CN106214662A - 一种聚合电解质载药微粒的制备方法 - Google Patents

一种聚合电解质载药微粒的制备方法 Download PDF

Info

Publication number
CN106214662A
CN106214662A CN201610591418.3A CN201610591418A CN106214662A CN 106214662 A CN106214662 A CN 106214662A CN 201610591418 A CN201610591418 A CN 201610591418A CN 106214662 A CN106214662 A CN 106214662A
Authority
CN
China
Prior art keywords
medicine carrying
preparation
microgranule
polyeletrolyte
carrying microgranule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610591418.3A
Other languages
English (en)
Inventor
吴庆喜
王丹丹
乔艳华
董雪纯
陈彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201610591418.3A priority Critical patent/CN106214662A/zh
Publication of CN106214662A publication Critical patent/CN106214662A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Abstract

本发明公开了一种聚合电解质载药微粒的制备方法,其特征在于:以海藻酸钠溶液为分散相、以Span 85和Tween 85为混合乳化剂、以液体石蜡为连续相,经均质乳化、交联固化、载药、静电包衣,即获得聚合电解质载药微粒。本发明的制备工艺简单、成本低,对设备要求低、适于大批量制备;且本发明所得载药微粒大小均匀、表面圆滑,适于干燥、真空包装保存,其载药量和包封率高,性能稳定。

Description

一种聚合电解质载药微粒的制备方法
技术领域
本发明涉及一种聚合电解质载药微粒的制备方法,属于载体制备技术领域。
背景技术
药物传递系统(Drug Delivery Systems,DDS)亦称给药系统,是现代药剂学研究的热门领域。DDS的研发综合利用了物理学、化学、生物学、生物医学、高分子科学、材料科学等多学科的理论和技术。载体制备技术与材料开发利用是DDS的研究核心。传统技术如前体药物技术、骨架技术、包衣技术、胶囊技术等制备的药物载体,因突释、溶剂残留、药物渗漏等问题亟待革新。随着现代药剂学的快速发展,物理、化学及工程技术等手段被用于载体的构建,微粒技术应运而生。在微纳米超细技术的推动下,微粒载体由宏观的颗粒逐渐向微观的微纳颗粒发展,推动了缓控释药物微载体的变革。微粒(0.1~100μm)是缓控释制剂的常用载体,具有不受胃肠道食物输送节律影响和释药规律重现性好等优点。传统的微粒制备技术有物理化学法,如复合凝聚法、复相乳液法等;物理机械法,如喷雾干燥法、超临界流体法等。近年来,一些新型的微粒制备方法不断涌现,如层层自组装法、微流控乳化法、膜乳化法等。
材料开发与高效利用是DDS研究的另一关键问题。无毒、良好的生物可降解性及生物相容性是载体材料选择的基本要求。近年来,生物质材料如纤维素、壳聚糖、海藻酸等受到了科学家的高度关注。张俐娜院士等(2015)研究发现甲壳素具有很高的生物活性,以其制备的水凝胶、微球等性能稳定,可以作为一种潜在的生物医学材料。目前,利用壳聚糖、海藻酸等材料制备的聚合电解质复合物(Polyelectrolyte Complexes,PEC)受到研究者的较多关注。由PEC形成的新型复合膜材料常被用于DDS载体研究,其具有靶向性、缓控释等给药特性,在多肽和蛋白类药物载体设计领域有着潜在的应用。PEC复合膜制备技术简单、设备低廉,作为一种潜在的载体制备材料受到研究者的普遍关注。然而,目前有关PEC微粒载体鲜有报道。
发明内容
本发明旨在提供一种高效、低廉、简便的聚合电解质载药微粒的制备方法,所要解决的技术问题是通过均质乳化、交联固化、载药、静电包衣等手段得到粒径均一且载药量、包封率高的微粒小球。
本发明解决技术问题采用如下技术方案:
本发明聚合电解质载药微粒的制备方法,其特点在于:以海藻酸钠溶液为分散相、以Span85和Tween 85为混合乳化剂、以液体石蜡为连续相,经均质乳化、交联固化、载药、静电包衣,即获得聚合电解质载药微粒。具体包括如下步骤:
(1)分散相的制备
将海藻酸钠溶入蒸馏水中,搅拌均匀并排除气泡,获得10mL浓度为0.02~0.03g/mL海藻酸钠溶液,作为分散相;
(2)连续相的制备
按体积比1:0.4~3将Span 85和Tween 85混匀,取3~4mL加入100mL的液体石蜡中,搅拌均匀,作为连续相;
(3)均质乳化
将步骤(1)配制的分散相倒入步骤(2)配制的连续相中,以3000rpm的搅拌速率均质乳化5~15min,得均质乳化液;
(4)交联固化
向均质乳化液中加入20mL 0.06g/mL CaCl2与0.025g/mL NaCl的混合溶液,以3000rpm的搅拌速率固化反应20~30min,得固化反应液;
(5)洗涤
向固化反应液中加入50mL石油醚,低速搅拌1h,然后倒入分液漏斗中静置20~30min;分离微粒并用蒸馏水洗涤、低速离心回收;
(6)载药
用蒸馏水配制20mL、1mg/mL的小分子晶体类药物溶液,倒入装有步骤(5)所得微粒的烧杯中,低速搅拌30min,获得含药物的平衡溶液;
(7)静电包衣
向所述含药物的平衡溶液中加入氯化壳聚糖溶液,使氯化壳聚糖的终浓度为0.005~0.015g/mL,保持低速搅拌,包衣30~90min;
(8)保存
包衣反应结束后,低速离心回收载药微粒,蒸馏水快速洗涤,-20℃冷冻后,置于冷冻干燥机中干燥,收集获得干燥的载药微粒。
优选的,所述小分子晶体类药物为5-氟尿嘧啶(5-FU)。
本发明所得载药微粒的载药量和包封率的测定方法:用蒸馏水配制0.1mol/L的HCl溶液200mL备用;称取0.005g载药微粒,倒入研磨器中,加入1mL HCl溶液(0.1mol/L)研磨充分,并加HCl溶液(0.1mol/L)定容至5mL,用0.22μm水系滤膜过滤待测。以高效液相色谱(HPLC)法绘制相应药物(如5-FU)含量的标准检测曲线,测量并计算载药量和包封率。
经测定,本发明所得载药微粒的最终载药量达到70%、包封率达到75%以上。且经扫描电镜观察显示,微粒大小均匀、表面圆滑。
本发明的有益效果体现在:
(1)本发明提供的聚合电解质载药微粒的制备工艺简单、成本低,所选材料绿色环保,整个操作过程在常温、常压下进行,对设备要求低、环境负荷小,可以进一步工艺放大,适于大批量制备。
(2)本发明制备得到的载药微粒大小均匀、表面圆滑,适于干燥、真空包装保存,其载药量和包封率高,性能稳定,可以作为一种缓控释药物传递系统设计的潜在载体。
(3)本发明的载药微粒不仅可应用于保健食品领域,也可应用于医药领域。
附图说明
图1为实施例1所得载药微粒的扫描电镜(SEM)图。
具体实施方式
下面的实施例可以使本领域技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1
本实施例按如下步骤制备聚合电解质载药微粒:
(1)分散相的制备
将海藻酸钠溶入蒸馏水中,搅拌均匀并排除气泡,获得10mL浓度为0.02g/mL海藻酸钠(NaAlg)溶液,作为分散相;
(2)连续相的制备
按体积比7:3将Span 85和Tween 85混匀,取3mL加入100mL的液体石蜡中,搅拌均匀,作为连续相;
(3)均质乳化
将步骤(1)配制的分散相倒入步骤(2)配制的连续相中,以3000rpm的搅拌速率均质乳化5min,得均质乳化液;
(4)交联固化
向均质乳化液中加入20mL 0.06g/mL CaCl2与0.025g/mL NaCl的混合溶液,以3000rpm的搅拌速率固化反应20min,得固化反应液;
(5)洗涤
向固化反应液中加入50mL石油醚,低速搅拌1h,然后倒入分液漏斗中静置20min;分离微粒并用蒸馏水快速洗涤、低速离心回收;
(6)载药
用蒸馏水配制20mL、1mg/mL 5-氟尿嘧啶(5-FU)溶液,倒入装有步骤(5)所得微粒的烧杯中,低速搅拌30min,获得含5-FU的平衡溶液;
(7)静电包衣
向含药物的平衡溶液中加入氯化壳聚糖溶液,使氯化壳聚糖的终浓度为0.005g/mL,保持低速搅拌,包衣30min;
(8)保存
包衣反应结束后,低速离心回收载药微粒,蒸馏水快速洗涤,-20℃冷冻后,置于冷冻干燥机中干燥,收集获得干燥的载药微粒。
经测定,本实施例所得载药微粒的最终载药量达到71.62%,包封率为76.75%。
如图1所示,经扫描电镜表征,本实施例所得载药微粒大小均匀,表面圆滑。
实施例2
本实施例按如下步骤制备聚合电解质载药微粒:
(1)分散相的制备
将海藻酸钠溶入蒸馏水中,搅拌均匀并排除气泡,获得10mL浓度为0.02g/mL海藻酸钠(NaAlg)溶液,作为分散相;
(2)连续相的制备
按体积比5:5将Span 85和Tween 85混匀,取3mL加入100mL的液体石蜡中,搅拌均匀,作为连续相;
(3)均质乳化
将步骤(1)配制的分散相倒入步骤(2)配制的连续相中,以3000rpm的搅拌速率均质乳化10min,得均质乳化液;
(4)交联固化
向均质乳化液中加入20mL 0.06g/mL CaCl2与0.025g/mL NaCl的混合溶液,以3000rpm的搅拌速率固化反应30min,得固化反应液;
(5)洗涤
向固化反应液中加入50mL石油醚,低速搅拌1h,然后倒入分液漏斗中静置20min;分离微粒并用蒸馏水快速洗涤、低速离心回收;
(6)载药
用蒸馏水配制20mL、1mg/mL 5-氟尿嘧啶(5-FU)溶液,倒入装有步骤(5)所得微粒的烧杯中,低速搅拌30min,获得含5-FU的平衡溶液;
(7)静电包衣
向含药物的平衡溶液中加入氯化壳聚糖溶液,使氯化壳聚糖的终浓度为0.005g/mL,保持低速搅拌,包衣30min;
(8)保存
包衣反应结束后,低速离心回收载药微粒,蒸馏水快速洗涤,-20℃冷冻后,置于冷冻干燥机中干燥,收集获得干燥的载药微粒。
经测定,本实施例所得载药微粒的最终载药量达到72.33%,包封率为77.43%。
经扫描电镜表征,本实施例所得载药微粒大小均匀,表面圆滑。
实施例3
本实施例按如下步骤制备聚合电解质载药微粒:
(1)分散相的制备
将海藻酸钠溶入蒸馏水中,搅拌均匀并排除气泡,获得10mL浓度为0.03g/mL海藻酸钠(NaAlg)溶液,作为分散相;
(2)连续相的制备
按体积比1:3将Span 85和Tween 85混匀,取4mL加入100mL的液体石蜡中,搅拌均匀,作为连续相;
(3)均质乳化
将步骤(1)配制的分散相倒入步骤(2)配制的连续相中,以3000rpm的搅拌速率均质乳化15min,得均质乳化液;
(4)交联固化
向均质乳化液中加入20mL 0.06g/mL CaCl2与0.025g/mL NaCl的混合溶液,以3000rpm的搅拌速率固化反应30min,得固化反应液;
(5)洗涤
向固化反应液中加入50mL石油醚,低速搅拌1h,然后倒入分液漏斗中静置30min;分离微粒并用蒸馏水快速洗涤、低速离心回收;
(6)载药
用蒸馏水配制20mL、1mg/mL 5-氟尿嘧啶(5-FU)溶液,倒入装有步骤(5)所得微粒的烧杯中,低速搅拌30min,获得含5-FU的平衡溶液;
(7)静电包衣
向含药物的平衡溶液中加入氯化壳聚糖溶液,使氯化壳聚糖的终浓度为0.005g/mL,保持低速搅拌,包衣60min;
(8)保存
包衣反应结束后,低速离心回收载药微粒,蒸馏水快速洗涤,-20℃冷冻后,置于冷冻干燥机中干燥,收集获得干燥的载药微粒。
经测定,本实施例所得载药微粒的最终载药量达到74.51%,包封率为78.57%。
经扫描电镜表征,本实施例所得载药微粒大小均匀,表面圆滑。

Claims (3)

1.一种聚合电解质载药微粒的制备方法,其特征在于:以海藻酸钠溶液为分散相、以Span 85和Tween 85为混合乳化剂、以液体石蜡为连续相,经均质乳化、交联固化、载药、静电包衣,即获得聚合电解质载药微粒。
2.根据权利要求1所述的聚合电解质载药微粒的制备方法,其特征在于包括如下步骤:
(1)分散相的制备
将海藻酸钠溶入蒸馏水中,搅拌均匀并排除气泡,获得10mL浓度为0.02~0.03g/mL海藻酸钠溶液,作为分散相;
(2)连续相的制备
按体积比1:0.4~3将Span 85和Tween 85混匀,取3~4mL加入100mL的液体石蜡中,搅拌均匀,作为连续相;
(3)均质乳化
将步骤(1)配制的分散相倒入步骤(2)配制的连续相中,以3000rpm的搅拌速率均质乳化5~15min,得均质乳化液;
(4)交联固化
向均质乳化液中加入20mL 0.06g/mL CaCl2与0.025g/mL NaCl的混合溶液,以3000rpm的搅拌速率固化反应20~30min,得固化反应液;
(5)洗涤
向固化反应液中加入50mL石油醚,低速搅拌1h,然后倒入分液漏斗中静置20~30min;分离微粒并用蒸馏水洗涤、低速离心回收;
(6)载药
用蒸馏水配制20mL、1mg/mL的小分子晶体类药物溶液,倒入装有步骤(5)所得微粒的烧杯中,低速搅拌30min,获得含药物的平衡溶液;
(7)静电包衣
向所述含药物的平衡溶液中加入氯化壳聚糖溶液,使氯化壳聚糖的终浓度为0.005~0.015g/mL,保持低速搅拌,包衣30~90min;
(8)保存
包衣反应结束后,低速离心回收载药微粒,蒸馏水快速洗涤,-20℃冷冻后,置于冷冻干燥机中干燥,收集获得干燥的载药微粒。
3.根据权利要求2所述的聚合电解质载药微粒的制备方法,其特征在于:所述小分子晶体类药物为5-氟尿嘧啶。
CN201610591418.3A 2016-07-25 2016-07-25 一种聚合电解质载药微粒的制备方法 Pending CN106214662A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610591418.3A CN106214662A (zh) 2016-07-25 2016-07-25 一种聚合电解质载药微粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610591418.3A CN106214662A (zh) 2016-07-25 2016-07-25 一种聚合电解质载药微粒的制备方法

Publications (1)

Publication Number Publication Date
CN106214662A true CN106214662A (zh) 2016-12-14

Family

ID=57533234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610591418.3A Pending CN106214662A (zh) 2016-07-25 2016-07-25 一种聚合电解质载药微粒的制备方法

Country Status (1)

Country Link
CN (1) CN106214662A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107281159A (zh) * 2017-06-29 2017-10-24 安徽大学 一种具有多层核壳结构的缓释载药微胶囊的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240076A (zh) * 2008-03-12 2008-08-13 天津大学 大分子及乳液双印迹海藻酸盐聚合物微球及其制备方法
CN101947212A (zh) * 2010-09-08 2011-01-19 华侨大学 一种微包纳药物载体及其制备方法
CN101966157A (zh) * 2010-10-14 2011-02-09 苏州特瑞药业有限公司 一种地西他滨缓释微球及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240076A (zh) * 2008-03-12 2008-08-13 天津大学 大分子及乳液双印迹海藻酸盐聚合物微球及其制备方法
CN101947212A (zh) * 2010-09-08 2011-01-19 华侨大学 一种微包纳药物载体及其制备方法
CN101966157A (zh) * 2010-10-14 2011-02-09 苏州特瑞药业有限公司 一种地西他滨缓释微球及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107281159A (zh) * 2017-06-29 2017-10-24 安徽大学 一种具有多层核壳结构的缓释载药微胶囊的制备方法
CN107281159B (zh) * 2017-06-29 2019-12-20 安徽大学 一种具有多层核壳结构的缓释载药微胶囊的制备方法

Similar Documents

Publication Publication Date Title
Choukaife et al. Alginate nanoformulation: Influence of process and selected variables
Chang et al. Sheath-separate-core nanocomposites fabricated using a trifluid electrospinning
CN105534952B (zh) 一种核壳结构复合多孔微球的制备方法
Della Porta et al. Supercritical drying of alginate beads for the development of aerogel biomaterials: optimization of process parameters and exchange solvents
CN1319637C (zh) 一种尺寸均一的壳聚糖微球和微囊及其制备方法
Akamatsu et al. Preparation of monodisperse chitosan microcapsules with hollow structures using the SPG membrane emulsification technique
CN101249077A (zh) 一种可降解聚合物多孔微球的制备方法及其用途
Zhao et al. Preparation of calcium alginate microgel beads in an electrodispersion reactor using an internal source of calcium carbonate nanoparticles
CN101601986A (zh) 一种壳聚糖-二氧化硅复合空心微球的制法及应用
Jin et al. Preparation of hydroxypropyl methyl cellulose phthalate nanoparticles with mixed solvent using supercritical antisolvent process and its application in co-precipitation of insulin
Gao et al. Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications
CN106674555A (zh) 一种用于稳定油包水型皮克林乳液的海藻酸钙复合微球及其制备方法
CN107375196A (zh) 一种含儿茶酚基天然多糖复合水凝胶载体及其制备方法
Wu et al. Novel preparation of PLGA/HP55 nanoparticles for oral insulin delivery
CN104434879B (zh) 壳聚糖‑海藻酸钠载药微囊制备方法
Ali et al. Synthesis and characterization of graphene oxide–polystyrene composite capsules with aqueous cargo via a water–oil–water multiple emulsion templating route
Huang et al. Microencapsulation based on emulsification for producing pharmaceutical products: A literature review
CN105997936A (zh) 一种羧甲基壳聚糖纳米微粒固定化多孔多层海藻酸钠胶球的制备方法
Baimark et al. Preparation of polysaccharide-based microspheres by a water-in-oil emulsion solvent diffusion method for drug carriers
CN107714674A (zh) 一种plga微球的制备方法
Mark et al. Manufacture of chitosan microbeads using centrifugally driven flow of gel-forming solutions through a polymeric micronozzle
Priamo et al. Micronization processes by supercritical fluid technologies: a short review on process design (2008-2012)
Liu et al. Zein-based nanoparticles: Preparation, characterization, and pharmaceutical application
Hadef et al. Serum albumin-alginate microparticles prepared by transacylation: Relationship between physicochemical, structural and functional properties
Kucuk et al. Microfluidic preparation of polymer nanospheres

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161214

RJ01 Rejection of invention patent application after publication