层摩擦性能(E.E.Sukuroglu,Y.Totik,E.Arslan,I.Efeoglu.Analysis of tribo-corrosion properties of MAO/DLC coatings using aduplex process on Ti6Al4V alloys[J].J.Bio.Tribo.Corros.,2015,1:22),但DLC与氧化陶瓷层之间存在突变界面,在剧烈摩擦环境下,易导致顶部膜层脱落。
发明内容
本发明的目的是针对现有技术中存在的这些问题,提供一种钛及其合金表面耐磨、低摩擦复合涂层,既不存在膜层老化,膜层之间也不存在突变界面。
为达到上述目的,本发明提供的技术方案是:
一种钛及其合金表面耐磨、低摩擦复合涂层及其制备方法,其特征在于:包括以下步骤:
(1)采用微弧氧化技术在钛或其合金试件表面制得含有石墨的前驱体氧化涂层;
(2)对前驱体氧化涂层进行等离子渗氮处理。
所述的含有石墨的前驱体氧化涂层的微弧氧化工艺中电压380~420V,处理时间20~30min,频率50~100Hz,占空比10~20%;电解液成分为10~15g/L Na2SiO4、2~6g/LKOH、2~5g/L纳米石墨、40~60mL/L无水乙醇以及1~2g/L羟甲基纤维素钠。
所述的纳米石墨厚度≤40nm,片径≤400nm。
所述的等离子渗氮处理,其中电压400~500V,处理时间2~4h,Ar/N2=0~0.5,真空度30~60Pa。
微弧氧化:石墨添入电解液中,在微弧氧化过程中,将被吸附于TiO2表面孔隙中,并随着氧化层增厚,不断堆积,形成前驱体氧化涂层。
等离子渗氮:一方面,氮气气氛里,在等离子作用下,含有石墨的前驱体氧化涂层会发生反应:TiO2+2C+1/2N2→TiN+2CO↑,生成的TiN硬度高,具有较高的承载能力,耐磨性强;另一方面,等离子具有表面清洁能力,可以轰击、溅射前驱体氧化膜层的粗糙表面,改善涂层的表面质量。
本发明提供的一种钛及其合金表面耐磨、低摩擦N-(TiO2/graphite)复合涂层及其制备方法,具有如下有益效果:
(1)该复合涂层中的TiO2、TiN等为硬质相,大大提高了涂层的硬度和耐磨性能;
(2)该复合涂层表面粗糙度较低,且石墨具有润滑作用,大大降低了涂层的摩擦系数;
(3)该复合涂层与基体结合力强,渗氮后的复合涂层之间不存在突变界面,有效降低涂层剥落倾向,延长了涂层的使用寿命,进一步扩大了钛材使用范围和空间;
(4)该复合涂层制备工艺简单,由工业化设备生产,易实现工业化生产。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1
以TA1纯钛为基体,耐磨、低摩擦复合涂层的制备方法主要包括:采用微弧氧化技术将前处理后的钛在石墨混合电解液中制得含有石墨的前驱体氧化涂层,其中微弧氧化工艺中电压380V,处理时间20min,频率50Hz,占空比20%;电解液成分为10g/L Na2SiO4、3g/LKOH、2g/L纳米石墨(厚度≤40nm,片径≤400nm)、40mL/L无水乙醇以及、1g/L羟甲基纤维素钠。然后对前驱体氧化涂层进行等离子渗氮处理,其中电压400V,处理时间2h,Ar/N2=0.5,真空度40Pa。
实施例2
以TA1纯钛为基体,复合涂层的制备过程与实施例1相同,不同的是微弧氧化工艺中电压400V,处理时间25min,频率100Hz,占空比10%;电解液成分为13g/L Na2SiO4、5g/LKOH、3g/L纳米石墨(厚度≤40nm,片径≤400nm)、50mL/L无水乙醇以及、1.5g/L羟甲基纤维素钠。等离子渗氮处理工艺中电压450V,处理时间2.5h,Ar/N2=0.1,真空度50Pa。
实施例3
以TA1钛合金为基体,复合涂层的制备过程与实施例1相同,不同的是微弧氧化工艺中电压410V,处理时间25min,频率100Hz,占空比10;电解液成分为12g/L Na2SiO4、2g/LKOH、3g/L纳米石墨(厚度≤40nm,片径≤400nm)、50mL/L无水乙醇以及、1g/L羟甲基纤维素钠。等离子渗氮处理工艺中电压450V,处理时间3h,N2气氛,真空度50Pa。
实施例4
以TC4钛合金为基体,复合涂层的制备过程与实施例1相同,不同的是微弧氧化工艺中电压400V,处理时间20min,频率80Hz,占空比15%;电解液成分为10g/L Na2SiO4、4g/LKOH、2g/L纳米石墨(厚度≤40nm,片径≤400nm)、40mL/L无水乙醇以及、1g/L羟甲基纤维素钠。等离子渗氮处理工艺中电压430V,处理时间2h,Ar/N2=0.25,真空度30Pa。
实施例5
以TC4钛合金为基体,复合涂层的制备过程与实施例1相同,不同的是微弧氧化工艺中电压420V,处理时间30min,频率100Hz,占空比20%;电解液成分为15g/L Na2SiO4、6g/LKOH、5g/L纳米石墨(厚度≤40nm,片径≤400nm)、60mL/L无水乙醇以及、2g/L羟甲基纤维素钠。等离子渗氮处理工艺中电压500V,处理时间4h,Ar/N2=0.5,真空度60Pa。
分别采用显微硬度计及摩擦磨损试验机对本发明的N-(TiO2/graphite)复合涂层的表面硬度和摩擦性能进行测试。显微硬度与摩擦磨损测试分别根据标准GB/T 4340.1-2009及标准GB/T 12444-2006执行,其测试结果如表1所示。
表1测试结果
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (2)

