CN109298060B - 一种基于ito的羧基化多壁碳纳米管修饰电极的制备及应用该电极测定尿酸的方法 - Google Patents

一种基于ito的羧基化多壁碳纳米管修饰电极的制备及应用该电极测定尿酸的方法 Download PDF

Info

Publication number
CN109298060B
CN109298060B CN201811215310.XA CN201811215310A CN109298060B CN 109298060 B CN109298060 B CN 109298060B CN 201811215310 A CN201811215310 A CN 201811215310A CN 109298060 B CN109298060 B CN 109298060B
Authority
CN
China
Prior art keywords
electrode
ito
carbon nanotube
uric acid
ito glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811215310.XA
Other languages
English (en)
Other versions
CN109298060A (zh
Inventor
孙晶
甄雪
马龙飞
杨海波
郎明非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN201811215310.XA priority Critical patent/CN109298060B/zh
Publication of CN109298060A publication Critical patent/CN109298060A/zh
Application granted granted Critical
Publication of CN109298060B publication Critical patent/CN109298060B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及电化学分析技术领域,具体涉及一种基于ITO的羧基化多壁碳纳米管修饰电极的制备及应用该电极测定尿酸的方法。由自制电极为工作电极、Ag/AgCl电极为参比电极、铂丝为辅助电极及电化学工作站组成的电化学测定系统。自制电极以ITO玻璃为基底,用PDDA与PSS交替在ITO表面自组装成膜,在自组装层上均匀滴涂一层羧基化多壁碳纳米管。本发明的目的在于应用基于ITO的羧基化多壁碳纳米管修饰电极,建立一种测定尿酸的方法。即采用差分脉冲伏安法进行电测学测定、标准曲线法进行定量分析。该方法简单、测定成本低,对测定尿酸具有较高准确度、精密度,在尿酸检测领域有较高的应用价值。

Description

一种基于ITO的羧基化多壁碳纳米管修饰电极的制备及应用 该电极测定尿酸的方法
技术领域
本发明涉及电化学分析技术领域,具体涉及一种可用于尿酸测定的电极。
背景技术
生物分子尿酸是人体内嘌呤代谢的最终代谢产物。正常情况下,体内的尿酸大约有1200毫克并处于平衡状态。体内尿酸浓度偏高会引起痛风、心血管疾病、肾病等。尿酸目前的主要分析方法有高效液相色谱(HPLC)、传感器法、酶法、电化学分析法和光度法等,光谱法易受样品中存在的其它发色团的影响;色谱法样品处理过程过于繁琐;酶方法虽然选择性好,但价格昂贵,成本高,限制了它的使用范围。
发明内容
为弥补现有技术的不足,本发明提供一种简便、实用、低廉的快速检测尿酸的电极的制备方法和应用。
本发明采用的技术方案是:
(1)电极的制备:在清洁的ITO玻璃表面高分子自组装,涂覆羧基化多壁碳纳米管,制备基于ITO的羧基化多壁碳纳米管修饰电极;
(2)实际样品的测定:工作电极为基于ITO的羧基化多壁碳纳米管修饰电极,参比电极为Ag/AgCl电极,辅助电极为铂丝;将该三电极系统置于尿酸待测液中,测定浓度为4μmol/L~80μmol/L范围内的尿酸待测液的差分脉冲伏安曲线,用标准曲线法进行样品的定量分析。
由自制电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极以及电化学工作站组成的电化学系统;自制电极以ITO玻璃为基底,用聚二丙烯基二甲基氯化铵(PDDA)与聚苯乙烯磺酸钠(PSS)交替在ITO玻璃表面自组装成膜,在自组装层上均匀滴涂一层羧基化多壁碳纳米管。
所述步骤(2)中电化学系统以pH为6.8、以浓度为0.05mol/L柠檬酸-柠檬酸钠、酒石酸-酒石酸钠、醋酸-醋酸钠或磷酸二氢钠-磷酸氢二钠作为支持电解质。于-0.1V~0.8V电位范围记录浓度为4μmol/L~80μmol/L范围内的尿酸待测液的差分脉冲伏安曲线。
更优选的,以0.05mol/L的磷酸二氢钠-磷酸氢二钠为支持电解质。
本发明所采用的电化学法具有高灵敏度、低成本等优点,多壁碳纳米管以其优越的物理和化学性能而在电化学领域广泛应用,碳纳米管的表面效应,使其表面原子活性高,比表面积大,且负电荷的碳纳米管表面与带正电荷的UA存在较强的静电吸引力,在电催化和分析化学领域中具有很好的应用前景,用它来修饰电极将使电极的真实表面积大大提高,为电化学反应提供充足的反应场所。本发明利用ITO玻璃良好的导电性,并结合羧基化多壁碳纳米管对尿酸的选择性催化作用,制得一种对尿酸具有良好电化学响应的电极。通过优化支持电解质种类、pH等参数,得到对尿酸具有较高的灵敏度、准确度和精密度的电化学分析方法,并把该方法应用于实际样品测定。该方法简单、测定成本低,对测定尿酸具有较高准确度、精密度,在尿酸检测领域有较高的应用价值。
附图说明
图1为基于ITO玻璃的羧基化多壁碳纳米管修饰电极的平面结构示意图。其中,图1中,1、ITO玻璃基片,2、PDDA-PSS高分子自组装层,3、羧基化多壁碳纳米管层。
图2为支持电解质溶液种类的优化实验图。
图3为pH值的优化曲线。
图4为不同浓度尿酸溶液的标准曲线。
具体实施方式
下面通过具体实施例详述本发明,但不限制本发明的保护范围。如无特殊说明,本发明所采用的实验方法均为常规方法,所用实验器材、材料、试剂等均可从化学公司购买。
实施例1
下述实施例基于ITO的羧基化多壁碳纳米管修饰电极的制备方法为:
ITO玻璃表面的清洁。将ITO玻璃切割成1cm×4cm,在去离子水中超声清洗30min,然后在丙酮中超声清洗30min,最后在无水乙醇中超声清洗30min。氮气吹干备用。
ITO玻璃表面高分子层自组装,具体步骤如下:
(1)将ITO玻璃导电层放入紫外臭氧清洗机中进行表面羟基化30min。
(2)将ITO玻璃放入1mg/mL PDDA溶液中浸泡3min,拿出后用去离子水清洗表面多余溶液,氮气吹干,然后放入1mg/mLPSS溶液中浸泡3min,拿出后用去离子水清洗表面多余溶液,氮气吹干。此为一层完整的自组装层。该自组装层共组装6层。
(3)基于ITO的羧基化多壁碳纳米管修饰电极的制备。在自组装好的ITO玻璃导电层滴涂1mg/mL羧基化多壁碳纳米管乙醇溶液20μL,晾干。涂3次。晾干备用。
由自制电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极以及电化学工作站组成的电化学系统;自制电极以ITO玻璃为基底,用PDDA与PSS交替在ITO玻璃表面自组装成膜,在自组装层上均匀滴涂一层羧基化多壁碳纳米管。如图1所示为基于ITO玻璃的羧基化多壁碳纳米管修饰电极的平面结构示意图。
如图2所示,探究了以柠檬酸-柠檬酸钠、酒石酸-酒石酸钠、醋酸-醋酸钠和磷酸二氢钠-磷酸氢二钠(浓度为0.05mol/L,并用氢氧化钠调节pH值为6.82)作为支持电解质时40μmol/L尿酸溶液的差分脉冲伏安曲线。结果表明,在磷酸二氢钠-磷酸氢二钠溶液中尿酸溶液的峰电流最大。
如图3所示为pH值的优化曲线。当pH值为6.8时,差分脉冲伏安曲线峰电流最高。
利用本发明电极检测浓度范围为4μmol/L~80μmol/L的尿酸溶液,在最佳的实验条件下,记录电位在-0.1V~0.8V范围内的差分脉冲伏安曲线,并分析曲线峰电流值。利用origin软件,做出标准曲线,该曲线方程为:y=2.26741×10-5+9.81313×10-7x,相关系数为0.99495。
实施例2
样品:55μmol/L尿酸标准溶液。
测定方法:
采用实施例1制备的三电极体系:基于ITO的羧基化多壁碳纳米管修饰电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极,以pH为6.8的0.05mol/L磷酸二氢钠-磷酸氢二钠溶液为支持电解质,采用差分脉冲伏安法进行电测学测定,记录尿酸在-0.1~0.8V的区间内的差分脉冲伏安曲线,采用标准曲线法进行定量分析。
实验平行测定10次,得到氧化峰峰电流平均值为7.54×10-5A,代入线性回归方程y=2.26741×10-5+9.81313×10-7x计算出所测溶液中尿酸的的平均含量为53.77μmol/L。标准值(55μmol/L)与测定值的相对误差:2.2%;10次平行测定的相对标准偏差RSD值为2.69%。
实施例3
样品:20μmol/L尿酸标准溶液。
测定方法:
采用三电极体系:基于ITO的羧基化多壁碳纳米管修饰电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极,以pH为6.8的0.05mol/L磷酸二氢钠-磷酸氢二钠溶液为支持电解质,采用差分脉冲伏安法进行电测学测定,记录尿酸在-0.1~0.8V的区间内的差分脉冲伏安曲线,采用标准曲线法进行定量分析。
实验平行测定10次,得到氧化峰峰电流平均值为4.378×10-5A,代入线性回归方程y=2.26741×10-5+9.81313×10-7x计算出所测溶液中尿酸的的平均含量为21.50μmol/L。标准值(20μmol/L)与测定值的相对误差:7.5%;10次平行测定的相对标准偏差RSD值为1.37%。
实施例4
样品:5μmol/L尿酸标准溶液。
测定方法:
采用三电极体系:基于ITO的羧基化多壁碳纳米管修饰电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极,以pH为6.8的0.05mol/L磷酸二氢钠-磷酸氢二钠溶液为支持电解质,采用差分脉冲伏安法进行电测学测定,记录尿酸在-0.1~0.8V的区间内的差分脉冲伏安曲线,采用标准曲线法进行定量分析。
实验平行测定10次,得到氧化峰峰电流平均值为2.769×10-5A,代入线性回归方程y=2.26741×10-5+9.81313×10-7x计算出所测溶液中尿酸的的平均含量为5.11μmol/L。标准值(5μmol/L)与测定值的相对误差:2.2%;10次平行测定的相对标准偏差RSD值为2.88%
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (1)

1.一种基于ITO的羧基化多壁碳纳米管修饰电极测定尿酸的方法,其特征在于,以ITO玻璃为基底,用聚二丙烯基二甲基氯化铵PDDA 与聚苯乙烯磺酸钠PSS 交替在ITO玻璃表面自组装成膜,在自组装层上均匀滴涂一层羧基化多壁碳纳米管,得到基于ITO的羧基化多壁碳纳米管修饰电极;包括以下步骤:
(1)电极的制备:ITO玻璃表面的清洁,将ITO玻璃切割成1cm×4cm,在去离子水中超声清洗30min,然后在丙酮中超声清洗30min,最后在无水乙醇中超声清洗30min,氮气吹干备用;
ITO玻璃表面高分子层自组装,具体步骤如下:
(1.1)将ITO玻璃导电层放入紫外臭氧清洗机中进行表面羟基化30min;
(1.2)将ITO玻璃放入1mg/mL PDDA溶液中浸泡3min,拿出后用去离子水清洗表面多余溶液,氮气吹干,然后放入1mg/mL PSS溶液中浸泡3min,拿出后用去离子水清洗表面多余溶液,氮气吹干,此为一层完整的自组装层,该自组装层共组装6层;
(1.3)基于ITO的羧基化多壁碳纳米管修饰电极的制备,在自组装好的ITO玻璃导电层滴涂1mg/mL羧基化多壁碳纳米管乙醇溶液20μL,晾干,涂3次,晾干备用,得到基于ITO的羧基化多壁碳纳米管修饰电极;
(2)实际样品的测定:工作电极为基于ITO的羧基化多壁碳纳米管修饰电极,参比电极为Ag/AgCl电极,辅助电极为铂丝,以pH为6.8、以浓度为0.05mol/L磷酸二氢钠-磷酸氢二钠作为支持电解质;将该三电极系统置于尿酸待测液中,于-0.1V~0.8V电位范围测定浓度为4μmol/L~80μmol/L范围内的尿酸待测液的差分脉冲伏安曲线,用标准曲线法进行样品的定量分析,该曲线方程为:y=2.26741×10-5+9.81313×10-7x,相关系数为0.99495。
CN201811215310.XA 2018-10-18 2018-10-18 一种基于ito的羧基化多壁碳纳米管修饰电极的制备及应用该电极测定尿酸的方法 Active CN109298060B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811215310.XA CN109298060B (zh) 2018-10-18 2018-10-18 一种基于ito的羧基化多壁碳纳米管修饰电极的制备及应用该电极测定尿酸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811215310.XA CN109298060B (zh) 2018-10-18 2018-10-18 一种基于ito的羧基化多壁碳纳米管修饰电极的制备及应用该电极测定尿酸的方法

Publications (2)

Publication Number Publication Date
CN109298060A CN109298060A (zh) 2019-02-01
CN109298060B true CN109298060B (zh) 2021-03-26

Family

ID=65157272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811215310.XA Active CN109298060B (zh) 2018-10-18 2018-10-18 一种基于ito的羧基化多壁碳纳米管修饰电极的制备及应用该电极测定尿酸的方法

Country Status (1)

Country Link
CN (1) CN109298060B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112979180A (zh) * 2019-12-16 2021-06-18 大连大学 一种ito玻璃的处理方法及其应用
CN110988072B (zh) * 2019-12-20 2021-12-24 肇庆学院 一种单壁碳纳米角@羟基化多壁碳纳米管电化学传感器及其在检测烯啶虫胺的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353712B (zh) * 2011-06-30 2013-09-04 淮海工学院 一种用于检测尿酸的修饰电极的制备与测定方法
CN106198660B (zh) * 2016-07-15 2019-12-03 大连大学 一种在微流控孔道中沉积纳米银的方法

Also Published As

Publication number Publication date
CN109298060A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
Sun et al. Simultaneous determination of epinephrine and ascorbic acid at the electrochemical sensor of triazole SAM modified gold electrode
Stortini et al. Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor
Xue et al. Amperometric detection of dopamine in human serumby electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers
Goyal et al. Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene‐C60 coated gold electrode
Mousavi et al. Poly (3, 4-ethylenedioxythiophene)(PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes
Chen et al. A novel molecularly imprinted polymer thin film as biosensor for uric acid
Cheemalapati et al. Enhanced electrocatalytic oxidation of isoniazid at electrochemically modified rhodium electrode for biological and pharmaceutical analysis
US20200158678A1 (en) Nanostructured graphene-modified graphite pencil electrode system for simultaneous detection of analytes
Brahman et al. Fullerene–C60–MWCNT composite film based ultrasensitive electrochemical sensing platform for the trace analysis of pyruvic acid in biological fluids
Wang et al. Simple self-referenced ratiometric electrochemical sensor for dopamine detection using electrochemically pretreated glassy carbon electrode modified by acid-treated multiwalled carbon nanotube
Song et al. Molecularly imprinted polymer functionalized nanoporous Au-Ag alloy microrod: Novel supportless electrochemical platform for ultrasensitive and selective sensing of metronidazole
Wu et al. Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode
Haji-Hashemi et al. Sensitive electrochemical immunosensor for citrus bacterial canker disease detection using fast Fourier transformation square-wave voltammetry method
Li et al. Electrodeposition of gold–platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker
US9771609B2 (en) Electrode for uric acid and method of producing the same
Trevizan et al. Development of a molecularly imprinted polymer for uric acid sensing based on a conductive azopolymer: Unusual approaches using electrochemical impedance/capacitance spectroscopy without a soluble redox probe
Arvand et al. Facile one-pot electrochemical synthesis of zirconium oxide decorated poly (3, 4-ethylenedioxythiophene) nanocomposite for the electrocatalytic oxidation and detection of progesterone
CN109298060B (zh) 一种基于ito的羧基化多壁碳纳米管修饰电极的制备及应用该电极测定尿酸的方法
Han et al. Direct determination of creatinine based on poly (ethyleneimine)/phosphotungstic acid multilayer modified electrode
Li et al. Electrochemical behavior and voltammetric determination of theophylline at a glassy carbon electrode modified with graphene/nafion
CN103743804A (zh) 一种基于纳米粒子吸附的有机磷电化学生物传感器
Wu et al. Nanohybrid sensor for simple, cheap, and sensitive electrochemical recognition and detection of methylglyoxal as chemical markers
Kong et al. Electrochemical investigation and determination of procaterol hydrochloride on poly (glutamic acid)/carboxyl functionalized multiwalled carbon nanotubes/polyvinyl alcohol modified glassy carbon electrode
Hegde et al. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes
Wang et al. Glucose in human serum determined by capillary electrophoresis with glucose micro-biosensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant