CN106220534B - 一种联二脲的制备装置及制备方法 - Google Patents

一种联二脲的制备装置及制备方法 Download PDF

Info

Publication number
CN106220534B
CN106220534B CN201610680514.5A CN201610680514A CN106220534B CN 106220534 B CN106220534 B CN 106220534B CN 201610680514 A CN201610680514 A CN 201610680514A CN 106220534 B CN106220534 B CN 106220534B
Authority
CN
China
Prior art keywords
hydrogen chloride
condensation kettle
biruea
condensation
kettle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610680514.5A
Other languages
English (en)
Other versions
CN106220534A (zh
Inventor
刘利德
向元瑜
宁鹏
于雪峰
俞莅军
孙学敏
龚小虎
张元金
代军礼
刘林俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qinghai Salt Lake Industry Co Ltd
Original Assignee
Qinghai Salt Lake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinghai Salt Lake Industry Co Ltd filed Critical Qinghai Salt Lake Industry Co Ltd
Priority to CN201610680514.5A priority Critical patent/CN106220534B/zh
Publication of CN106220534A publication Critical patent/CN106220534A/zh
Application granted granted Critical
Publication of CN106220534B publication Critical patent/CN106220534B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C281/00Derivatives of carbonic acid containing functional groups covered by groups C07C269/00 - C07C279/00 in which at least one nitrogen atom of these functional groups is further bound to another nitrogen atom not being part of a nitro or nitroso group
    • C07C281/06Compounds containing any of the groups, e.g. semicarbazides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种联二脲的制备装置及制备方法,联二脲的制备装置包括氯化氢处理机构和缩合釜,氯化氢处理机构包括通过第一管道依次串联的冷却器、氯吸附器、加压泵和流量计;缩合釜包括釜体,釜体上开设有氯化氢入口、液体原料入口和放料出口,氯化氢入口通过第二管道与流量计出口连接且第二管道的一端伸入釜体内设置。采用该制备装置制取联二脲的方法使经过处理的氯化氢气体参与到联二脲的缩合反应中以制取联二脲成品。联二脲的制备装置与制备方法相结合,在联二脲的制取过程中起到节能、提高缩合釜单釜的产能、提高水合肼的转化率的目的。

Description

一种联二脲的制备装置及制备方法
技术领域
本发明涉及制备联二脲的技术领域,具体涉及一种利用氯化氢气体缩合生产联二脲的制备装置及制备方法。
背景技术
联二脲,化学式为C2H6N4O2,主要用于生产ADC发泡剂,需求量大。通常采用水合肼与尿素作为原料进行缩合以制备生产联二脲。
水合肼与尿素制备联二脲的缩合反应,分为酸法缩合和弱碱法缩合。酸法缩合是指以经过前期处理的65~75g/L的水合肼溶液、尿素溶液与硫酸或盐酸为原料进行反应生产联二脲,通常采用的是93%的硫酸或30%的盐酸,反应方程式为:
N2H4·H2O+2H2NCONH2+H2SO4→H2NCONHHNCONH2+(NH4)2SO4+H2O或
N2H4·H2O+2H2NCONH2+2HCl→H2NCONHHNCONH2+2NH4Cl+H2O
若采用硫酸来制备联二脲,则缩合反应结束后反应液中会含有较高浓度的氯化钠、硫酸钠和硫酸铵杂质(氯化钠为原料水合肼溶液带入的),故为了对联二脲提纯,需将反应液通过多级真空浓缩、冷却结晶从而把杂质分别分离出来,被分离出来的产品的价值远远低于处理费用,而且在较高温度下硫酸、硫酸盐和盐酸盐的混合物对设备的腐蚀程度较强。
若采用盐酸来制备联二脲,则缩合反应结束后反应液中会含有较高浓度的氯化钠和氯化铵杂质,减少了反应液中杂质的种类,只需采用一级真空浓缩和冷却结晶的工序对联二脲产物进行提纯,缩短了对反应液的处理流程,减低了处理难度和成本,但是,由于缩合反应中盐酸浓度一般为30%,故盐酸在参与反应的过程中向缩合釜中带入的水分会占据缩合釜一定的容量,使得反应产能降低,且采用盐酸参与的缩合反应中盐酸所带入的水分还会产生较大的热量损耗,反应液中反应物的浓度也因水分而降低了,故采用盐酸制备联二脲的工艺还会降低反应的产率。
若采用弱碱法制备联二脲,在弱碱法缩合的过程中,尿素处于大量过量的状态,尿素在碱性条件下加热会分解,从而造成尿素的消耗量大,且尿素分解的水溶性氨氮产物,增加了母液中的氨氮含量及处理费用,尿素分解产生的二氧化碳与缩合过程中产生的氨气又会生成碳酸铵结晶,容易堵塞冷凝器列管、尾气管道及附属阀门,同时弱碱法的原料需要纯净的水合肼溶液,故粗水合肼要经过冷冻除盐、蒸发精馏等工序,其过程不但能耗高,而且在蒸发精馏工序中,被分离的十水碳酸钠和氯化钠的混合体因粒径很小(200~240目左右)、粘性较大,而不能采用离心机进行固液分离,只能采用压滤或抽滤方式进行固液分离,滤饼的含液量高(30%-40%),水合肼的损失率高,故采用弱碱法制备联二脲的工艺总体生产成本也很高。
上述酸法缩合和弱碱法缩合的方法均存在缺陷,故急需对其进行调整以克服在联二脲的制备过程中存在的上述问题。
发明内容
本发明的目的在于提供一种联二脲的制备装置及制备方法,用于解决现有的水合肼与尿素缩合生产联二脲的方法中,酸法缩合会造成杂质种类多,难以分离或产能低、耗能高的问题,弱碱法缩合会造成尿素消耗多、耗能高、处理过程繁琐且成本高的问题。
为了实现上述目的,本发明提供如下技术方案:一种联二脲的制备装置,包括氯化氢处理机构和缩合釜,所述氯化氢处理机构包括通过第一管道依次串联的冷却器、氯吸附器、加压泵和流量计,
所述缩合釜包括釜体,所述釜体上开设有氯化氢入口、液体原料入口和放料出口,所述氯化氢入口通过第二管道与所述流量计出口连接且所述第二管道的一端伸入所述釜体内设置。
优选地,所述釜体中对应所述氯化氢入口设置有氯化氢分布器,所述第二管道的一端与所述氯化氢分布器固定连接。
优选地,所述缩合釜的釜体外侧设置有夹套,所述夹套上开设有蒸汽入口和冷凝水出口,所述缩合釜内部设置有温度控制器,所述蒸汽入口设置有蒸汽阀门,所述温度控制器与所述蒸汽阀门呈联锁设置。
优选地,所述氯化氢入口和所述放料出口为同一开口,且设置在釜体底部,所述放料出口的口径大于所述第二管道的外径。
优选地,所述流量计包括普通氯化氢流量计和微调氯化氢流量计,所述普通氯化氢流量计和所述微调氯化氢流量计在所述加压泵和所述缩合釜之间呈并联设置。
优选地,所述氯吸附器内部的吸附物质为活性炭。
优选地,所述第二管道以及所述氯化氢分布器均采用钛合金制成。
一种利用上述联二脲的制备装置来制备联二脲的方法,包括如下步骤:
步骤1:向缩合釜中加入反应原料水合肼溶液以及尿素;
步骤2:氯化氢合成炉中产生的氯化氢气体依次经由冷却、氯吸附和加压而送入缩合釜中,
其中,氯化氢气体经冷却操作后的温度降至100~150℃,
氯化氢气体经氯吸附操作后游离氯的含量不超过0.002%;
步骤3:待缩合釜内反应液的pH值为4~6时,对缩合釜进行加热,以使缩合釜内的反应温度保持在105~110℃之间;
步骤4:至缩合釜内液相中水合肼的残余量≤1g/L时,即表明反应到达终点,停止通入氯化氢,并停止缩合釜加热,向缩合釜中加水,至缩合釜内的温度至少降温至70℃;
步骤5:将缩合釜内的物料通过放料出口从缩合釜中转移出,经固液分离得到固相联二脲产物,对固相联二脲产物洗涤干燥得联二脲成品。
优选地,所述步骤2及步骤3中氯化氢送入缩合釜中的进料流量分为两个阶段来控制,
第一阶段使氯化氢以的流速持续3~4小时输入到缩合釜中,第一阶段向缩合釜中输入的氯化氢摩尔量为反应所需氯化氢总摩尔量的95%;
第二阶段使氯化氢以的流速持续0.5~1小时输入到缩合釜中,第二阶段向缩合釜中输入的氯化氢摩尔量为反应所需氯化氢总摩尔量的5%;
其中,n为反应所需氯化氢的总摩尔量,R为气体常数,T为经冷却处理后的氯化氢温度,P为加压后的氯化氢压力,t1为第一阶段通入氯化氢的时间,t2为第二阶段通入氯化氢的时间。
相比于现有技术,本发明所述的联二脲的制备装置具有以下优势:本发明提供一种联二脲的制备装置,通过设置有氯化氢处理机构对氯化氢实现处理,从而能使氯化氢气体代替盐酸或硫酸参与到联二脲的缩合反应中,本发明提供的联二脲的制备装置首先能对氯化氢进行处理,使经处理后的氯化氢输入到缩合釜中参与联二脲的缩合反应,相比于弱碱法提高了水合肼的转化率,降低了生产成本,相比于硫酸缩合的方法,减少了杂质的种类,简化了工序,相比于盐酸缩合的方法,减少了因加入盐酸而带入无效的水分,提高缩合釜单釜的产能、降低加热和维持所带入水分温度而需要的热能,同时,还能利用氯化氢合成气的热能,以及氯化氢气体向缩合釜中加入后放热的热能,节约维持体系温度所消耗的热能,经过实验及数据计算可得,采用氯化氢为原料相比于采用盐酸为原料在缩合反应的反应阶段共可节约能耗约1.19×106kJ/t联二脲。
在采用盐酸为原料进行缩合反应时,必须将100~150℃的氯化氢气体继续冷却至30℃以下,采用绝热吸收制成30%的盐酸,采用氯化氢气体缩合时则不需要冷却,故在该过程中,采用氯化氢相比于采用盐酸进行缩合反应共能节约冷能9.35×104kJ/t联二脲。
同时,采用氯化氢作为原料消除了因加入盐酸带入的水分使反应初始浓度下降而降低水合肼的转化率。通过实验及计算验证,采用氯化氢气体参与缩合反应得到的水合肼转化率相比于采用盐酸参与缩合反应得到的水合肼的转化率提高了0.7%。
值得说明的是,设置有氯化氢分布器,结合所采用的氯化氢气体,相比于采用盐酸和液体分布器来说,由于气体分布器的气体流通孔远远小于液体分布器的液体流通孔,所以缩合釜中采用氯化氢气体作为原料,相比于采用盐酸作为原料与缩合釜内尿素和水合肼的混合效率高,混合均匀的时间短,快速均匀地混合可以减轻酸与尿素发生的副反应。经实验验证,采用氯化氢气体相比于盐酸能节约尿素5~10kg/t联二脲。
此外,本发明还提供一种联二脲的制备方法,利用上述联二脲的制备装置来实现该方法,通过对氯化氢气体实现处理并控制该处理过程和反应过程中的各项操作及参数,能实现利用氯化氢气体缩合生产联二脲的工艺,节约了反应的能耗,降低了反应的成本,提高了水合肼的转化率,经济效益十分显著。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。在附图中:
图1示出了本发明一种联二脲的制备装置的结构示意图;
图2示出了图1中联二脲的制备装置中缩合釜的结构示意图;以及,
图3示出了图2中缩合釜内氯化氢分布器的俯视图。
附图说明:
1-氯化氢处理机构, 11-冷却器,
12-氯吸附器, 13-加压泵,
14-流量计, 141-普通氯化氢流量计,
142-微调氯化氢流量计, 15-第一管道,
16-第二管道, 2-缩合釜,
21-釜体, 211-氯化氢入口,
212-液体原料入口, 213-放料出口,
22-氯化氢分布器, 23-夹套,
231-蒸汽入口, 232-冷凝水出口。
具体实施方式
本发明提供了许多可应用的创造性概念,该创造性概念可大量的体现于具体的上下文中。在下述本发明的实施方式中描述的具体的实施例仅作为本发明的具体实施方式的示例性说明,而不构成对本发明范围的限制。
下面结合附图和具体的实施方式对本发明作进一步的描述。
实施例一
本实施例提供一种联二脲的制备方法,包括如下步骤:
步骤1:向缩合釜2中加入水合肼溶液以及尿素。该步骤中水合肼溶液为65~75g/L的精水合肼溶液,该精水合肼溶液是对反应器中输出的粗水合肼溶液经由前期处理得到的,前期处理的具体过程为首先采用循环水使得粗水合肼溶液的温度冷却至25~30℃,然后通过冷媒继续使粗水合肼溶液冷却至-3~0℃,从而使得粗水合肼中大量的碳酸钠以结晶Na2CO3·10H2O的形式输出,后通过离心机以除去冷却过程中的固体析出物,进而得到65~75g/L的精水合肼溶液。本实施例中向缩合釜2内加入的精水合肼溶液的浓度为68.0g/L,体积为13m3,向缩合釜2内加入的尿素质量为2077kg。
步骤2:氯化氢合成炉中产生的氯化氢气体依次经过冷却操作、氯吸附操作和加压操作送入缩合釜2中。由于从氯化氢合成炉中输出的氯化氢气体温度一般高达500℃,故首先采用冷却操作使氯化氢气体降温到100~150℃之间,目前我国氯化氢冷却器11包括块孔氏和列管式,一般采用石墨材料制成,具体结构为本领域技术人员所熟知,故在此不再详述。冷却后的氯化氢气体中还含有残留的游离氯,故之后需对该冷却后的氯化氢气体实现氯吸附操作,并使得经过氯吸附操作后的氯化氢气体中游离氯含量不超过0.002%,本实施例中,经由氯吸附操作后的氯化氢气体中游离氯的含量为0.001%。
经由化学方程式计算可知,本实施例中共需向缩合釜2内加入2022Kg的氯化氢,为了提高本反应的转化率,送入缩合釜2中的氯化氢的流速分为两个阶段来控制。第一阶段使氯化氢以的流速持续3~4小时输入到缩合釜2中,第一阶段向缩合釜2中输入的氯化氢摩尔量为反应所需氯化氢总摩尔量的95%;第二阶段使氯化氢以的流速持续0.5~1小时输入到缩合釜2中,第二阶段向缩合釜2中输入的氯化氢摩尔量为反应所需氯化氢总摩尔量的5%。其中,n为反应所需氯化氢的总摩尔量,R为气体常数,T为经冷却处理后的氯化氢温度,P为加压后的氯化氢压力,t1为第一阶段通入氯化氢的时间,t2为第二阶段通入氯化氢的时间。
在本实施例中,氯化氢经冷却后的温度为110℃,经加压后的气体压力为1.6atm,第一阶段氯化氢的持续通入时间为3h,第二阶段氯化氢的持续通入时间为1h,故根据上述公式可得出第一阶段氯化氢的流速为344.3m3/hr,第二阶段氯化氢的流速为54.4m3/hr【统一单位之后,气体常数R为0.082atm·L/(mol·K),T应为开氏温度即T=273.15+t(℃)】。两阶段中的流速均采用流量计14来控制。
步骤3:在向缩合釜2的反应液中通入氯化氢的过程中,由于缩合釜2中会发生中和反应而放出大量的热能,故反应液的温度会升高。氯化氢不断通入的过程中,待缩合釜2中的pH值在4~6之间时,对缩合釜2进行加热,以使缩合釜2内的反应温度保持在105~110℃之间,缩合釜2内发生联二脲的缩合反应。
步骤4:对缩合釜2内的液相不断取样分析,至缩合釜2内液相中水合肼的残余量≤1g/L时,即反应视为达到终点,停止对缩合釜2的加热,向缩合釜2中加水,至缩合釜2内的温度至少降温至70℃。
步骤5:将反应产物通过放料出口213从缩合釜2中转移出,经固液分离得到固相,对该固相洗涤干燥即得到联二脲成品。
本实施例中共得到联二脲成品2046Kg,即本实施例中水合肼的转化率为98.07%。成品联二脲经由测定,纯度为98.19%,氯化物含量为0.15%,硫酸物含量为0.08%,铁含量为0.01%,锰含量为0,水分为0.16%,灰分为0.13,水溶物为0.69,粒径(D50)为84μm。
图1是本实施例中所使用的联二脲的制备装置图,如图1所示,包括氯化氢处理机构1和缩合釜2,氯化氢处理机构1包括通过第一管道15依次串联的冷却器11、氯吸附器12、加压泵13和流量计14,缩合釜2包括釜体21,釜体21上开设有氯化氢入口211、液体原料入口212和放料出口213,氯化氢入口211通过第二管道16与流量计14出口连接,且第二管道16的一端通过氯化氢入口211伸入釜体21内设置。
首先,从氯化氢合成炉中输出的氯化氢气体先经由冷却器11处理,从而达到能使氯化氢降温至100~150℃的目的,该冷却器11为氯化氢冷却器11,氯化氢冷却器11是工业合成氯化氢工艺中后处理的重要设备,该氯化氢冷却器11为一种能通过换热的方式使氯化氢气体降温的装置,该换热的方式可为空冷或水冷的方式,在工业生产氯化氢的过程中被广泛使用,故在此不再赘述。冷却后的气体再经由氯吸附器12进行处理,以吸收掉氯化氢气体中残留的游离氯,从而减少游离氯与水合肼发生反应消耗水合肼中肼的含量,氯气与水合肼中的肼发生反应的方程式为:3N2H4·H2O+2Cl2→N2+2N2H4·2HCl+3H2O。
氯吸附器12可采用生物吸附器或化学吸附器等,通常有活性炭、亚硫酸盐等。为了对游离氯有更好的吸附并同时避免其他杂质的进入而影响反应产物的纯度,本实施例优选活性炭作为氯吸附剂,活性炭是黑色粉末状或块状、颗粒状、蜂窝状的无定形碳,也有排列规整的晶体碳。活性炭具有较大的比表面积和丰富的微孔径,根据活性炭孔隙的大小能对吸附质有选择吸附的作用,能实现对游离氯较强的吸附。
需要说明的是,在该过程中需控制经氯吸附器12吸附后的游离氯含量不超过0.002%,若经该氯吸附器12处理后,游离氯的含量>0.002%,则表明该氯吸附器12需进行再生置换,为了使氯吸附器12的再生置换不影响缩合釜2内的反应,可优选采用两个氯吸附器12以并联的方式设置在冷却器11和加压泵13之间,当一个氯吸附器12在进行再生置换时,可切换至另一氯吸附器12实现氯吸附的作用。氯吸附器12的再生置换指的是用物理或化学方法在不破环吸附剂原有结构的前提下,去除吸附于吸附剂上的吸附质,恢复吸附剂吸附性能的过程。传统活性炭的再生方法包括热再生法、生物再生法、湿氏氧化再生法等。
经处理完成的氯化氢气体输入到加压泵13中,在加压泵13的作用下向缩合釜2内部输送,本实施例中加压泵13优选为纳氏泵,纳氏泵即液环真空泵,是一种真空泵,泵壳呈椭圆形,内部装有叶轮,叶轮上带有爪形叶片,广泛应用于化学工业中,本实施例中纳氏泵的表压设置为0.6atm,以实现将氯化氢气体输入到缩合釜2内的作用。
在加压泵13和缩合釜2之间还添设有流量计14以控制向缩合釜2中通入的氯化氢输入速率及输入量。
本实施例以氯化氢代替传统的盐酸作为反应原料,由此可减少因加入盐酸而带入的无效水分,从而提高缩合釜2单釜产能、降低加热和维持所带水分温度而需要的热能、还可避免因加入盐酸带入的水分使反应物初始浓度下降而降低水合肼的转化率。同时,利用氯化氢气体本身的热能,氯化氢加入到缩合釜2内发生中和反应产生的热能从而可减少在加热缩合釜2过程中所消耗的总热能,另外,在本实施例中由于无需将氯化氢转化为盐酸,从而减少了氯化氢气体转化为盐酸所消耗的冷能,故本实施例相对于传统工艺从总体上减少了能量的消耗。
图2示出了图1中联二脲的制备装置中缩合釜2的结构示意图,图3是图2中缩合釜2内氯化氢分布器22的俯视图,如图2和图3所示,缩合釜2的釜体21中对应氯化氢入口211设置有氯化氢分布器22,第二管道16的一端通过氯化氢入口211伸入釜体21内与氯化氢分布器22固定连接。氯化氢分布器22是气体分布器的一种,通过喷孔射流能形成独特的出风模式,从而达到均匀送风出风的目的。
传统采用盐酸作为反应原料,盐酸一般通过液体分布器通入缩合釜2中,本实施例采用气体分布器,使氯化氢通过气体分布器通入缩合釜2内与反应液混合,相对于液体分布器来说,由于气体分布器中的气体流通孔远远小于液体分布器中的液体流通孔,所以采用氯化氢气体与缩合釜2内尿素和水合肼的混合液的混合效率比采用盐酸与缩合釜2内尿素和水合肼的混合效率高,混合均匀的时间短,氯化氢与反应釜内的反应物快速均匀地混合可以减轻酸与尿素发生的副反应。经实验验证,采用氯化氢相比于盐酸可节约尿素5~10kg/t联二脲。
请继续参阅图2,为了使反应过程中缩合釜2内的反应温度保持在105~110℃之间,缩合釜2采用夹套23加热的方式,该夹套23套设在釜体21的外侧,夹套23上开设有蒸汽入口231和冷凝水出口232,缩合釜2内部设置有温度传感器,蒸汽入口231设置有蒸汽阀门,温度控制器与所述蒸汽阀门呈联锁设置。
向蒸汽入口231通入热蒸汽,从而起到加热缩合釜2的作用,夹套23内经冷却后的蒸汽液化为冷凝水从冷凝水出口232输出。采用夹套23加热的方式,使得对缩合釜2的加热更加均匀,更利于缩合釜2内反应均匀快速地发生。而缩合釜2内部的温度控制器与蒸汽入口231的蒸汽阀门呈联锁的设置形式,从而能根据温度控制器中的设定温度来控制蒸汽阀门的开度大小,在缩合釜2内的温度低于温度控制器中的设定温度时,蒸汽阀门在温度控制器的作用下自动开大,在缩合釜2内的温度高于温度控制器中的设定温度时,蒸汽阀门在温度控制器的作用下自动关小,实现了对于本实施例中缩合釜2内温度自动控制的目的。
值得一提的是,为了使能量和物料能循环高效利用,以达到节能、节省成本的目的,夹套23上的冷凝水出口232与冷却器11入口相连接,夹套23的蒸汽入口231与冷却器11出口相连接,从而使得从夹套23中输出的冷凝水进入冷却器11后能对氯化氢气体实现降温作用,而氯化氢气体的热量传递给冷凝水,又能使冷凝水气化形成蒸汽,再循环输入夹套23中对缩合釜2实现加热效果。
此外,氯化氢入口211和放料出口213为同一开口,且设置在釜体21底部,放料出口213的口径大于第二管道16的外径。
用于输送氯化氢的第二管道16从设置在该釜体21底部的开口伸入缩合釜2内部,该开口的口径大于第二管道16的外径,反应结束后,缩合釜2内的产物还可从釜体21底部的开口边缘与管道之间的空隙输出。氯化氢入口211为设置在釜体21底部的开口,从氯化氢入口211输入的氯化氢气体能从釜体21底部扩散入反应釜,从而使得氯化氢气体与缩合釜2内的水合肼溶液及尿素溶液的混合更加均匀,反应也更高效。同时,放料出口213也设置在釜体21的底部,从而在反应结束后,能将缩合釜2中的物料完全从缩合釜2中排出。
为了进一步对氯化氢的流量有较好的控制,以保证缩合釜2内的反应环境和反应的充分性,上述流量计14包括普通氯化氢流量计141和微调氯化氢流量计142,普通氯化氢流量计141和该微调氯化氢流量计142在加压泵13和缩合釜2之间呈并联设置。
气体流量计14是计量气体流量的仪表,本实施所采用的普通氯化氢流量计141的量程为250m3/hr~400m3/hr,微调氯化氢流量计142的控制范围为50m3/hr~130m3/hr,普通氯化氢流量计141是用于在第一阶段对氯化氢的计量控制,是对通入氯化氢的初步控制,由于缩合釜2内的反应液为尿素和水合肼的混合液,故缩合釜2内的反应液呈碱性,随着第一阶段氯化氢的加入,在该阶段釜内反应液的pH值逐渐下降,在第一阶段氯化氢输入结束时,反应液的pH值一般为4~6,升高缩合釜2内反应液的温度,开始第二阶段氯化氢的通入;微调流量计14是用于第二阶段对氯化氢的计量控制,该阶段的氯化氢流量变小,缩合釜2内反应液的pH值保持在4~6之间,在该阶段通过不断对釜内反应液取样并分析反应液中水合肼的含量来判断反应的终点。
由于氯化氢为强酸性,故为了防止氯化氢对器械的腐蚀作用,流量计14和缩合釜2之间实现连接的第二管道16以及缩合釜2内部的分布器均采用钛合金制成。
钛合金是以钛为基础加入其他元素组成的合金,因具有强度高、耐蚀性好、耐热性高的特点而被广泛应用于各个领域中。钛合金作为原料制成的设备,加强了该联二脲制备装置的强度和硬度,从而消除了氯化氢的强酸性对该联二脲制备装置的影响,同时也避免了因氯化氢对该联二脲制备装置的腐蚀而向缩合釜2中添入杂质的后果。
实施例二
本实施例提供一种联二脲的制备方法,包括如下步骤:
步骤1:向缩合釜2中加入69.3g/L水合肼溶液13m3,以及2117Kg的固体尿素。
步骤2:氯化氢合成炉中产生的氯化氢气体依次经过冷却操作、氯吸附操作和加压操作送入缩合釜2中。首先采用冷却操作使氯化氢气体降温到100~150℃之间,冷却后的氯化氢气体再经过氯吸附操作后,吸附掉其中的游离氯,使得氯化氢气体中游离氯含量为0.002%。
经由化学方程式计算可知,本实施例中共需向缩合釜2内加入2046Kg的氯化氢,为了提高本反应的转化率,送入缩合釜2中的氯化氢的流速分为两个阶段来控制。第一阶段使氯化氢以的流速持续3~4小时输入到缩合釜2中,第一阶段向缩合釜2中输入的氯化氢摩尔量为反应所需氯化氢总摩尔量的95%;第二阶段使氯化氢以的流速持续0.5~1小时输入到缩合釜2中,第二阶段向缩合釜2中输入的氯化氢摩尔量为反应所需氯化氢总摩尔量的5%。其中,n为反应所需氯化氢的总摩尔量,R为气体常数,T为经冷却处理后的氯化氢温度,P为加压后的氯化氢压力,t1为第一阶段通入氯化氢的时间,t2为第二阶段通入氯化氢的时间。
在本实施例中,氯化氢经冷却后的温度为100℃,经加压后的气体压力为1.6atm,第一阶段氯化氢的持续通入时间为3.5h,第二阶段氯化氢的持续通入时间为0.9h,故根据上述公式可得出第一阶段氯化氢的流速为290.1m3/hr,第二阶段氯化氢的流速为59.5m3/hr【统一单位之后,气体常数R为0.082atm·L/(mol·K),T应为开氏温度即T=273.15+t(℃)】。两阶段中的流速均采用流量计14来控制。
步骤3:在向缩合釜2的反应液中通入氯化氢的过程中,由于缩合釜2中会发生中和反应而放出大量的热能,故反应液的温度会升高。氯化氢不断通入的过程中,待缩合釜2中的pH值在4~6之间时,对缩合釜2进行加热,以使缩合釜2内的反应温度保持在105~110℃之间,缩合釜2内发生联二脲的缩合反应。
步骤4:对缩合釜2内的液相不断取样分析,至缩合釜2内液相中水合肼的残余量≤1g/L时,即反应视为达到终点,停止对缩合釜2的加热,向缩合釜2中加水,至缩合釜2内的温度至少降温至70℃。
步骤5:将反应产物通过放料出口213从缩合釜2中转移出,经固液分离得到固相,对该固相洗涤干燥即得到联二脲成品。
本实施例中共得到联二脲成品2088Kg,即本实施例中水合肼的转化率为98.21%。成品联二脲经由测定,联二脲纯度为98.23%,氯化物含量为0.13%,硫酸物含量为0.04%,铁含量为0.01%,锰含量为0,水分为0.11%,灰分为0.10,水溶物为0.57,粒径(D50)为73μm。
图1是本实施例中所使用的联二脲的制备装置图,如图1所示,包括氯化氢处理机构1和缩合釜2,氯化氢处理机构1包括通过第一管道15依次串联的冷却器11、氯吸附器12、加压泵13和流量计14,缩合釜2包括釜体21,釜体21上开设有氯化氢入口211、液体原料入口212和放料出口213,氯化氢入口211通过第二管道16与流量计14出口连接,且第二管道16的一端通过氯化氢入口211伸入釜体21内设置。氯吸附器12内的吸附物质采用活性炭。加压泵13优选为纳氏泵,表压设置为0.6atm。图2示出了图1中联二脲的制备装置中缩合釜2的结构示意图,图3是图2中缩合釜2内氯化氢分布器22的俯视图,如图2和图3所示,缩合釜2的釜体21中对应氯化氢入口211设置有氯化氢分布器22,第二管道16的一端通过氯化氢入口211伸入釜体21内与氯化氢分布器22相连。缩合釜2采用夹套23加热的方式,该夹套23套设在釜体21的外侧,夹套23上开设有蒸汽入口231和冷凝水出口232,缩合釜2内部设置有温度控制器,蒸汽入口231设置有蒸汽阀门,温度控制器与蒸汽阀门呈联锁设置。氯化氢入口211和放料出口213为同一开口,且设置在釜体21底部,放料出口213的口径大于第二管道16的外径。流量计14包括普通氯化氢流量计141和微调氯化氢流量计142,普通氯化氢流量计141和该微调氯化氢流量计142在加压泵13和缩合釜2之间呈并联设置。流量计14和缩合釜2之间实现连接的第二管道16以及缩合釜2内部的分布器均采用钛合金制成。
实施例三
本实施例提供一种联二脲的制备方法,包括如下步骤:
步骤1:向缩合釜2中加入71.6g/L水合肼溶液13m3,以及2187Kg的固体尿素。
步骤2:氯化氢合成炉中产生的氯化氢气体依次经过冷却操作、氯吸附操作和加压操作送入缩合釜2中。首先采用冷却操作使氯化氢气体降温到100~150℃之间,冷却后的氯化氢气体再经过氯吸附操作后,吸附掉其中的游离氯,使得氯化氢气体中游离氯含量为0.001%。
经由化学方程式计算可知,本实施例中共需向缩合釜2内加入2150Kg的氯化氢,为了提高本反应的转化率,送入缩合釜2中的氯化氢的流速分为两个阶段来控制。第一阶段使氯化氢以的流速持续3~4小时输入到缩合釜2中,第一阶段向缩合釜2中输入的氯化氢摩尔量为反应所需氯化氢总摩尔量的95%;第二阶段使氯化氢以的流速持续0.5~1小时输入到缩合釜2中,第二阶段向缩合釜2中输入的氯化氢摩尔量为反应所需氯化氢总摩尔量的5%。其中,n为反应所需氯化氢的总摩尔量,R为气体常数,T为经冷却处理后的氯化氢温度,P为加压后的氯化氢压力,t1为第一阶段通入氯化氢的时间,t2为第二阶段通入氯化氢的时间。
在本实施例中,氯化氢经冷却后的温度为150℃,经加压后的气体压力为1.6atm,第一阶段氯化氢的持续通入时间为4h,第二阶段氯化氢的持续通入时间为0.5h,故根据上述公式可得出第一阶段氯化氢的流速为303.3m3/hr,第二阶段氯化氢的流速为127.7m3/hr【统一单位之后,气体常数R为0.082atm·L/(mol·K),T应为开氏温度即T=273.15+t(℃)】。两阶段中的流速均采用流量计14来控制。
步骤3:在向缩合釜2的反应液中通入氯化氢的过程中,由于缩合釜2中会发生中和反应而放出大量的热能,故反应液的温度会升高。氯化氢不断通入的过程中,待缩合釜2中的pH值在4~6之间时,对缩合釜2进行加热,以使缩合釜2内的反应温度保持在105~110℃之间,缩合釜2内发生联二脲的缩合反应。
步骤4:对缩合釜2内的液相不断取样分析,至缩合釜2内液相中水合肼的残余量≤1g/L时,即反应视为达到终点,停止氯化氢气体的通入,同时停止缩合釜2加热,向缩合釜2中加水并使缩合釜2内的温度至少降温至70℃。
步骤5:将反应产物通过放料出口213从缩合釜2中转移出,经固液分离得到固相,对该固相洗涤干燥即得到联二脲成品。
本实施例中共得到联二脲成品2157Kg,即本实施例中水合肼的转化率为98.19%。成品联二脲经由测定,联二脲纯度为98.17%,氯化物含量为0.16%,硫酸物含量为0.05%,铁含量为0.01%,锰含量为0,水分为0.12%,灰分为0.09,水溶物为0.63,粒径(D50)为75μm。
图1是本实施例中所使用的联二脲的制备装置图,如图1所示,包括氯化氢处理机构1和缩合釜2,氯化氢处理机构1包括通过第一管道15依次串联的冷却器11、氯吸附器12、加压泵13和流量计14,缩合釜2包括釜体21,釜体21上开设有氯化氢入口211、液体原料入口212和放料出口213,氯化氢入口211通过第二管道16与流量计14出口连接,且第二管道16的一端通过氯化氢入口211伸入釜体21内设置。氯吸附器12内的吸附物质采用活性炭。加压泵13优选为纳氏泵,表压设置为0.6atm。图2示出了图1中联二脲的制备装置中缩合釜2的结构示意图,图3是图2中缩合釜2内氯化氢分布器22的俯视图,如图2和图3所示,缩合釜2的釜体21中对应氯化氢入口211设置有氯化氢分布器22,第二管道16的一端通过氯化氢入口211伸入釜体21内与氯化氢分布器22相连。缩合釜2采用夹套23加热的方式,该夹套23套设在釜体21的外侧,夹套23上开设有蒸汽入口231和冷凝水出口232,缩合釜2内部设置有温度传感器,蒸汽入口231设置有蒸汽阀门,温度控制器与蒸汽阀门呈联锁设置。氯化氢入口211和放料出口213为同一开口,且设置在釜体21底部,放料出口213的口径大于第二管道16的外径。流量计14包括普通氯化氢流量计141和微调氯化氢流量计142,普通氯化氢流量计141和该微调氯化氢流量计142在加压泵13和缩合釜2之间呈并联设置。流量计14和缩合釜2之间实现连接的第二管道16以及缩合釜2内部的分布器均采用钛合金制成。
实施例一~实施例三提供了一种联二脲的制备装置及制备方法,通过设置有氯化氢处理机构1对氯化氢气体实现处理,从而能使氯化氢气体代替盐酸或硫酸参与到联二脲的缩合反应中,减少因加入盐酸而带入无效的水分,提高缩合釜2单釜的产能、降低加热和维持所带入水分温度而需要的热能,同时,还能利用氯化氢合成气的热能,以及氯化氢气体向缩合釜2中加入后放热的热能,从而节约维持体系温度所消耗的热能,且在氯化氢的处理过程中无需消耗冷能对氯化氢气体降温以制成盐酸。并且,采用氯化氢气体参与联二脲的缩合反应,使得反应物的初始浓度升高,故水合肼的转化率也相应升高。
应该注意的是,上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。

Claims (8)

1.一种联二脲的制备装置,其特征在于,包括氯化氢处理机构(1)和缩合釜(2),所述氯化氢处理机构(1)包括通过第一管道(15)依次串联的冷却器(11)、氯吸附器(12)、加压泵(13)和流量计(14),
所述缩合釜(2)包括釜体(21),所述釜体(21)上开设有氯化氢入口(211)、液体原料入口(212)和放料出口(213),所述氯化氢入口(211)通过第二管道(16)与所述流量计(14)出口连接且所述第二管道(16)的一端伸入所述釜体(21)内设置;
所述釜体(21)中对应所述氯化氢入口(211)设置有氯化氢分布器(22),所述第二管道(16)的一端与所述氯化氢分布器(22)固定连接。
2.根据权利要求1所述的联二脲的制备装置,其特征在于,所述缩合釜(2)的釜体(21)外侧设置有夹套(23),所述夹套(23)上开设有蒸汽入口(231)和冷凝水出口(232),所述缩合釜(2)内部设置有温度控制器,所述蒸汽入口(231)设置有蒸汽阀门,所述温度控制器与所述蒸汽阀门呈联锁设置。
3.根据权利要求1所述的联二脲的制备装置,其特征在于,所述氯化氢入口(211)和所述放料出口(213)为同一开口,且设置在釜体(21)底部,所述放料出口(213)的口径大于所述第二管道(16)的外径。
4.根据权利要求1所述的联二脲的制备装置,其特征在于,所述流量计(14)包括普通氯化氢流量计(141)和微调氯化氢流量计(142),所述普通氯化氢流量计(141)和所述微调氯化氢流量计(142)在所述加压泵(13)和所述缩合釜(2)之间呈并联设置。
5.根据权利要求1所述的联二脲的制备装置,其特征在于,所述氯吸附器(12)内部的吸附物质为活性炭。
6.根据权利要求1所述的联二脲的制备装置,其特征在于,所述第二管道(16)以及所述氯化氢分布器(22)均采用钛合金制成。
7.一种利用权利要求1~6中任意一项所述的联二脲的制备装置来制备的方法,其特征在于,包括如下步骤:
步骤1:向缩合釜(2)中加入反应原料水合肼溶液以及尿素;
步骤2:氯化氢合成炉中产生的氯化氢气体依次经由冷却、氯吸附和加压而送入缩合釜(2)中,
其中,氯化氢气体经冷却操作后的温度降至100~150℃,
氯化氢气体经氯吸附操作后游离氯的含量不超过0.002%;
步骤3:待缩合釜(2)内反应液的pH值为4~6时,对缩合釜(2)进行加热,以使缩合釜(2)内的反应温度保持在105~110℃之间;
步骤4:至缩合釜(2)内液相中水合肼的残余量≤1g/L时,即表明反应到达终点,停止对缩合釜(2)的加热,向缩合釜(2)中加水,至缩合釜(2)内的温度至少降温至70℃;
步骤5:将缩合釜(2)内的物料通过放料出口(213)从缩合釜(2)中转移出,经固液分离得到固相联二脲产物,对固相联二脲产物洗涤干燥得联二脲成品。
8.根据权利要求7所述的联二脲的制备方法,其特征在于,所述步骤2及步骤3中氯化氢送入缩合釜(2)中的进料流量分为两个阶段来控制,
第一阶段使氯化氢以的流速持续3~4小时输入到缩合釜(2)中,第一阶段向缩合釜(2)中输入的氯化氢摩尔量为反应所需氯化氢总摩尔量的95%;
第二阶段使氯化氢以的流速持续0.5~1小时输入到缩合釜(2)中,第二阶段向缩合釜(2)中输入的氯化氢摩尔量为反应所需氯化氢总摩尔量的5%;
其中,n为反应所需氯化氢的总摩尔量,R为气体常数,T为经冷却处理后的氯化氢温度,P为加压后的氯化氢压力,t1为第一阶段通入氯化氢的时间,t2为第二阶段通入氯化氢的时间。
CN201610680514.5A 2016-08-17 2016-08-17 一种联二脲的制备装置及制备方法 Active CN106220534B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610680514.5A CN106220534B (zh) 2016-08-17 2016-08-17 一种联二脲的制备装置及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610680514.5A CN106220534B (zh) 2016-08-17 2016-08-17 一种联二脲的制备装置及制备方法

Publications (2)

Publication Number Publication Date
CN106220534A CN106220534A (zh) 2016-12-14
CN106220534B true CN106220534B (zh) 2018-09-21

Family

ID=57552453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610680514.5A Active CN106220534B (zh) 2016-08-17 2016-08-17 一种联二脲的制备装置及制备方法

Country Status (1)

Country Link
CN (1) CN106220534B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111499546A (zh) * 2020-04-07 2020-08-07 青海盐湖工业股份有限公司 一种有酸法生产联二脲的方法和系统
CN111574410A (zh) * 2020-06-09 2020-08-25 青海盐湖工业股份有限公司 一种尿素和联二脲的联产系统
CN113200888A (zh) * 2021-04-30 2021-08-03 山东众音化学科技有限公司 一种用于adc发泡剂生产的氯化氢缩合方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372756C (zh) * 2004-01-15 2008-03-05 山东滨化集团有限责任公司 试剂级盐酸的生产方法
CN1295210C (zh) * 2005-08-12 2007-01-17 开封东大化工(集团)有限公司 联二脲合成工艺
CN101219973B (zh) * 2008-01-22 2010-06-02 浙江海虹控股集团有限公司 一种联二脲的制备方法
CN105060263B (zh) * 2015-09-01 2017-06-13 青海盐湖工业股份有限公司 一种中和反应系统
CN205874265U (zh) * 2016-08-17 2017-01-11 青海盐湖工业股份有限公司 一种联二脲的制备装置

Also Published As

Publication number Publication date
CN106220534A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
CN109761209A (zh) 一种磷酸铁的生产工艺及其生产设备
CN106220534B (zh) 一种联二脲的制备装置及制备方法
CN103864099B (zh) 一种氰尿酸工业废气和废水的综合利用方法
CN104829494B (zh) 一种节能型尿素生产系统及其生产工艺
CN100590073C (zh) 一种用三聚氰胺尾气生产纯碱、氯化铵的“非联碱法”生产方法
CN205874265U (zh) 一种联二脲的制备装置
CN104495886A (zh) 生产硫酸镁的装置及方法
CN109137084B (zh) 一种盐析法生产二水硫酸钙晶须的方法
CN101381327A (zh) 氨基胍碳酸氢盐的制备方法
CN108706610B (zh) 一种由硫酸铵回收氨和高品质石膏的方法
CN105347703B (zh) 一种钙镁碳酸盐矿的分解方法
CN204661587U (zh) 一种节能型尿素生产系统
CN106745094A (zh) 不结块的不含铵高纯碳酸氢钾的生产方法
CN103601630A (zh) 利用电石渣和一氧化碳合成甲酸钙的方法
CN101016171A (zh) 硫酸亚铁—碳酸铵法高纯α-Fe2O3生产技术
CN109956487A (zh) 循环式氨耦合反应、过滤、洗涤、干燥系统和方法
CN109354072A (zh) 一种碱循环法无害化生产氧化铁红颜料工艺
CN108640162B (zh) 一种碱循环含铁固废生产氧化铁颜料设备系统
CN101780965A (zh) 利用三聚氰胺和酒精尾气生产纯碱、氯化铵的生产方法
CN208911798U (zh) 一种氯乙酸生产降低盐酸、乙酸副产中硫酸含量的装置
CN213865389U (zh) 利用水泥窑窑尾废气和磷石膏制备硫酸铵的系统
CN207478574U (zh) 一种硫代卡巴肼的生产装置
CN106986359A (zh) 一种氢氧化镁煅烧过程中降低产品氧化镁中氯含量的装置及方法
CN218345252U (zh) 资源化处理装置及资源化处理系统
CN101676208A (zh) 芒硝法硝酸钠、石膏晶须联产技术

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant