CN108195911B - 一种可重复性使用基于PDMS的Ag/AgCl微电极的制备方法和应用 - Google Patents

一种可重复性使用基于PDMS的Ag/AgCl微电极的制备方法和应用 Download PDF

Info

Publication number
CN108195911B
CN108195911B CN201711402379.9A CN201711402379A CN108195911B CN 108195911 B CN108195911 B CN 108195911B CN 201711402379 A CN201711402379 A CN 201711402379A CN 108195911 B CN108195911 B CN 108195911B
Authority
CN
China
Prior art keywords
electrode
pdms
agcl
layer
ito glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711402379.9A
Other languages
English (en)
Other versions
CN108195911A (zh
Inventor
孙晶
王清翔
申贵隽
郎明非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN201711402379.9A priority Critical patent/CN108195911B/zh
Publication of CN108195911A publication Critical patent/CN108195911A/zh
Application granted granted Critical
Publication of CN108195911B publication Critical patent/CN108195911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种可重复性使用基于PDMS的Ag/AgCl微电极的制备方法和应用。本发明首次以PDMS作为参考电极的基底,采用树枝状结构纳米银作为电极的工作层,用化学氧化法制备Ag/AgCl电极。以PDMS作为参考电极基底,具有低成本,可回收再利用等优点,且PDMS是一种柔性无毒材料,使电极具有生物相容性。在PDMS柔性基底上嵌附一层树枝状结构纳米银作为电极的工作层,使电极具有极好的工作稳定性(△E<1mv)以及灵敏度t≈59.32s,电极电位要低于传统商业电极约40.95%,极大的拓宽了参比电极的测量区间。本发明制备电极可持续工作1h以上。本发明制备方法简单,易操作,获得的电极可广泛应用于微流道系统,该电极可用于开发生物体传感器,有很好的应用前景。

Description

一种可重复性使用基于PDMS的Ag/AgCl微电极的制备方法和 应用
技术领域
本发明涉及电化学技术领域,具体涉及一种可重复使用基于PDMS的Ag/AgCl微电极的制备方法和应用。
背景技术
在近期电化学的研究中,微型参比电极的研究一直备受关注。Ag/AgCl电极是应用最广的参比电极之一,由于其具有工作稳定,制备工艺简单且无安全隐患等优点,将其运用在生物监测以及微流控检测中将具有重要意义。目前制备微型Ag/AgCl电极主要采用丝网印刷技术,使用PET作为电极基材,银油墨作为导体浆料,将银浆印刷到基材之上制作电极。该方法虽然操作简单可批量化工业生产,但电极表面状态不易控制,批次间电极性能差异大工作不稳定。并且该技术难以设计、调控电极尺寸及形状;浪费大量的材料。由于电极基材PET易受热变形,且生物相容性差无法用于高温及生物体内监测。之后silva[1]研究了喷墨打印Ag/AgCl电极,该方法的优势在于电极形状可自行设计及调控尺寸,且工作稳定性优异并可在多种基材上打印,节约成本等等。但喷墨打印Ag电极在氧化后电极表面Ag/AgCl层极易脱落,导致可持续稳定工作时间仅仅在30分钟以内。而Rius-Ruiz[2]制备碳纳米管修饰的Ag/AgCl参比电极在3min后才可稳定工作,灵敏度低。
[1]Silva,D.;Miserere,S.;Kubota,T.,Simple On-Plastic/Paper Inkjet-PrintedSolid-StateAg/AgCl Pseudoreference Electrode,Anal.Chem.2014,86,10531-10534
[2]F.XavierRius-Ruiz,DiegoBejarano-Nosas,Blondeau,P.,Riu,J.,Disposable Planar Reference Electrode Based on Carbon Nanotubes andPolyacrylate Membrane,Anal.Chem.2011,83,5783–5788.
发明内容
本发明的目的在于制备一种可重复使用的微型Ag/AgCl电极。本发明首次以PDMS作为参考电极的基底,采用树枝状结构纳米银作为电极的工作层,用化学氧化法制备Ag/AgCl电极。
为实现上述目的,本发明采用的技术方案为:通过电化学沉积的方法在经过修饰的氧化铟锡(ITO)玻璃上沉积出一层具有树枝状形貌结构的纳米银,并将这层纳米银作为导电层固化在PDMS柔性基底上,制备出具有树枝状结构纳米银的新型柔性电极,然后用化学氧化法制备Ag/AgCl电极。
本发明另一个目的是请求保护上述Ag/AgCl电极的应用,将玻碳电极为工作电极,Ag/AgCl为参比电极,铂丝为辅助电极组成的三电极系统。将该三电极系统置于KCl(10- 4mol/L)溶液中工作。
本发明首次以PDMS作为参考电极基底,具有低成本,可回收再利用等优点,且PDMS是一种柔性无毒材料,可使电极具有极佳的生物相容性。在PDMS柔性基底上嵌附一层树枝状结构纳米银作为电极的工作层,使电极具有极好的工作稳定性(△E<1mv)以及灵敏度t≈59.32s(t为电位达到最终电位的95%所用时间),电极电位要低于传统商业电极约40.95%,极大的拓宽了参比电极的测量区间。本发明制备电极可持续工作1h以上。本发明制备方法简单,易操作,获得的电极可广泛应用于微流道系统,该电极可用于开发生物体传感器,有很好的应用前景。
附图说明
图1为未氧化Ag电极表层树枝状纳米银结构;
图2沉积不同时间的电极工作对比计时电位曲线测试图,其中a为沉积1600s纳米银;b沉积2400s纳米银;
图3沉积不同时间的电极工作对比阻抗曲线测试图,其中a为沉积1600s纳米银;b沉积2400s纳米银;
图4沉积不同时间的电极工作对比开路电位时间曲线测试图,其中a为沉积1600s纳米银;b沉积2400s纳米银;
图5为Ag/AgCl参比电极工作可持续时间计时电位曲线图;
图6自制参比电极示意图。
具体实施方式
下面结合附图和实施例对本发明的技术方案详细描述。其中银纳米线购于南京先丰纳米材料科技有限公司。
实施例1
(1)将ITO玻璃分别用去离子水、丙酮和乙醇超声清洗20~40分钟。清洗后放入臭氧清洗机里进行表面羟基化。然后再将ITO玻璃在1mg/mL的PDDA(聚二烯丙基二甲基氯化铵)和1mg/mL的PSS(聚苯乙烯磺酸钠)溶液中进行层层自组装。自组装层数为6层。
(2)在组装好的ITO玻璃上采用计时电流方法进行电化学沉积银,经过电化学沉积后,一层白色的树枝状纳米银沉积在ITO玻璃上,称其为ITO-Ag。电化学沉积所用电解液为浓度0.01mol/LAgNO3和浓度0.05mol/LNaNO3混合溶液,参比电极为饱和硫酸亚汞电极,对电极为铂丝,工作电极为组装好的ITO玻璃。电化学沉积时间为400s,电化学沉积设定的电位范围为(-0.6)~(-0.3)V。
(3)将ITO-Ag浸入到含固化剂的PDMS溶液中,PDMS与固化剂(如硅烷偶联剂)的体积比为10:1,于80℃加热固化6小时,将固化好的PDMS柔性基底从ITO-Ag上揭下,白色树枝状纳米银附着在PDMS柔性基底上,即为基于树枝状纳米银结构的柔性电极PDMS-Ag。
(4)将柔性电极PDMS-Ag浸泡在NaClO(20mg/mol)中,最后用去离子水冲洗后60℃烘干2h便得到Ag/AgCl参比电极。
实施例2
采用实施例1的方法制备Ag/AgCl参比电极,与实施例1的区别在于,纳米银的沉积时间为1600s。
实施例3
采用实施例1的方法制备Ag/AgCl参比电极,与实施例1的区别在于,纳米银的沉积时间为2400s。
实施例4
玻碳电极的预处理:将玻碳电极打磨活化,使用粒径不同的Al203粉末,由大至小,放置在鹿皮之上滴加少于去离子水打磨电极。
三电极系统进行电极测试:
以实施例2和3制备的Ag/AgCl电极分别作为参比电极,玻碳电极为工作电极、铂丝为辅助电极组成两个三电极系统,进行性能对比。
将三电极系统置于饱和KCl溶液中,在三电极系统下,采用计时电位法,设定阴极电流为2μA,阳极电流为2μA,阴极时间为2s,阳极时间为600s,初始极性为阳极,数据储存间隔为0.01s,段数为2,电极极性切换方式为时间。计时电位曲线见附图2。沉积2400s的计时电位曲线最佳,由于其电位高于沉积1600s的电位。
实施例5
以实施例2和3制备的Ag/AgCl电极分别作为参比电极,组成两个三电极系统,进行性能对比。
将三电极系统置于KCl(10-4mol/L)溶液中,在三电极系统下,采用阻抗法,设定测试时间为600s,上限频率为10Hz,下限频率为100000Hz。阻抗曲线见附图3。可以看出两种不同沉积时间电极并未有明显不同,但二者的低频区导电性能都十分优异,Z”仅在3000hom附近。
实施例6
以实施例2和3制备的Ag/AgCl电极分别作为参比电极,组成两个三电极系统,进行性能对比。
将三电极系统置于KCl(10-4mol/L)溶液中,在三电极系统下,采用开路电位法,设定测试时间为600s,上限电位为1v,下限电位为-1v。开路电位时间曲线见附图4可以看出两种不同沉积时间电极中2400s电位变化最小,沉积2400s电极电位变化为0.8mv,沉积1600s电极电位变化为2.4mv由图2至图4比较可得出沉积2400s电极性能最佳。
实施例7
三电极系统由玻碳电极为工作电极,实施例3制备的Ag/AgCl电极为参比电极,铂丝为辅助电极组成。
将三电极系统置于饱和KCl溶液中,在三电极系统下,采用计时电位法,设定阴极电流为2μA,阳极电流为2μA,阴极时间为2s,阳极时间为3600s,初始极性为阳极,数据储存间隔为0.01s,段数为2,电极极性切换方式为时间。计时电位曲线见附图5。由图5可知本发明制备Ag/AgCl微参比电极可持续工作1h以上。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (3)

1.一种可重复性使用基于PDMS的Ag / AgCl微电极的制备方法,其特征在于,通过电化学沉积的方法在经过自组装的ITO玻璃上沉积出一层具有树枝状形貌结构的纳米银,并将这层纳米银作为导电层固化在PDMS柔性基底上,然后用化学氧化法制备Ag/ AgCl电极;
ITO玻璃在组装之前需要进行清洗,清洗过程是先将ITO玻璃分别用去离子水、丙酮和乙醇超声清洗20~40分钟,然后将ITO玻璃放入臭氧清洗机里进行表面羟基化;然后再将ITO玻璃在1mg/mL的聚二烯丙基二甲基氯化铵PDDA和1mg/mL的聚苯乙烯磺酸钠PSS溶液中进行层层自组装,所述ITO玻璃自组装层数为6层;
在组装好的ITO玻璃上采用计时电流方法进行电化学沉积银,经过电化学沉积后,一层白色的树枝状纳米银沉积在ITO玻璃上,称其为ITO-Ag;电化学沉积所用电解液为浓度0.005~0.015mol/L AgNO3和浓度0.01~0.12 mol/LNaNO3混合溶液,参比电极为饱和硫酸亚汞电极,对电极为铂丝,工作电极为自组装的ITO玻璃;电化学沉积时间为2400s,电化学沉积设定的电位范围为(-0.6)~(-0.3)V;
纳米银固化在PDMS柔性基底的具体方法为:将ITO-Ag浸入到含固化剂硅烷偶联剂的PDMS溶液中,加热固化,将固化好的PDMS柔性基底从ITO-Ag上揭下,白色树枝状纳米银附着在PDMS柔性基底上,得到基于树枝状纳米银结构的柔性电极PDMS-Ag;PDMS与固化剂硅烷偶联剂的体积比为10:1;所述固化温度为50~100℃,固化时间为2~10小时;
所述化学氧化法制备Ag/ AgCl电极的具体方法为:将柔性电极PDMS-Ag浸泡在20mg/mL的NaClO中,最后用去离子水冲洗后60℃烘干2h便得到Ag / AgCl参比电极。
2.一种如权利要求1所述方法制备的Ag / AgCl电极的应用,其特征在于,将该Ag /AgCl电极作为参比电极,玻碳电极为工作电极,铂丝为辅助电极,组成三电极系统。
3.一种如权利要求1所述方法制备的Ag / AgCl电极在生物体传感器上的应用。
CN201711402379.9A 2017-12-22 2017-12-22 一种可重复性使用基于PDMS的Ag/AgCl微电极的制备方法和应用 Active CN108195911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711402379.9A CN108195911B (zh) 2017-12-22 2017-12-22 一种可重复性使用基于PDMS的Ag/AgCl微电极的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711402379.9A CN108195911B (zh) 2017-12-22 2017-12-22 一种可重复性使用基于PDMS的Ag/AgCl微电极的制备方法和应用

Publications (2)

Publication Number Publication Date
CN108195911A CN108195911A (zh) 2018-06-22
CN108195911B true CN108195911B (zh) 2020-05-19

Family

ID=62583602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711402379.9A Active CN108195911B (zh) 2017-12-22 2017-12-22 一种可重复性使用基于PDMS的Ag/AgCl微电极的制备方法和应用

Country Status (1)

Country Link
CN (1) CN108195911B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112979180A (zh) * 2019-12-16 2021-06-18 大连大学 一种ito玻璃的处理方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106066353A (zh) * 2016-06-14 2016-11-02 厦门乐钢材料科技有限公司 柔性阵列参比电极及应用其原位研究金属焊缝腐蚀的方法
CN106198660A (zh) * 2016-07-15 2016-12-07 大连大学 一种在微流控孔道中沉积纳米银的方法
CN107195386A (zh) * 2017-05-19 2017-09-22 大连大学 一种透明柔性导电材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8620398B2 (en) * 2008-06-02 2013-12-31 Abbott Diabetes Care Inc. Reference electrodes having an extended lifetime for use in long term amperometric sensors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106066353A (zh) * 2016-06-14 2016-11-02 厦门乐钢材料科技有限公司 柔性阵列参比电极及应用其原位研究金属焊缝腐蚀的方法
CN106198660A (zh) * 2016-07-15 2016-12-07 大连大学 一种在微流控孔道中沉积纳米银的方法
CN107195386A (zh) * 2017-05-19 2017-09-22 大连大学 一种透明柔性导电材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Highly Conductive and Stretchable Silver Nanowire Conductors;Feng Xu et.al;《ADVANCED MATERIALS》;20120712;第24卷;第5117-5118页,第5121页,图1 *

Also Published As

Publication number Publication date
CN108195911A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
Anusha et al. Simple fabrication of ZnO/Pt/chitosan electrode for enzymatic glucose biosensor
Ting et al. Gold nanoparticles decorated reduced graphene oxide for detecting the presence and cellular release of nitric oxide
Wang et al. Facile electrosynthesis of nickel hexacyanoferrate/poly (2, 6-diaminopyridine) hybrids as highly sensitive nitrite sensor
Ren et al. Glucose sensor based on porous Ni by using a graphene bottom layer combined with a Ni middle layer
Zhou et al. Electrodeposition of platinum on poly (glutamic acid) modified glassy carbon electrode for non-enzymatic amperometric glucose detection
Tsai et al. Ionic liquid assisted synthesis of nano Pd–Au particles and application for the detection of epinephrine, dopamine and uric acid
CN104698055B (zh) Dna与石墨烯有序组装在金电极表面的方法
Pajootan et al. Structural and electrochemical characterization of carbon electrode modified by multi-walled carbon nanotubes and surfactant
CN108152348B (zh) 一种可重复性使用基于PDMS的微型软体Ag/AgCl电极的制备方法及应用
Mazar et al. Development of novel glucose oxidase immobilization on graphene/gold nanoparticles/poly neutral red modified electrode
CN105675693A (zh) Pt纳米颗粒修饰的Cu纳米线阵列电极的制备方法及在无酶葡萄糖传感器的应用
Shen et al. Preparation of high-quality palladium nanocubes heavily deposited on nitrogen-doped graphene nanocomposites and their application for enhanced electrochemical sensing
Pourbeyram Electrocatalytic determination of H2O2 on the electrode modified by LBL assembly of polyoxometalates via zirconium ion glue
CN109856204A (zh) 一种基于电化学原位石墨烯合成的碳基电极修饰方法
He et al. CVD graphene incorporating polymerized l-cysteine as an electrochemical sensing platform for simultaneous determination of dopamine and ascorbic acid
Li et al. Facile electrocatalytic redox of hemoglobin by flower-like gold nanoparticles on boron-doped diamond surface
Peng et al. Co3O4-chitosan/biomass-derived porous carbon molecularly imprinted polymer integrated electrode for selective detection of glucose
Alizadeh et al. An outstandingly sensitive enzyme-free glucose sensor prepared by co-deposition of nano-sized cupric oxide and multi-walled carbon nanotubes on glassy carbon electrode
CN108195911B (zh) 一种可重复性使用基于PDMS的Ag/AgCl微电极的制备方法和应用
Subbiah et al. Ferricyanide/reduced graphene oxide as electron mediator for the electrochemical detection of methanol in canned citrus sinensis and citrus limetta
Lee et al. Facile self-assembled Prussian blue-polypyrrole nanocomposites on glassy carbon: Comparative synthesis methods and its electrocatalytic reduction towards H2O2
Karczmarczyk et al. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles
Ramesh et al. Electrophoretic deposition of platinum nanoparticles using ethanol-water mixtures significantly reduces neural electrode impedance
CN107313093A (zh) 一种基于导电基材的纳米结构聚吡咯/生物素复合材料及制备与应用
CN107543855A (zh) 一种基于树枝状纳米银结构的柔性葡萄糖电化学传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant