CN106198660B - 一种在微流控孔道中沉积纳米银的方法 - Google Patents

一种在微流控孔道中沉积纳米银的方法 Download PDF

Info

Publication number
CN106198660B
CN106198660B CN201610562990.7A CN201610562990A CN106198660B CN 106198660 B CN106198660 B CN 106198660B CN 201610562990 A CN201610562990 A CN 201610562990A CN 106198660 B CN106198660 B CN 106198660B
Authority
CN
China
Prior art keywords
ito glass
micro
pdda
pss
pdms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610562990.7A
Other languages
English (en)
Other versions
CN106198660A (zh
Inventor
孙晶
郎明非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Counterclockwise Chip Technology Dalian Co ltd
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN201610562990.7A priority Critical patent/CN106198660B/zh
Publication of CN106198660A publication Critical patent/CN106198660A/zh
Application granted granted Critical
Publication of CN106198660B publication Critical patent/CN106198660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/307Disposable laminated or multilayered electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明涉及一种在微流控孔道中沉积纳米银的方法。通过对ITO玻璃进行预处理,制备出带有(PDDA/PSS)n多层自组装膜的ITO玻璃,以该ITO玻璃为基底与由PDMS制成的芯片封接而形成微流控芯片,然后将NaNO3和AgNO3混合液注入微流控孔道中,通过计时电流法在其中沉积纳米银,纳米银表面形貌检测显示在微流控孔道内可见分布均匀的纳米银颗粒。本发明具有快速、简单、重复性好、成本低等特点,在医学生物工程、医学生物传感器等领域有广阔的应用前景。

Description

一种在微流控孔道中沉积纳米银的方法
技术领域
本发明涉及微流控孔道表面处理技术,具体涉及一种在微流控孔道中沉积纳米银的工艺方法。
背景技术
随着生命科学的迅速发展,以及生命科学研究从宏观到微观、分析仪器和分析科学也经历了深刻的变化。为了适应从宏观到微观的生命科学发展的需要,分析仪器的发展趋势越来越集成化、小型化和便携化。微流控是可以将普通仪器所具有的功能有效集中在一块几平方厘米大小的芯片上的一种技术平台。微流控芯片已被广泛应用于生物化学、医学检查、药物合成、筛选、环境监测等领域,具有广泛的应用和应用。纳米银是指银的粒径为1-100nm之间的粒子,纳米银材料具有高导热性、抑菌性和催化作用的银纳米材料,以及在表面等离子体共振吸收峰附近的超快非线性光学响应,是一种最有前途的贵金属材料,得到广泛的重视和应用。纳米银的制备主要采用化学法,包括化学还原法、微乳液法、模板法、电化学法等,但纳米银在微流控孔道中的沉积尚无快速、简单、重复性好、低成本沉积的方法,严重制约了纳米银在微流控中的应用。
发明内容
本发明的目的在于克服现有技术的不足,提供一种以带有(PDDA/PSS)n多层自组装膜的ITO玻璃为基底,用NaNO3和AgNO3混合液,采用计时电流法,在聚二甲基硅氧烷(PDMS)微流控孔道内进行纳米银沉积的方法,避免使用贵重仪器、复杂工艺条件等问题。
本发明通过以下技术方案予以实现:一种在微流控孔道中沉积纳米银的方法,包括以下步骤:
S1将PDMS单体和引发体按10:1的质量比制备成微流控芯片;
S2ITO玻璃经臭氧清洗,使其表面附带大量负电荷;
S3将经过臭氧处理后的ITO玻璃放入聚二烯丙基二甲基氯化铵(PDDA)溶液中与聚苯乙烯磺酸钠(PSS)组装,制备出带有(PDDA/PSS)n多层自组装膜的ITO玻璃,n大于1;
S4在匀胶机中将光刻胶均匀地铺在S3处理过ITO玻璃上,将微流控芯片与ITO玻璃封接在一起;
S5采用三电极体系,将NaNO3和AgNO3的混合液注入微流控通道中,采用计时电流法进行纳米银沉积。
优选地,所述步骤S2中,先用无水乙醇超声清洗ITO玻璃,再置于紫外臭氧清洗机中30min。
优选地,所述步骤S3中,PDDA溶液浓度为1~10mg/mL,优选1mg/mL。
优选地,所述步骤S5中三电极体系为:将表面带有(PDDA/PSS)n静电自组装层的ITO玻璃作为工作电极,铂片电极为对电极,Ag/AgCl电极为参比电极。
优选地,所述步骤S5中计时电流法中固定沉积电压为1~-1000mV,时间为1~3200s;具体数值要经测试后搭配使用,如当n=6时,优选固定沉积电压为-400mV,时间为1600s。
优选地,所述步骤S5中,NaNO3浓度为0.0001~1mol/L,AgNO3浓度为0.0001~10mg/ml具体数值要经测试后搭配使用,如当n=6时,优选NaNO3浓度为0.1mol/L,AgNO3浓度为0.43mg/ml。
与现有技术相比,本发明的有益效果在于:本发明以带有(PDDA/PSS)n多层自组装膜的ITO玻璃为基底与由PDMS制成的芯片封接而形成微流控芯片,然后将NaNO3和AgNO3混合液注入微流控孔道中,通过计时电流法在其中沉积纳米银。由于ITO玻璃及PDMS价格低廉,所用的层层组装法及计时电流法简单易行,结果重复性高,非常适合在微流控孔道中制备稳定的纳米银沉积膜。纳米银表面形貌检测显示在微流控孔道内可见分布均匀的纳米银颗粒。本发明具有快速、简单、重复性好、成本低等特点,避免了使用昂贵的仪器、繁琐的工艺方法、苛刻的制备条件,将纳米银沉积在微流控孔道中,在医学生物工程、医学生物传感器等领域有广阔的应用前景。
附图说明
图1为本发明实施例1带有(PDDA/PSS)6多层自组装膜的ITO玻璃纳米银沉积前后的对比图;
图2为本发明实施例1纳米银在微流控孔道中的沉积照片;
图3为本发明实施例1纳米银的电镜形貌表征照片。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。下述实施例中如无特殊说明,所采用的实验方法均为常规方法,所用材料、试剂等均可从化学公司购买。PDMS可以采用本领域公知的任一种制备方法,其中单体和引发体购于Momentive公司,名称:RTV615044-PL BX Kit(分A、B液),货号:009482。
实施例1
(1)将PDMS A液(单体)和B液(引发体)按10:1的质量比倒入烧杯中,用玻璃棒搅拌5分钟后倒进上述装有硅片的培养皿中。
(2)将培养皿放于浓缩干燥器中,用隔膜真空泵抽气1.5小时以除去PDMS中的气泡,然后置于80℃的真空干燥箱固化1小时。
(3)待其自然冷却后将PDMS从硅片模板上轻轻剥离,用切割机切成小块,再用手动芯片打孔机在相应部位打孔,以备实验使用。
(4)用无水乙醇超声清洗ITO玻璃,再置于紫外臭氧清洗机中30分钟,然后将清洗好的ITO的导电面朝上放置,放入1mg/mL的PDDA溶液中浸泡5min,取出后,使用蒸馏水少量多次进行清洗,然后使用氮气吹干。
(5)使用同样的步骤,对组装有PDDA层的ITO玻璃进行PSS组装。完成后,可制得一层(PDDA/PSS)自组装层。重复上述的过程6次,可制备出带有(PDDA/PSS)6多层自组装膜的ITO玻璃。
(6)最后用氮气封装在培养皿中待用。
(7)将事先准备好的ITO玻璃片放在匀胶机的转盘上,然后在硅片的中心加入200μL的PDMS,通过匀胶机将光刻胶均匀地铺满整个玻璃片表面。
(8)将打好孔的芯片在上述玻璃片上粘取PDMS,然后与ITO玻璃的导电面粘接在一起。
(9)准备好电化学工作站,采用三电极体系,表面带有(PDDA/PSS)6静电自组装层的ITO玻璃为工作电极,铂片电极为对电极,Ag/AgCl电极为参比电极。
(10)将NaNO3(0.1mol/L)和AgNO3(0.43mg/ml)混合液注入微流控通道中,采用计时电流法,固定沉积电压为-400mV,采用1600s的时间,进行纳米银沉积。带有(PDDA/PSS)6静电自组装层的ITO玻璃进行纳米银沉积后前后见图1,纳米银在微流控孔道中沉积前后如图2所示。通过扫描电子显微镜可以观察到微流控孔道中纳米银的形貌,见图3。
实施例2
(1)将PDMS A液(单体)和B液(引发体)按10:1的质量比倒入烧杯中,用玻璃棒搅拌5分钟后倒进上述装有硅片的培养皿中。将培养皿放于浓缩干燥器中,用隔膜真空泵抽气1.5小时以除去PDMS中的气泡,然后置于80℃的真空干燥箱固化1小时。待其自然冷却后将PDMS从硅片模板上轻轻剥离,用切割机切成小块,再用手动芯片打孔机在相应部位打孔,以备实验使用。
(2)用无水乙醇超声清洗ITO玻璃,再置于紫外臭氧清洗机中30分钟,然后将清洗好的ITO的导电面朝上放置,放入1mg/mL的PDDA溶液中浸泡5min,取出后,使用蒸馏水少量多次进行清洗,然后使用氮气吹干。使用同样的步骤,对组装有PDDA层的ITO玻璃进行PSS组装。完成后,可制得一层(PDDA/PSS)自组装层。重复上述的过程10次,可制备出带有(PDDA/PSS)10多层自组装膜的ITO玻璃。最后用氮气封装在培养皿中待用。
(3)将事先准备好的ITO玻璃片放在匀胶机的转盘上,然后在硅片的中心200μL的PDMS,通过匀胶机将光刻胶均匀地铺满整个玻璃片表面。将打好孔的芯片在上述玻璃片上粘取PDMS,然后与ITO玻璃的导电面粘接在一起。
(4)准备好电化学工作站,采用三电极体系,表面带有(PDDA/PSS)10静电自组装层的ITO玻璃为工作电极,铂片电极为对电极,Ag/AgCl电极为参比电极。将NaNO3(0.01mol/L)和AgNO3(0.05mg/ml)混合液注入微流控通道中,采用计时电流法,固定沉积电压为-500mV,采用3000s的时间,进行纳米银沉积。
实施例3
(1)将PDMS A液(单体)和B液(引发体)按10:1的质量比倒入烧杯中,用玻璃棒搅拌5分钟后倒进上述装有硅片的培养皿中。将培养皿放于浓缩干燥器中,用隔膜真空泵抽气1.5小时以除去PDMS中的气泡,然后置于80℃的真空干燥箱固化1小时。待其自然冷却后将PDMS从硅片模板上轻轻剥离,用切割机切成小块,再用手动芯片打孔机在相应部位打孔,以备实验使用。
(2)用无水乙醇超声清洗ITO玻璃,再置于紫外臭氧清洗机中30分钟,然后将清洗好的ITO的导电面朝上放置,放入1mg/mL的PDDA溶液中浸泡5min,取出后,使用蒸馏水少量多次进行清洗,然后使用氮气吹干。使用同样的步骤,对组装有PDDA层的ITO玻璃进行PSS组装。完成后,可制得一层(PDDA/PSS)自组装层。重复上述的过程15次,可制备出带有(PDDA/PSS)15多层自组装膜的ITO玻璃。最后用氮气封装在培养皿中待用。
(3)将事先准备好的ITO玻璃片放在匀胶机的转盘上,然后在硅片的中心200μL的PDMS,通过匀胶机将光刻胶均匀地铺满整个玻璃片表面。将打好孔的芯片在上述玻璃片上粘取PDMS,然后与ITO玻璃的导电面粘接在一起。
(4)准备好电化学工作站,采用三电极体系,表面带有(PDDA/PSS)15静电自组装层的ITO玻璃为工作电极,铂片电极为对电极,Ag/AgCl电极为参比电极。将NaNO3(0.2mol/L)和AgNO3(0.8mg/ml)混合液注入微流控通道中,采用计时电流法,固定沉积电压为-500mV,采用1000s的时间,进行纳米银沉积。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (1)

1.一种在微流控孔道中沉积纳米银的方法,其特征在于,包括以下步骤:
S1.将PDMS单体和引发体按10:1的质量比制备成微流控芯片:
(1)将PDMS单体和引发体按10:1的质量比倒入烧杯中,用玻璃棒搅拌5分钟后倒进装有硅片的培养皿中;
(2)将培养皿放于浓缩干燥器中,用隔膜真空泵抽气1.5小时以除去PDMS中的气泡,然后置于80℃的真空干燥箱固化1小时;
(3)待其自然冷却后将PDMS从硅片模板上轻轻剥离,用切割机切成小块,再用手动芯片打孔机在相应部位打孔制备成微流控芯片,以备实验使用;
S2.ITO玻璃经臭氧清洗,使其表面附带大量负电荷;
S3.将经过臭氧处理后的ITO玻璃放入浓度为1mg/mLPDDA溶液中与PSS组装,制备出带有(PDDA/PSS)n多层自组装膜的ITO玻璃,n=6;
步骤S2、S3的具体步骤是:
(4)用无水乙醇超声清洗ITO玻璃,再置于紫外臭氧清洗机中30分钟,然后将清洗好的ITO的导电面朝上放置,放入1mg/mL的PDDA溶液中浸泡5min,取出后,使用蒸馏水少量多次进行清洗,然后使用氮气吹干;
(5)对组装有PDDA层的ITO玻璃进行PSS组装,完成后,可制得一层(PDDA/PSS)自组装膜,重复上述的过程6次,可制备出带有(PDDA/PSS)6多层自组装膜的ITO玻璃;
(6)最后用氮气封装在培养皿中待用;
S4.在匀胶机中将光刻胶均匀地铺在S3处理过的ITO玻璃上,将PDMS芯片与ITO玻璃的导电面封接在一起;
步骤S4的具体步骤是:
(7)将事先准备好的ITO玻璃放在匀胶机的转盘上,然后在硅片的中心加入200μL的PDMS,通过匀胶机将光刻胶均匀地铺满整个ITO玻璃表面;
(8)在上述ITO玻璃上将打好孔的微流控芯片粘取PDMS,然后与ITO玻璃的导电面粘接在一起;
S5.将表面带有(PDDA/PSS)6静电自组装膜的ITO玻璃作为工作电极,铂片电极为对电极,Ag/AgCl电极为参比电极,采用三电极体系,将NaNO3和AgNO3的混合液注入微流控孔道中,采用计时电流法进行纳米银沉积,其中固定沉积电压为1~-1000mV,时间为1~3200s,NaNO3浓度为0.0001~1mol/L,AgNO3浓度为0.0001~10mg/ml;带有(PDDA/PSS)6静电自组装膜的ITO玻璃进行纳米银沉积,纳米银在微流控孔道中沉积。
CN201610562990.7A 2016-07-15 2016-07-15 一种在微流控孔道中沉积纳米银的方法 Active CN106198660B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610562990.7A CN106198660B (zh) 2016-07-15 2016-07-15 一种在微流控孔道中沉积纳米银的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610562990.7A CN106198660B (zh) 2016-07-15 2016-07-15 一种在微流控孔道中沉积纳米银的方法

Publications (2)

Publication Number Publication Date
CN106198660A CN106198660A (zh) 2016-12-07
CN106198660B true CN106198660B (zh) 2019-12-03

Family

ID=57475972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610562990.7A Active CN106198660B (zh) 2016-07-15 2016-07-15 一种在微流控孔道中沉积纳米银的方法

Country Status (1)

Country Link
CN (1) CN106198660B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107543855A (zh) * 2017-08-30 2018-01-05 大连大学 一种基于树枝状纳米银结构的柔性葡萄糖电化学传感器
CN107389775B (zh) * 2017-08-30 2020-06-02 大连大学 一种基于树枝状纳米银结构的柔性l-苯丙氨酸电化学传感器
CN108181363A (zh) * 2017-08-30 2018-06-19 大连大学 一种采用电化学沉积法制备的基于树枝状纳米银结构的柔性电极
CN107843633B (zh) * 2017-11-03 2020-05-19 大连大学 一种可用于铜离子测定的柔性电极及其测定方法
CN108152348B (zh) * 2017-12-22 2020-05-19 大连大学 一种可重复性使用基于PDMS的微型软体Ag/AgCl电极的制备方法及应用
CN108195911B (zh) * 2017-12-22 2020-05-19 大连大学 一种可重复性使用基于PDMS的Ag/AgCl微电极的制备方法和应用
CN108837778B (zh) * 2018-06-05 2020-09-15 中南大学 一种制备核壳结构载药纳米粒的方法
CN109298060B (zh) * 2018-10-18 2021-03-26 大连大学 一种基于ito的羧基化多壁碳纳米管修饰电极的制备及应用该电极测定尿酸的方法
CN111618313B (zh) * 2020-05-14 2022-12-13 西安石油大学 一种基于微流控技术制备银纳米粒子的方法

Also Published As

Publication number Publication date
CN106198660A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN106198660B (zh) 一种在微流控孔道中沉积纳米银的方法
CN106198659B (zh) 一种在微流控孔道中沉积纳米金的方法
Sulciute et al. ZnO nanostructures application in electrochemistry: influence of morphology
Kim et al. Low-voltage-driven sensors based on ZnO nanowires for room-temperature detection of NO2 and CO gases
Seo et al. Guided transport of water droplets on superhydrophobic–hydrophilic patterned Si nanowires
Miao et al. Self-assembled monolayer of metal oxide nanosheet and structure and gas-sensing property relationship
Hu et al. Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes
Ping et al. Evaluation of trace heavy metal levels in soil samples using an ionic liquid modified carbon paste electrode
Schondelmaier et al. Orientation and self-assembly of hydrophobic fluoroalkylsilanes
Guo et al. ZnO/CuO hetero-hierarchical nanotrees array: hydrothermal preparation and self-cleaning properties
Jenkins et al. Pulsed plasma deposited maleic anhydride thin films as supports for lipid bilayers
CN101949946B (zh) 一种三电极体系光电化学微流控检测芯片的制作方法
Wu et al. Thermal/plasma-driven reversible wettability switching of a bare gold film on a poly (dimethylsiloxane) surface by electroless plating
CN109894162A (zh) 一种基于pedot:pss电化学晶体管的微流控芯片及其制备方法
CN106556677B (zh) 一种三维多孔石墨烯超薄膜气体传感器及其制备方法
CN105445346A (zh) 一种基于金/氧化锌复合材料的光电化学适配体传感器的构建方法和对双酚a的检测方法
Kim et al. Surface and internal reactions of ZnO nanowires: etching and bulk defect passivation by H atoms
Tang et al. Effect of surface pre-charging and electric field on the contact electrification between liquid and solid
Zhang et al. Laser-engineered superhydrophobic polydimethylsiloxane for highly efficient water manipulation
CN102627409A (zh) 一种制备碳纳米管薄膜的方法
Shen et al. Adjustable Synthesis of Ni-Based Metal–Organic Framework Membranes and Their Field-Effect Transistor Sensors for Mercury Detection
Si et al. Polydopamine-induced modification on the highly charged surface of asymmetric nanofluidics: a strategy for adjustable ion current rectification properties
Kim et al. Electrosprayed Thylakoid–Alginate Film on a Micro-Pillar Electrode for Scalable Photosynthetic Energy Harvesting
Huang et al. Ultrathin self-assembled diphenylalanine nanosheets through a gold-stabilized strategy for high-efficiency adsorption/desorption/ionization
Rahman et al. Label-free DNA hybridization detection by poly (thionine)-gold nanocomposite on indium tin oxide electrode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240617

Address after: No. 5-4-1, Building 27-5, Shengsheng 3rd Road, Dalian Economic and Technological Development Zone, Liaoning Province, 116600 (4)

Patentee after: Counterclockwise Chip Technology (Dalian) Co.,Ltd.

Country or region after: China

Address before: 116622 No. 10, Xuefu Avenue, Dalian economic and Technological Development Zone, Liaoning

Patentee before: DALIAN University

Country or region before: China

TR01 Transfer of patent right