1.一种钛及其合金表面耐磨、低摩擦复合涂层的制备方法,其特征在于:包括以下步骤:
(1)采用微弧氧化技术在钛或其合金试件表面制得含有石墨的前驱体氧化涂层;
(2)对前驱体氧化涂层进行等离子渗氮处理;
所述的含有石墨的前驱体氧化涂层的微弧氧化工艺中电压380~420V,处理时间20~30min,频率50~100Hz,占空比10~20%;电解液成分为10~15g/L Na2SiO4、2~6g/L KOH、2~5g/L纳米石墨、40~60mL/L无水乙醇以及1~2g/L羟甲基纤维素钠;
所述的等离子渗氮处理,其中电压400~500V,处理时间2~4h,Ar/N2=0~0.5,真空度30~60Pa;所述的纳米石墨厚度≤40nm,片径≤400nm。
2.权利要求1所述方法制备的钛及其合金表面耐磨、低摩擦复合涂层。
CN201610807049.7A 2016-09-06 2016-09-06 一种钛及其合金表面耐磨、低摩擦复合涂层及其制备方法 Active CN106222726B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610807049.7A CN106222726B (zh) 2016-09-06 2016-09-06 一种钛及其合金表面耐磨、低摩擦复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610807049.7A CN106222726B (zh) 2016-09-06 2016-09-06 一种钛及其合金表面耐磨、低摩擦复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN106222726A CN106222726A (zh) 2016-12-14
CN106222726B true CN106222726B (zh) 2019-02-01

Family

ID=58074820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610807049.7A Active CN106222726B (zh) 2016-09-06 2016-09-06 一种钛及其合金表面耐磨、低摩擦复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN106222726B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287640A (zh) * 2017-06-29 2017-10-24 北京石油化工学院 一种微弧氧化陶瓷层表面纳米石墨超疏水涂层的制备方法
CN109371444B (zh) * 2018-12-03 2020-12-29 北京市辐射中心 用于钛合金表面快速制备渗碳/氧化/类金刚石沉积复合膜层的方法
CN110670106B (zh) * 2019-11-08 2021-11-05 西安工程大学 一种二氧化钛纳米管电极的掺杂氮方法
CN115478274A (zh) * 2022-10-10 2022-12-16 西安工业大学 避免钛合金与异种金属电偶腐蚀的防护方法及防护涂层

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021629A (zh) * 2010-12-30 2011-04-20 南昌航空大学 一种钛合金表面微弧氧化减摩复合膜层的制备方法
CN105002546A (zh) * 2015-08-08 2015-10-28 昆明冶金研究院 一种在钛合金表面微弧氧化制备耐磨生物陶瓷膜层的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298930A (ja) * 2004-04-14 2005-10-27 Nippon Steel Corp 表面凹凸を有するチタン材およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021629A (zh) * 2010-12-30 2011-04-20 南昌航空大学 一种钛合金表面微弧氧化减摩复合膜层的制备方法
CN105002546A (zh) * 2015-08-08 2015-10-28 昆明冶金研究院 一种在钛合金表面微弧氧化制备耐磨生物陶瓷膜层的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Ti6Al4V合金表面微弧氧化及脉冲等离子体渗氮复合改性研究";李伟;《哈尔滨工业大学硕士学位论文》;20130320;正文第20、42、44、64、77-79页
"添加纳米固体润滑剂的自润滑陶瓷材料的高温摩擦磨损性能研究";衣明东等;《人工晶体学报》;20140930;第43卷(第9期);第2372-2376页
"钛合金微弧氧化一部制备含石墨的减摩涂层";穆明等;《材料科学与工艺》;20130228;第21卷(第1期);第18-23页

Also Published As

Publication number Publication date
CN106222726A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
CN106222726B (zh) 一种钛及其合金表面耐磨、低摩擦复合涂层及其制备方法
Pezzato et al. Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys
Zhang et al. Influence of graphene oxide on the antiwear and antifriction performance of MAO coating fabricated on MgLi alloy
CN102605402A (zh) 铝合金制品表面耐磨增韧型复合陶瓷层的制备方法
CN103103597B (zh) 一种钛合金自润滑复合膜及其制备方法
Shen et al. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate–borax
CN106702330A (zh) 一种碳钢或不锈钢表面基于镀铝层的微弧氧化陶瓷涂层及其制备方法
CN102268710B (zh) 镁合金表面制备高耐蚀性自封孔陶瓷涂层的溶液及其应用
Tao et al. Comparison of tribological and corrosion behaviors of Cp Ti coated with the TiO2/graphite coating and nitrided TiO2/graphite coating
CN112853416A (zh) 兼具自润滑和耐磨功能的复合镀层及其制备方法与镀液
Liu et al. Tribological properties of adaptive phosphate composite coatings with addition of silver and molybdenum disulfide
CN107699859B (zh) 轴瓦用全金属自润滑减摩涂层及其制备方法
CN115612998A (zh) 一种镁合金表面润滑耐磨复合膜层及其制备方法
CN109440166B (zh) 一种镁锂合金表面提高耐磨耐蚀性微弧氧化复合处理方法
CN110117774A (zh) 一种tc4钛合金表面涂层及其制备方法和tc4钛合金产品
CN108611590B (zh) 一种Ti合金工件防咬死的方法
Li et al. Microstructure and properties of MAO composite coatings containing nanorutile TiO2 particles
CN112239880A (zh) 一种镁合金表面制备高耐蚀、耐磨涂层的微弧氧化电解液及其制备方法与用途
Wang et al. Effect of K 2 TiO (C 2 O 4) 2 Addition in Electrolyte on the Microstructure and Tribological Behavior of Micro-Arc Oxidation Coatings on Aluminum Alloy
CN101818330B (zh) 一种非平衡磁控溅射C/Ta类石墨碳膜及其制备方法
CN109137043A (zh) 一种钛及钛合金微弧氧化涂层生产工艺
Zhang et al. Corrosion and wear resistance of SiC: Cu: aC composite films prepared by magnetron sputtering
Cheng et al. Formation of ceramic coatings on non-valve metal low carbon steel using micro-arc oxidation technology
Gong et al. Effects of solid lubrication film on SKD11 in micro sheet forming
Xiao et al. Deposition, microstructure, performance of diamond-like carbon film with Ni/Cu interlayer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant