CN106220821B - 一种多功能轻质纳米复合泡沫及其制备方法和应用 - Google Patents

一种多功能轻质纳米复合泡沫及其制备方法和应用 Download PDF

Info

Publication number
CN106220821B
CN106220821B CN201610708523.0A CN201610708523A CN106220821B CN 106220821 B CN106220821 B CN 106220821B CN 201610708523 A CN201610708523 A CN 201610708523A CN 106220821 B CN106220821 B CN 106220821B
Authority
CN
China
Prior art keywords
foam
carbon nanotube
nano combined
multifunctional light
cnts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610708523.0A
Other languages
English (en)
Other versions
CN106220821A (zh
Inventor
王彩萍
王晓杰
李蓉
王容川
张雅堃
周俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Institute of Advanced Manufacturing Technology
Original Assignee
Hefei Institutes of Physical Science of CAS
Institute of Advanced Manufacturing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS, Institute of Advanced Manufacturing Technology filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201610708523.0A priority Critical patent/CN106220821B/zh
Publication of CN106220821A publication Critical patent/CN106220821A/zh
Application granted granted Critical
Publication of CN106220821B publication Critical patent/CN106220821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0058≥50 and <150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明属于环境保护和功能材料技术领域,公开了一种多功能轻质纳米复合泡沫及其制备方法和应用,该材料是将羧酸化的碳纳米管和羰基铁粉加入到聚氨酯泡沫中,所制得的各向异性的碳纳米管/磁性聚氨酯复合泡沫;其各原料按重量份的配比为:多元醇100份、羧酸化的碳纳米管5~10份、羰基铁粉5~20份、发泡剂1~5份、表面活性剂1~3份、催化剂0.5~1.0份、异氰酸酯40~80份。本发明的多功能轻质纳米复合泡沫,也即各向异性的碳纳米管/磁性聚氨酯复合泡沫,制备工艺简单、操作方便,CNTs和磁颗粒的加入有效提高了聚氨酯泡沫的力学、电学、热学和吸声性能,扩大其应用领域,具有极高的研究及推广价值。

Description

一种多功能轻质纳米复合泡沫及其制备方法和应用
技术领域
本发明属于环境保护和功能材料技术领域,具体涉及一种多功能轻质纳米复合泡沫及其制备方法和应用。
背景技术
在传统的电子行业和新兴的航天航空行业,多功能轻质纳米复合高聚物得到越来越来的关注和需求。多功能轻质纳米复合高聚物是将纳米填料与柔性高聚物混合发泡所得。聚氨酯泡沫(PU Foam)具有低密度、高弹性、较高的中高频吸声性能、良好的耐候、耐油和耐多种溶剂等优良的性能,成型工艺简单,其应用范围十分广泛,几乎渗透到国民经济各部门,特别在家具、运输、冷藏、建筑、绝热等部门使用的十分普遍,已成为不可或缺的材料之一。但其强度不高,对低频,特别是小于500Hz的声波,吸收能力很差,耐热、耐水、抗静电能力差,限制其进一步的应用。随着对低频声波具有较好吸收的微纳米填料、具有优良的力学、电学、导热性能的碳纳米管(CNTs)的出现,开发添加碳系和微纳米填料的轻质复合泡沫成为新的研究热点。
单壁碳纳米管CNTs的抗拉强度为50~200GPa,电阻率为10-4Ω·m,导热系数为5800W/(m·K),且对各个频率的声波均有良好的吸收。因此,从理论上讲,添加少量的CNTs就可以显著的提高聚合物的力学、电学、导热和吸声性能。值得特别提出的一点是,CNTs具有很长的长径比,在平行于轴线方向和垂直于轴线方向,力学、电学、传热、吸声性能均存在差别,即各向异性。适当排列CNTs可以得到性能优异的各向异性的力学、电学、传热和吸声材料。
目前尚未见CNTs/磁性聚氨酯复合泡沫的制备方法及其应用的相关专利报道。
综上所述,将CNTs和磁颗粒填充到聚氨酯泡沫中,在发泡过程中施加磁场,形成各向异性结构,改善PU材料的力学、电学、热学及吸声性能,扩展PU材料的应用领域,具有极高的研究及推广价值。
发明内容
为了拓宽PU材料的应用领域,克服现有技术存在的缺点,本发明的目的在于提供一种多功能轻质纳米复合泡沫及其制备方法,将经过处理的磁颗粒和CNTs添加到聚氨酯泡沫中,并在发泡过程中施加磁场,使磁颗粒和CNTs沿外加磁场方向排列成链,获得具有各向异性结构的CNTs/磁性聚氨酯复合泡沫。
为了实现上述目的,本发明采用如下技术方案:
本发明的多功能轻质纳米复合泡沫,是将羧酸化的碳纳米管和羰基铁粉加入到聚氨酯泡沫中,所制得的各向异性的碳纳米管/磁性聚氨酯复合泡沫;所述碳纳米管/磁性聚氨酯复合泡沫的各原料按重量份的配比为:
其中:
所述羧酸化的碳纳米管是按如下方法制备:称取2.0g碳纳米管置于由质量浓度为98%浓硫酸与质量浓度为65%浓硝酸按体积比3:1构成的混合液中,70℃下超声8h,然后再回流2h,最后减压抽滤,并用去离子水冲洗至中性,再于70℃真空干燥24h,即得到羧酸化的碳纳米管。
所述羰基铁粉是按如下方法制备:按质量比1:4.9:44.1称取硅烷偶联剂KH570、甲醇和去离子水于烧杯中,用冰醋酸调节混合溶液的pH值,使其PH值在4~5之间,然后加入铁粉,用高速搅拌机充分搅拌30min,最后置于真空干燥箱中烘干、研磨,即获得羰基铁粉。
所述多元醇为聚醚多元醇(如聚丙二醇、聚氧四亚甲基二醇、聚丁二醇或聚醚多元醇330N)或聚酯多元醇;
所述发泡剂为物理发泡剂(如正戊烷、正己烷、石油醚或二氯四氟乙烷)或化学发泡剂(如去离子水或偶氮化合物);
所述表面活性剂为硅油;
所述催化剂为二月桂酸二丁基锡。
所述异氰酸酯为甲苯二异氰酸酯或二苯基甲烷二异氰酸酯。
上述多功能轻质纳米复合泡沫的制备方法,包括如下步骤:
(1)按配比将羧酸化的碳纳米管与多元醇混合,超声分散15~20min,使二者充分均匀混合,得混合溶液;
(2)按配比向混合溶液中加入羰基铁粉、发泡剂、表面活性剂及催化剂,然后以1000r/min的速度搅拌5~10min,使其充分均匀混合,获得组分A;
(3)按配比向组分A中加入异氰酸酯,以1500r/min的速度搅拌10~15s,然后快速倒入模具中进行发泡,在发泡过程中施加外加磁场;发泡完成后再室温条件下固化12h,即得到各向异性的CNTs/磁性聚氨酯复合泡沫。
所述外加磁场的强度为0.2~0.5T。
本发明的多功能轻质纳米复合泡沫可用做吸声降噪、传热和建筑材料。
与现有技术相比,本发明的有益效果体现在:
(1)本发明的多功能轻质纳米复合泡沫,也即各向异性的碳纳米管/磁性聚氨酯复合泡沫,制备工艺简单、操作方便,CNTs和磁颗粒的加入有效提高了聚氨酯泡沫的力学、电学、热学和吸声性能,扩大其应用领域,具有极高的研究及推广价值。
(2)本发明的多功能轻质纳米复合泡沫在制备时,通过外加磁场可以调控CNTs/磁性聚氨酯复合泡沫的性能。
附图说明
图1是本发明CNTs/磁性聚氨酯复合泡沫的制备过程流程图。
图2是本发明CNTs/磁性聚氨酯复合泡沫的实样图。
图3是本发明CNTs/磁性聚氨酯复合泡沫的微观结构图。
图4是空白试样与含10份羧酸化的CNTs、5份羰基铁粉的复合泡沫的吸声性能对比图。
具体实施方式
下面通过实施例并结合附图对本发明进一步说明,但本发明的实施例不仅限于此。
实施例1
如图1所示,本实施例按如下步骤制备CNTs/磁性聚氨酯复合泡沫:
(1)CNTs和磁颗粒的预处理
羧酸化的碳纳米管的制备:称取2.0g碳纳米管置于200mL由质量浓度为98%浓硫酸与质量浓度为65%浓硝酸按体积比3:1构成的混合液中,70℃下超声8h,然后再回流2h,最后减压抽滤,并用去离子水冲洗至中性,再于70℃真空干燥24h,即得到羧酸化的碳纳米管。
羰基铁粉的制备:称取2g硅烷偶联剂KH570、9.8g甲醇和88.2g去离子水于烧杯中,用冰醋酸调节混合溶液的PH值,使其PH值在4~5之间,然后加入200g铁粉,用高速搅拌机充分搅拌30min,最后置于真空干燥箱中烘干、研磨,即获得羰基铁粉。
(2)CNTs/磁性聚氨酯复合泡沫的制备
将5份羧酸化的CNTs先与100份聚醚多元醇330N进行混合,超声分散20min,使二者充分均匀混合,得混合溶液;
向混合溶液中加入10份羰基铁粉(球形,直径大约在5μm左右)、3份去离子水、2份硅油和0.5份二月桂酸二丁基锡,然后以1000r/min的速度搅拌10min,使其充分均匀混合,获得组分A;
向组分A中加入60份二苯基甲烷二异氰酸酯(组分B),以1500r/min的速度搅拌10~15s,然后快速倒入模具中进行发泡,在发泡过程中施加0.2T的磁场;发泡完成后再室温条件下固化12h,即得到各向异性的CNTs/磁性聚氨酯复合泡沫。
根据GB/T 6343—2009,测得本实施例所得CNTs/磁性聚氨酯复合泡沫的密度为0.05g/cm-3,因此该材料是一种轻质材料。
图2为本实施例所得CNTs/磁性聚氨酯复合泡沫的实样图。
图3是本实施例所得CNTs/磁性聚氨酯复合泡沫的微观结构图,从图中可以看出,泡沫内部已经形成链状结构;白色箭头是外加磁场的方向,颗粒链沿着外加磁场方向排列。
实施例2
如图1所示,本实施例按如下步骤制备CNTs/磁性聚氨酯复合泡沫:
(1)CNTs和磁颗粒的预处理
羧酸化的碳纳米管的制备:称取2.0g碳纳米管置于200mL由质量浓度为98%浓硫酸与质量浓度为65%浓硝酸按体积比3:1构成的混合液中,70℃下超声8h,然后再回流2h,最后减压抽滤,并用去离子水冲洗至中性,再于70℃真空干燥24h,即得到羧酸化的碳纳米管。
羰基铁粉的制备:称取2g硅烷偶联剂KH570、9.8g甲醇和88.2g去离子水于烧杯中,用冰醋酸调节混合溶液的PH值,使其PH值在4~5之间,然后加入200g铁粉,用高速搅拌机充分搅拌30min,最后置于真空干燥箱中烘干、研磨,即获得羰基铁粉。
(2)CNTs/磁性聚氨酯复合泡沫的制备
将10份羧酸化的CNTs先与100份聚丙二醇进行混合,超声分散20min,使二者充分均匀混合,得混合溶液;
向混合溶液中加入5份羰基铁粉(球形,直径大约在5μm左右)、3份去离子水、2份硅油和0.5份二月桂酸二丁基锡,然后以1000r/min的速度搅拌5min,使其充分均匀混合,获得组分A;
向组分A中加入80份二苯基甲烷二异氰酸酯(组分B),以1500r/min的速度搅拌10~15s,然后快速倒入模具中进行发泡,在发泡过程中施加0.5T的磁场;发泡完成后再室温条件下固化12h,即得到各向异性的CNTs/磁性聚氨酯复合泡沫。
根据GB/T 6343—2009,测得本实施例所得CNTs/磁性聚氨酯复合泡沫的密度为0.03g/cm-3,因此该材料是一种轻质材料。
图4是空白试样(不含羧酸化的CNTs、羰基铁粉)与本实施例所制得的含10份羧酸化的CNTs、5份羰基铁粉的复合泡沫的吸声性能对比图。从图中可以看出,羧酸化的CNTs和羰基铁粉的加入使材料在低频段(100~900Hz)吸声性能得到明显的改善;500Hz处,相比空白试样,添加CNTs/磁性颗粒的聚氨酯复合泡沫的吸声系数提高了50%,达到0.3;在900Hz处,吸声系数绝对值增加最大,可达到0.86;在100~1600Hz频段的平均吸声系数为0.57。
实施例3
如图1所示,本实施例按如下步骤制备CNTs/磁性聚氨酯复合泡沫:
(1)CNTs和磁颗粒的预处理
羧酸化的碳纳米管的制备:称取2.0g碳纳米管置于200mL由质量浓度为98%浓硫酸与质量浓度为65%浓硝酸按体积比3:1构成的混合液中,70℃下超声8h,然后再回流2h,最后减压抽滤,并用去离子水冲洗至中性,再于70℃真空干燥24h,即得到羧酸化的碳纳米管。
羰基铁粉的制备:称取2g硅烷偶联剂KH570、9.8g甲醇和88.2g去离子水于烧杯中,用冰醋酸调节混合溶液的PH值,使其PH值在4~5之间,然后加入200g铁粉,用高速搅拌机充分搅拌30min,最后置于真空干燥箱中烘干、研磨,即获得羰基铁粉。
(2)CNTs/磁性聚氨酯复合泡沫的制备
将5份羧酸化的CNTs先与100份聚氧四亚甲基二醇进行混合,超声分散15min,使二者充分均匀混合,得混合溶液;
向混合溶液中加入10份羰基铁粉(球形,直径大约在5μm左右)、3.5份去离子水、2份硅油和0.5份二月桂酸二丁基锡,然后以1000r/min的速度搅拌10min,使其充分均匀混合,获得组分A;
向组分A中加入80份二苯基甲烷二异氰酸酯(组分B),以1500r/min的速度搅拌10~15s,然后快速倒入模具中进行发泡,在发泡过程中施加0.2T的磁场;发泡完成后再室温条件下固化12h,即得到各向异性的CNTs/磁性聚氨酯复合泡沫。
根据GB/T 6343—2009,测得本实施例所得CNTs/磁性聚氨酯复合泡沫的密度为0.04g/cm-3,因此该材料是一种轻质材料。
实施例4
如图1所示,本实施例按如下步骤制备CNTs/磁性聚氨酯复合泡沫:
(1)CNTs和磁颗粒的预处理
羧酸化的碳纳米管的制备:称取2.0g碳纳米管置于200mL由质量浓度为98%浓硫酸与质量浓度为65%浓硝酸按体积比3:1构成的混合液中,70℃下超声8h,然后再回流2h,最后减压抽滤,并用去离子水冲洗至中性,再于70℃真空干燥24h,即得到羧酸化的碳纳米管。
羰基铁粉的制备:称取2g硅烷偶联剂KH570、9.8g甲醇和88.2g去离子水于烧杯中,用冰醋酸调节混合溶液的PH值,使其PH值在4~5之间,然后加入200g铁粉,用高速搅拌机充分搅拌30min,最后置于真空干燥箱中烘干、研磨,即获得羰基铁粉。
(2)CNTs/磁性聚氨酯复合泡沫的制备
将10份羧酸化的CNTs先与100份聚丁二醇进行混合,超声分散20min,使二者充分均匀混合,得混合溶液;
向混合溶液中加入5份羰基铁粉(球形,直径大约在5μm左右)、3份去离子水、2份硅油和0.5份二月桂酸二丁基锡,然后以1000r/min的速度搅拌10min,使其充分均匀混合,获得组分A;
向组分A中加入60份二苯基甲烷二异氰酸酯(组分B),以1500r/min的速度搅拌10~15s,然后快速倒入模具中进行发泡,在发泡过程中施加0.5T的磁场;发泡完成后再室温条件下固化12h,即得到各向异性的CNTs/磁性聚氨酯复合泡沫。
根据GB/T 6343—2009,测得本实施例所得CNTs/磁性聚氨酯复合泡沫的密度为0.07g/cm-3,因此该材料是一种轻质材料。
虽然以上描述了本发明的实施方式,只是说明性,但本发明的实施方式并不仅限于以上所述的实施例,其他相关没有背离本发明的精神实质与原理下所作的等效的修饰及改变,都应当涵盖在本发明的保护范围之内。

Claims (5)

1.一种多功能轻质纳米复合泡沫,其特征在于:所述多功能轻质纳米复合泡沫是将羧酸化的碳纳米管和羰基铁粉加入到聚氨酯泡沫中,所制得的各向异性的碳纳米管/磁性聚氨酯复合泡沫;所述碳纳米管/磁性聚氨酯复合泡沫的各原料按重量份的配比为:
所述羧酸化的碳纳米管是按如下方法制备:称取2.0g碳纳米管置于由质量浓度为98%浓硫酸与质量浓度为65%浓硝酸按体积比3:1构成的混合液中,70℃下超声8h,然后再回流2h,最后减压抽滤,并用去离子水冲洗至中性,再于70℃真空干燥24h,即得到羧酸化的碳纳米管;
所述羰基铁粉是按如下方法制备:按质量比1:4.9:44.1称取硅烷偶联剂KH570、甲醇和去离子水于烧杯中,用冰醋酸调节混合溶液的pH值,使其PH值在4~5之间,然后加入铁粉,用高速搅拌机充分搅拌30min,最后置于真空干燥箱中烘干、研磨,即获得羰基铁粉。
2.根据权利要求1所述的多功能轻质纳米复合泡沫,其特征在于:
所述多元醇为聚醚多元醇或聚酯多元醇;所述聚醚多元醇为聚丙二醇、聚丁二醇或聚醚多元醇330N。
3.根据权利要求1所述的多功能轻质纳米复合泡沫,其特征在于:
所述发泡剂为物理发泡剂或化学发泡剂;所述物理发泡剂为正戊烷、正己烷、石油醚或二氯四氟乙烷;所述化学发泡剂为去离子水或偶氮化合物;
所述表面活性剂为硅油;
所述催化剂为二月桂酸二丁基锡。
4.根据权利要求1所述的多功能轻质纳米复合泡沫,其特征在于:所述异氰酸酯为甲苯二异氰酸酯或二苯基甲烷二异氰酸酯。
5.一种权利要求1~4中任意一项所述多功能轻质纳米复合泡沫的制备方法,其特征在于包括如下步骤:
(1)按配比将羧酸化的碳纳米管与多元醇混合,超声分散15~20min,使二者充分均匀混合,得混合溶液;
(2)按配比向混合溶液中加入羰基铁粉、发泡剂、表面活性剂及催化剂,然后以1000r/min的速度搅拌5~10min,使其充分均匀混合,获得组分A;
(3)按配比向组分A中加入异氰酸酯,以1500r/min的速度搅拌10~15s,然后快速倒入模具中进行发泡,在发泡过程中施加0.2~0.5T的外加磁场;发泡完成后再室温条件下固化12h,即得到各向异性的CNTs/磁性聚氨酯复合泡沫。
CN201610708523.0A 2016-08-23 2016-08-23 一种多功能轻质纳米复合泡沫及其制备方法和应用 Active CN106220821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610708523.0A CN106220821B (zh) 2016-08-23 2016-08-23 一种多功能轻质纳米复合泡沫及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610708523.0A CN106220821B (zh) 2016-08-23 2016-08-23 一种多功能轻质纳米复合泡沫及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106220821A CN106220821A (zh) 2016-12-14
CN106220821B true CN106220821B (zh) 2019-08-09

Family

ID=57552905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610708523.0A Active CN106220821B (zh) 2016-08-23 2016-08-23 一种多功能轻质纳米复合泡沫及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106220821B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108276547A (zh) * 2017-11-10 2018-07-13 浙江三元电子科技有限公司 一种聚氨酯-碳纳米管-羰基铁粉复合泡沫吸波片及其制备方法
CN111926563B (zh) * 2020-07-03 2022-12-09 武汉纺织大学 一种应变传感织物及其制备方法
CN112250820A (zh) * 2020-10-21 2021-01-22 盐城市恒丰海绵有限公司 一种撕拉性强的沉底膨胀聚氨酯及其制备方法
CN118076468A (zh) * 2022-06-24 2024-05-24 住友理工株式会社 氨基甲酸酯发泡成形体及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656574A (zh) * 2002-04-01 2005-08-17 环球产权公司 导电的聚合物泡沫和弹性体及其制造方法
CN1884373A (zh) * 2006-06-28 2006-12-27 四川大学 含碳纳米管的低密度(0.03-0.2g/cm3)导电聚氨酯泡沫塑料的制备
CN101250321A (zh) * 2008-03-18 2008-08-27 四川大学 软质导电聚氨酯泡沫塑料的制备
CN104448192A (zh) * 2014-11-17 2015-03-25 中国科学院合肥物质科学研究院 一种智能磁性降噪聚氨酯泡沫的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656574A (zh) * 2002-04-01 2005-08-17 环球产权公司 导电的聚合物泡沫和弹性体及其制造方法
CN1884373A (zh) * 2006-06-28 2006-12-27 四川大学 含碳纳米管的低密度(0.03-0.2g/cm3)导电聚氨酯泡沫塑料的制备
CN101250321A (zh) * 2008-03-18 2008-08-27 四川大学 软质导电聚氨酯泡沫塑料的制备
CN104448192A (zh) * 2014-11-17 2015-03-25 中国科学院合肥物质科学研究院 一种智能磁性降噪聚氨酯泡沫的制备方法

Also Published As

Publication number Publication date
CN106220821A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
CN106220821B (zh) 一种多功能轻质纳米复合泡沫及其制备方法和应用
Li et al. Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams
CN103772963B (zh) 一种相变储能聚氨酯泡沫及其制备方法
CN103319892B (zh) 一种聚酰亚胺泡沫复合材料及其制备方法
CN101787109A (zh) 聚氨酯绝热保温发泡材料及其制备方法
CN101781395A (zh) 硬质聚氨酯绝热保温发泡材料及其制备方法
CN106634264B (zh) 石墨烯增强超疏水罩面漆及其制备方法
CN101250321A (zh) 软质导电聚氨酯泡沫塑料的制备
CN100425653C (zh) 含碳纳米管的低密度(0.03-0.2g/cm3)导电聚氨酯泡沫塑料的制备
CN101891942B (zh) 一种纳米复合的混杂多尺度复合材料的制备方法
CN103754886A (zh) 一种超高强度、高比表面积复合二氧化硅气凝胶的制备方法
Kang et al. Carbon nanotube reinforced shape memory polyurethane foam
Sun et al. Preparation and characterization of 3D flexible high-distance spacer fabric/foam composite
CN107488251A (zh) 一种水性聚氨酯导热材料及其制备方法
CN105131246A (zh) 一种防霉型智能调温聚氨酯泡沫的制备方法
CN106433129A (zh) 一种石墨烯/SiO2杂化聚酰亚胺泡沫材料及其制备方法
Zhao et al. Preparation of mechanically robust and thermochromic phase change materials for thermal energy storage and temperature indicator
CN108752871B (zh) 一种环氧树脂泡沫及其制备方法
CN112300363B (zh) 一种基于聚氨酯发泡原理构筑MXene复合泡沫及其制备方法
CN106009490B (zh) 一种异相成核剂增韧改性的酚醛树脂泡沫及其制备方法
CN107936668A (zh) 一种新型环保隔热涂料及其制备方法
CN113248160B (zh) 一种导电耐热的玻璃纤维及其制备方法
CN107501912A (zh) 一种聚氨酯泡沫塑料的制备方法
CN106348652A (zh) 一种负离子仿生石英石及其制备方法
Yin et al. Morphology and mechanical properties of nylon-1010-filled rigid polyurethane foams

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant