CN106206060A - 氢氧化钴@碳纤维纳米复合材料的制备及超级电容器电极材料应用 - Google Patents

氢氧化钴@碳纤维纳米复合材料的制备及超级电容器电极材料应用 Download PDF

Info

Publication number
CN106206060A
CN106206060A CN201610848241.0A CN201610848241A CN106206060A CN 106206060 A CN106206060 A CN 106206060A CN 201610848241 A CN201610848241 A CN 201610848241A CN 106206060 A CN106206060 A CN 106206060A
Authority
CN
China
Prior art keywords
carbon fiber
cobalt hydroxide
nanometer composite
composite material
fiber nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610848241.0A
Other languages
English (en)
Inventor
冯艳艳
杨文�
钟开应
梁育铭
杨辉
韦葵珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201610848241.0A priority Critical patent/CN106206060A/zh
Publication of CN106206060A publication Critical patent/CN106206060A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种氢氧化钴@碳纤维纳米复合材料的制备及超级电容器电极材料应用。(1)将2 g市售医用脱脂棉放在石英舟中并置于管式炉中部,在氮气气氛下500 oC焙烧3小时,升温速率为5 oC/min,然后在氮气气氛下自然冷却至室温,得到碳纤维材料;(2)将0.626 g硝酸钴和0.2 g六次甲基四胺加入到40 mL蒸馏水中搅拌溶解,待完全溶解后,加入碳纤维材料,并置于100 mL水热釜中在100 oC下反应12小时;反应结束后,将其自然冷却至室温,对产物进行过滤、30 oC去离子水洗涤;在鼓风干燥箱中80 oC下干燥12小时。本发明制备方法简单,容易实现,所制得的氢氧化钴@碳纤维纳米复合材料在作为超级电容器电极材料应用时表现出了很好的效果。

Description

氢氧化钴@碳纤维纳米复合材料的制备及超级电容器电极材 料应用
技术领域
本发明涉及一种超级电容器电极材料的制备方法,特别是一种氢氧化钴@碳纤维纳米复合材料的制备及超级电容器电极材料应用。
背景技术
伴随着社会经济的快速发展及人口的急剧增长,资源和能源的日渐短缺及生态环境的日益恶化成为当今函待解决的问题。为了解决这些问题,发展环保的具有高效利用率和低污染的可持续能源刻不容缓。现在已开发或正在研究开发的新能源包括风能、海洋能、太阳能、氢能、核能等。为了能充分利用这些新能源,需要有与之配套的储能装置。近年来,超级电容器作为一种高性能、无污染的储能器件受到了广泛的关注。目前,超级电容器已经用于电子产品、交通运输、电力、通讯和国防安全等领域,如电动螺丝刀、风能和太阳能发电储能设备。
根据能量的储存与转化机理,超级电容器可以分为双电层电容器和法拉第电容器两类。其中,双电层电容器是在电极表面静电吸附离子而形成双电层进行能量储存;而法拉第电容器是在电极上快速地发生可逆的氧化还原反应而进行能量储存,其储存电荷的过程不仅包括双电层上的存储,同时还包括电解液中的离子在电极活性物质中发生氧化还原反应而将电荷储存于电极中。所以,法拉第电容值要明显大于双电层电容值。
目前,以法拉第电容方式存储能量的电极材料主要包括过渡金属氧化物、氢氧化物及其导电聚合物,如氧化镍、氧化铜、氧化钌、四氧化三铁、氢氧化镍、氢氧化钴等。由于氢氧化钴具有独特的纳米片状结构和良好的电化学性能,同时资源相对丰富、价格低廉、环境友好、导电性比其他氢氧化物好等优点,本发明选取氢氧化钴作为超级电容器电极材料。但是,氢氧化钴在制备过程中容易发生聚集,使其在循环充放电过程中电容性能下降。因此,为解决这一难题,本发明拟将氢氧化钴负载于高比表面积的碳材料上,这样有利于提高活性组分的分散,降低充放电过程的电子转移阻力,从而提高材料的电容性能和循环稳定性能。
以来源广泛的生物质棉花为前驱体通过热处理制备得到的碳纤维是一类质量轻、高导电性、高比表面积的结构材料。利用它作为生长功能纳米材料的基底,一方面可以改善氢氧化钴的导电性,另一方面可以减弱原位生长时活性物质的团聚现象。
发明内容
本发明的目的是以脱脂棉作为基础材料,将脱脂棉在氮气气氛下进行高温热处理得到碳纤维材料;以碳纤维为基底,以硝酸钴为原料,以六次甲基四胺为沉淀剂,采用水热原位合成技术得到氢氧化钴@碳纤维纳米复合材料及作为超级电容器电极材料应用。
具体步骤为:
(1)将2 g市售医用脱脂棉放在石英舟中并置于管式炉中部,在氮气气氛下500 oC焙烧3小时,升温速率为5 oC/min,然后在氮气气氛下自然冷却至室温,得到碳纤维材料。
(2)将0.626 g硝酸钴和0.2 g六次甲基四胺加入到40 mL蒸馏水中搅拌溶解,待完全溶解后,加入步骤(1)所得的碳纤维材料,并置于100 mL水热釜中在100 oC下反应12小时;反应结束后,将其自然冷却至室温,对产物进行过滤、30 oC去离子水洗涤;将洗涤后的样品在鼓风干燥箱中80 oC下干燥12小时,即得到氢氧化钴@碳纤维纳米复合材料。
将所制得的氢氧化钴@碳纤维复合材料作为超级电容器电极材料的应用。
氢氧化钴@碳纤维复合材料能在6.0 mol/L KOH电解液中室温下使用,适用于超级电容器工作电极电极,其电容性能远远优于采用同种方法制备得到的未添加基底的氢氧化钴材料,是一种有效的超级电容器电极材料。
本发明制备方法简单,容易实现,所制得的氢氧化钴@碳纤维纳米复合材料,以来源广泛的生物质棉花作为基础材料,棉花纤维的交织结构使其高温热处理后还能保持一定的整体结构,利用它作为生长电极材料的基底,一方面可以改善氢氧化钴的导电性,另一方面可以减弱原位生长时活性物质的团聚现象。
附图说明
图1为本发明所制的未添加基底的氢氧化钴材料和氢氧化钴@碳纤维纳米复合材料的扫描电镜图,a:未添加基底的氢氧化钴材料,b:氢氧化钴@碳纤维纳米复合材料。
图2为本发明所制的未添加基底的氢氧化钴材料和氢氧化钴@碳纤维纳米复合材料的比电容随电流密度的变化曲线图。
具体实施方式
实施例:
(1)将2 g市售医用脱脂棉放在石英舟中并置于管式炉中部,在氮气气氛下500 oC焙烧3小时,升温速率为5 oC/min,然后在氮气气氛下自然冷却至室温,得到碳纤维材料。
(2)将0.626 g硝酸钴和0.2 g六次甲基四胺加入到40 mL蒸馏水中搅拌溶解,待完全溶解后,加入步骤(1)所得的碳纤维材料,并置于100 mL水热釜中在100 oC下反应12小时;反应结束后,将其自然冷却至室温,对产物进行过滤、30 oC去离子水洗涤;将洗涤后的样品在鼓风干燥箱中80 oC下干燥12小时,即得到氢氧化钴@碳纤维纳米复合材料,氢氧化钴@碳纤维纳米复合材料的扫描电镜图如图1(b)所示,棉花碳纤维错综复杂地交织成网状结构,提供了很大的空间位置,而氢氧化钴如同花瓣一样,独立均匀地镶嵌在其表面上。这表明本发明制备的氢氧化钴@碳纤维纳米复合材料可以克服传统方法制备过程中氢氧化钴易聚集的问题,从而有利于其作为电极材料时电容性能的提高。
(3)取尺寸为2×3 cm的泡沫镍并将其对折,之后将所制备的氢氧化钴@碳纤维纳米复合材料夹在对折的泡沫镍中间,置于6.0 mol/L KOH电解液中,常温下在CHI660D电化学工作站分别进行循环伏安曲线、恒电流充放电曲线和稳定性的测试。经测试发现,所得氢氧化钴@碳纤维纳米复合材料的电容性能大大增加,在不同电流密度下的比电容值见图2。
对比例:
(1)将0.626 g硝酸钴和0.2 g六次甲基四胺加入到40 mL蒸馏水中搅拌溶解,待完全溶解后,置于100 mL水热釜中在100 oC下反应12小时;反应结束后,将其自然冷却至室温,对产物进行过滤、去离子水洗涤;将洗涤后的样品在鼓风干燥箱中80 oC下干燥12小时,即得到未添加基底的氢氧化钴超级电容器电极材料,未添加基底的氢氧化钴材料的扫描电镜图如图1(a)所示。
(2)按照未添加基底的氢氧化钴材料:聚偏二氟乙烯:炭黑的质量比80:10:10,分别称取未添加基底的氢氧化钴材料、聚偏二氟乙烯和炭黑并置于500 μL N-甲基-2-吡咯烷酮中,搅拌均匀后涂在泡沫镍1 cm2的表面上,然后在100 oC下干燥12小时,在10 MPa下进行压片、称重并置于6.0 mol/L KOH电解液中,常温下在CHI660D电化学工作站分别进行循环伏安曲线、恒电流充放电曲线和稳定性的测试。经测试发现,所得未添加基底的氢氧化钴超电极材料有一定的电容性能,在不同电流密度下的比电容值见图2。
从图2中可以看出,氢氧化钴@碳纤维纳米复合材料具有较大的比电容,而未添加基底的氢氧化钴材料比电容较小。这表明,与传统方法制备的氢氧化钴相比,本发明制备的氢氧化钴@碳纤维纳米复合材料是一种高效的超级电容器电极材料。
与未添加基底的氢氧化钴相比,氢氧化钴@碳纤维纳米复合材料的电化学性能明显增强。因此以脱脂棉为前驱体采用原位生长法制备得到的氢氧化钴@碳纤维纳米复合材料是一种有较大应用前景的高效超级电容器电极材料。

Claims (2)

1.一种氢氧化钴@碳纤维纳米复合材料的制备方法,其特征在于具体步骤为:
(1)将2 g市售医用脱脂棉放在石英舟中并置于管式炉中部,在氮气气氛下500 oC焙烧3小时,升温速率为5 oC/min,然后在氮气气氛下自然冷却至室温,得到碳纤维材料;
(2)将0.626 g硝酸钴和0.2 g六次甲基四胺加入到40 mL蒸馏水中搅拌溶解,待完全溶解后,加入步骤(1)所得的碳纤维材料,并置于100 mL水热釜中在100 oC下反应12小时;反应结束后,将其自然冷却至室温,对产物进行过滤、30 oC去离子水洗涤;将洗涤后的样品在鼓风干燥箱中80 oC下干燥12小时,即得到氢氧化钴@碳纤维纳米复合超级电容器电极材料。
2.根据权利要求1所述的氢氧化钴@碳纤维纳米复合材料的应用,其特征在于氢氧化钴@碳纤维纳米复合材料作为超级电容器电极材料应用。
CN201610848241.0A 2016-09-25 2016-09-25 氢氧化钴@碳纤维纳米复合材料的制备及超级电容器电极材料应用 Pending CN106206060A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610848241.0A CN106206060A (zh) 2016-09-25 2016-09-25 氢氧化钴@碳纤维纳米复合材料的制备及超级电容器电极材料应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610848241.0A CN106206060A (zh) 2016-09-25 2016-09-25 氢氧化钴@碳纤维纳米复合材料的制备及超级电容器电极材料应用

Publications (1)

Publication Number Publication Date
CN106206060A true CN106206060A (zh) 2016-12-07

Family

ID=58067610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610848241.0A Pending CN106206060A (zh) 2016-09-25 2016-09-25 氢氧化钴@碳纤维纳米复合材料的制备及超级电容器电极材料应用

Country Status (1)

Country Link
CN (1) CN106206060A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731568A (zh) * 2017-10-19 2018-02-23 天津工业大学 一种柔性金属氢氧化物超级电容器电极材料的制备方法
CN111232948A (zh) * 2020-01-16 2020-06-05 厦门理工学院 一种棉花衍生多孔碳电极材料及其合成方法与应用
CN111876808A (zh) * 2020-08-06 2020-11-03 苏州柯诺思高新材料有限公司 一种Cu掺杂α-Co(OH)2互联接结构纳米片复合电极的制备方法
CN112233913A (zh) * 2020-10-09 2021-01-15 中山大学 一种制备非对称纤维超级电容器电极的方法及其制备的电极、超级电容器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659192A (zh) * 2012-04-27 2012-09-12 浙江大学 四氧化三钴负极材料、非晶碳包覆四氧化三钴负极材料及其制备方法和应用
CN103066276A (zh) * 2012-12-07 2013-04-24 上海锦众信息科技有限公司 一种锂离子电池氢氧化钴-碳复合负极材料的制备方法
CN103746099A (zh) * 2014-01-17 2014-04-23 江苏华盛精化工股份有限公司 一种二氧化锡包裹的碳纤维材料的制备方法、产品及应用
CN104766963A (zh) * 2015-04-22 2015-07-08 安徽理工大学 一种制备金属氧化物-碳纤维纳米复合材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659192A (zh) * 2012-04-27 2012-09-12 浙江大学 四氧化三钴负极材料、非晶碳包覆四氧化三钴负极材料及其制备方法和应用
CN103066276A (zh) * 2012-12-07 2013-04-24 上海锦众信息科技有限公司 一种锂离子电池氢氧化钴-碳复合负极材料的制备方法
CN103746099A (zh) * 2014-01-17 2014-04-23 江苏华盛精化工股份有限公司 一种二氧化锡包裹的碳纤维材料的制备方法、产品及应用
CN104766963A (zh) * 2015-04-22 2015-07-08 安徽理工大学 一种制备金属氧化物-碳纤维纳米复合材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨彩凤: "水热法生长微/纳米结构及其电化学性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731568A (zh) * 2017-10-19 2018-02-23 天津工业大学 一种柔性金属氢氧化物超级电容器电极材料的制备方法
CN111232948A (zh) * 2020-01-16 2020-06-05 厦门理工学院 一种棉花衍生多孔碳电极材料及其合成方法与应用
CN111876808A (zh) * 2020-08-06 2020-11-03 苏州柯诺思高新材料有限公司 一种Cu掺杂α-Co(OH)2互联接结构纳米片复合电极的制备方法
CN112233913A (zh) * 2020-10-09 2021-01-15 中山大学 一种制备非对称纤维超级电容器电极的方法及其制备的电极、超级电容器

Similar Documents

Publication Publication Date Title
Yan et al. NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor
Zhang et al. Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods
Xiong et al. Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes
Xu et al. Design of the seamless integrated C@ NiMn-OH-Ni3S2/Ni foam advanced electrode for supercapacitors
Pang et al. One pot low-temperature growth of hierarchical δ-MnO2 nanosheets on nickel foam for supercapacitor applications
CN105244177A (zh) 一种超级电容器用三维纳米结构NiCo2S4电极材料及其制备方法
Xia et al. PPy decorated α-Fe 2 O 3 nanosheets as flexible supercapacitor electrodes
CN106206060A (zh) 氢氧化钴@碳纤维纳米复合材料的制备及超级电容器电极材料应用
CN104143450A (zh) 导电聚合物包覆钴酸镍复合电极材料的制备方法
Lu et al. Direct access to NiCo-LDH nanosheets by electrochemical-scanning-mediated hydrolysis for photothermally enhanced energy storage capacity
CN105810456B (zh) 一种活化石墨烯/针状氢氧化镍纳米复合材料及其制备方法
CN108400021A (zh) 一种超级电容器电极材料及其制备方法
Ji et al. All-in-one energy storage devices supported and interfacially cross-linked by gel polymeric electrolyte
Liu et al. Design and fabrication of transparent and stretchable zinc ion batteries
Chen et al. Petal-like CoMoO4 clusters grown on carbon cloth as a binder-free electrode for supercapacitor application
Li et al. NiCo2S4 combined 3D hierarchical porous carbon derived from lignin for high-performance supercapacitors
CN109616331A (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
CN108557892A (zh) 一种物相可控的锰的氧化物制备方法及应用
CN105819512A (zh) 一种过渡金属硫化物的快速制备方法
CN106229165A (zh) 用于超级电容器的NiCo2O4@MnMoO4核壳结构多孔纳米材料及其制备方法
Dong et al. Tunable growth of perpendicular cobalt ferrite nanosheets on reduced graphene oxide for energy storage
Peng et al. Understanding the electrochemical activation behavior of Co (OH) 2 nanotubes during the ion-exchange process
CN103762356B (zh) Ni纳米线、NiO/Ni自支撑膜及其制备方法和应用
CN104282445A (zh) 超级电容器用四氧化三钴氮掺杂碳纳米管复合电极材料及其制备方法
Chen et al. Enhanced cycle stability of Na2Ti3O7 nanosheets grown in situ on nickel foam as an anode for sodium-ion batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207

RJ01 Rejection of invention patent application after publication