CN106188604A - 一种太阳能电池背膜的制备方法 - Google Patents

一种太阳能电池背膜的制备方法 Download PDF

Info

Publication number
CN106188604A
CN106188604A CN201610635948.3A CN201610635948A CN106188604A CN 106188604 A CN106188604 A CN 106188604A CN 201610635948 A CN201610635948 A CN 201610635948A CN 106188604 A CN106188604 A CN 106188604A
Authority
CN
China
Prior art keywords
film
solar battery
titanium dioxide
battery back
flask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610635948.3A
Other languages
English (en)
Inventor
江黛玉
盛海丰
王统军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo High Tech Zone Austen Environmental Technology Co Ltd
Original Assignee
Ningbo High Tech Zone Austen Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo High Tech Zone Austen Environmental Technology Co Ltd filed Critical Ningbo High Tech Zone Austen Environmental Technology Co Ltd
Priority to CN201610635948.3A priority Critical patent/CN106188604A/zh
Publication of CN106188604A publication Critical patent/CN106188604A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/14Homopolymers or copolymers of vinyl fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种太阳能电池背膜的制备方法,属于太阳能电池背膜制备技术领域。本发明将纳米二氧化钛粉末利用异丁基三乙氧基硅烷对其改性,得改性纳米二氧化钛溶胶,并添加聚氟乙烯和N,N‑二甲基甲酰胺的混合溶液中,在玻璃板流延成膜得聚氟乙烯膜,将膜表面清洗后用等离子体处理法在膜表面接枝丙烯酸单体,干燥后制得太阳能电池背膜的方法。本发明的有益效果是:本发明利用等离子体处理法在聚氟乙烯膜表面接枝亲水性丙烯酸单体,有效解决了聚氟乙烯膜的表面能极低,亲水性差问题,使接触角小于70°,在膜中添加异丁基三乙氧基硅烷改性纳米二氧化钛有效提高了膜的耐湿热性、耐紫外线及抗老化性能。

Description

一种太阳能电池背膜的制备方法
技术领域
本发明涉及一种太阳能电池背膜的制备方法,属于太阳能电池背膜制备技术领域。
背景技术
聚偏氟乙烯可用来制造电容器用膜、防大气作用膜、热电性和压电性膜、汽车的工业用膜、太阳能收集器面板的覆盖膜等。聚偏氟乙烯平膜的特点是透明度高,透光性好,物理机械性能优良.耐老化,着火性小,热稳定性好。这种膜可用在化工设备制造、太阳能收集器的生产和温室中,还可用作外部保护覆盖膜、化学保护和贮藏用的密封带、塑料和布覆面层的内保护衬层。聚偏氟乙烯膜,在110℃下拉伸8.7的拉伸倍数,可以改变聚偏氟乙烯的晶体结构,使其原来的晶体矩阵中的球粒遭到破坏,而形成原纤维。聚偏氟乙烯膜的抗蠕变性能远大于其他大多数氟聚合物膜,而此聚偏氟乙烯膜的耐磨性不低于聚酞胺。用聚偏氟乙烯均聚物和共聚物制成的牌号为04602、04601及04603的膜透明度都很高。这些膜可以用作化学保护的密封带、特殊贮槽的隔层,还可以用于制造耐燃料和耐化学品的隔膜及密封件,可用作太阳能收集器薄膜。目前正在研的聚偏氟乙烯软质抗静电膜,其旨在提高PVDF与各种底材的粘合强度的一种多层复合膜。我们己知PVDF具有良好的热稳定性、化学稳定性以及机械稳定性等特点,是太阳能电池背膜制造的最佳原料。这主要是因为PVDF分子中的C-F键是所有与C原子相连的共价键中键能最高、最稳定的化学键,并且F原子的体积效应可以保护内部的C一C键免受外界条件的攻击。但是所制得的PVDF膜的表面能极低,亲水性差,且耐湿热性差,不耐紫外线照射,易老化,很大限制了PVDF膜的应用。
发明内容
本发明所要解决的技术问题:针对目前制得的PVDF膜的表面能极低,亲水性差,且耐湿热性差,不耐紫外线照射,易老化的弊端,提供了一种将纳米二氧化钛粉末利用异丁基三乙氧基硅烷对其改性,得改性纳米二氧化钛溶胶,并添加聚氟乙烯和N,N-二甲基甲酰胺的混合溶液中,在玻璃板流延成膜得聚氟乙烯膜,将膜表面清洗后用等离子体处理法在膜表面接枝丙烯酸单体,干燥后制得太阳能电池背膜的方法。本发明的有益效果是:本发明利用等离子体处理法在聚氟乙烯膜表面接枝亲水性丙烯酸单体,有效解决了聚氟乙烯膜的表面能极低,亲水性差问题,使接触角小于70°,在膜中添加异丁基三乙氧基硅烷改性纳米二氧化钛有效提高了膜的耐湿热性、耐紫外线及抗老化性能。
为解决上述技术问题,本发明采用如下所述的技术方案是:
(1)称取8~12g纳米二氧化钛粉末,按固液比1:5与质量分数80%乙醇溶液混合,用150~180W功率超声分散10~15min,得二氧化钛分散液,将分散液倒入烧瓶,放入水浴锅中,设置温度为55~65℃,先用质量分数25%盐酸调节pH为3.0~4.0,保温搅拌20~30min后,用质量分数20%氢氧化钠调节pH至7.0,调节后继续搅拌15~20min;
(2)向上述搅拌结束后的烧瓶中加入50~100mL无水乙醇,升温至70~80℃,向烧瓶中滴加8~12mL异丁基三乙氧基硅烷,控制滴加时间为3~5min,滴加完毕,搅拌反应2~3h,反应后将反应物旋转蒸发去除乙醇,得异丁基三乙氧基硅烷改性纳米二氧化钛溶胶;
(3)称取5~10g聚氟乙烯放入三口烧瓶中,按固液比1:50~1:30与 N,N-二甲基甲酰胺混合,放入水浴锅中,在60~70℃水浴温度中搅拌至聚氟乙烯完全溶解,再分别向烧瓶中加入混合物总质量1~3%上述异丁基三乙氧基硅烷改性纳米二氧化钛溶胶和混合物总质量1~2%γ-丁内酯,在80~90℃、400~500r/min下搅拌混合30~40min,得透明的聚合物溶液;
(4)将上述透明的聚合物溶液倒在玻璃板上迅速流延成膜,并在70~80℃的烘箱中热处理12~14h,得透明的聚氟乙烯膜,分别用无水乙醇、丙酮清洗膜表面,清洗后膜表面用吹风机吹干;
(5)将上述风干后聚氟乙烯膜放入等离子体处理装置的反应腔中,打开真空室电源,将真空室抽真空至6×10-4~7×10-4Pa,并通入氩气进行置换,在30~45W功率下进行等离子激发30~60s,激发后关闭等离子体,通入丙烯酸单体蒸汽进行接枝反应,反应40~50min后取出,放入真空干燥箱中,在40~50℃下干燥4~5h,即可得到太阳能电池背膜。
本发明的应用方法:将本发明制得的太阳能电池背膜经机械剪切加工后,平贴于太阳能电池背板上,贴合完毕即可。该太阳能电池背膜在100~120℃下放置250~300h,无老化发黄、龟裂现象发生,自然环境下可以使用寿命高于25年,且具有耐湿热老化、尺寸稳定、耐撕裂,易加工,接触角小于70°。
本发明与其他方法相比,有益技术效果是:
(1)本发明制备步骤简单,成本低,在膜中添加异丁基三乙氧基硅烷改性纳米二氧化钛助剂,使产品耐紫外线性能高,抗老化性能好;
(2)本发明利用等离子体处理法在膜表面接枝丙烯酸单体,有效解决了聚氟乙烯膜膜的表面能极低,亲水性和耐湿热性差问题,使膜的接触角小于70°。
具体实施方式
首先称取8~12g纳米二氧化钛粉末,按固液比1:5与质量分数80%乙醇溶液混合,用150~180W功率超声分散10~15min,得二氧化钛分散液,将分散液倒入烧瓶,放入水浴锅中,设置温度为55~65℃,先用质量分数25%盐酸调节pH为3.0~4.0,保温搅拌20~30min后,用质量分数20%氢氧化钠调节pH至7.0,调节后继续搅拌15~20min;向上述搅拌结束后的烧瓶中加入50~100mL无水乙醇,升温至70~80℃,向烧瓶中滴加8~12mL异丁基三乙氧基硅烷,控制滴加时间为3~5min,滴加完毕,搅拌反应2~3h,反应后将反应物旋转蒸发去除乙醇,得异丁基三乙氧基硅烷改性纳米二氧化钛溶胶;再称取5~10g聚氟乙烯放入三口烧瓶中,按固液比1:50~1:30与 N,N-二甲基甲酰胺混合,放入水浴锅中,在60~70℃水浴温度中搅拌至聚氟乙烯完全溶解,再分别向烧瓶中加入混合物总质量1~3%上述异丁基三乙氧基硅烷改性纳米二氧化钛溶胶和混合物总质量1~2%γ-丁内酯,在80~90℃、400~500r/min下搅拌混合30~40min,得透明的聚合物溶液;然后将上述透明的聚合物溶液倒在玻璃板上迅速流延成膜,并在70~80℃的烘箱中热处理12~14h,得透明的聚氟乙烯膜,分别用无水乙醇、丙酮清洗膜表面,清洗后膜表面用吹风机吹干;最后将上述风干后聚氟乙烯膜放入等离子体处理装置的反应腔中,打开真空室电源,将真空室抽真空至6×10-4~7×10-4Pa,并通入氩气进行置换,在30~45W功率下进行等离子激发30~60s,激发后关闭等离子体,通入丙烯酸单体蒸汽进行接枝反应,反应40~50min后取出,放入真空干燥箱中,在40~50℃下干燥4~5h,即可得到太阳能电池背膜。
实例1
首先称取8g纳米二氧化钛粉末,按固液比1:5与质量分数80%乙醇溶液混合,用150W功率超声分散10min,得二氧化钛分散液,将分散液倒入烧瓶,放入水浴锅中,设置温度为55℃,先用质量分数25%盐酸调节pH为3.0,保温搅拌20min后,用质量分数20%氢氧化钠调节pH至7.0,调节后继续搅拌15min;向上述搅拌结束后的烧瓶中加入50mL无水乙醇,升温至70℃,向烧瓶中滴加8mL异丁基三乙氧基硅烷,控制滴加时间为3min,滴加完毕,搅拌反应2h,反应后将反应物旋转蒸发去除乙醇,得异丁基三乙氧基硅烷改性纳米二氧化钛溶胶;再称取5g聚氟乙烯放入三口烧瓶中,按固液比1:50与 N,N-二甲基甲酰胺混合,放入水浴锅中,在60℃水浴温度中搅拌至聚氟乙烯完全溶解,再分别向烧瓶中加入混合物总质量1%上述异丁基三乙氧基硅烷改性纳米二氧化钛溶胶和混合物总质量1%γ-丁内酯,在80℃、400r/min下搅拌混合30min,得透明的聚合物溶液;然后将上述透明的聚合物溶液倒在玻璃板上迅速流延成膜,并在70℃的烘箱中热处理12h,得透明的聚氟乙烯膜,分别用无水乙醇、丙酮清洗膜表面,清洗后膜表面用吹风机吹干;最后将上述风干后聚氟乙烯膜放入等离子体处理装置的反应腔中,打开真空室电源,将真空室抽真空至6×10-4Pa,并通入氩气进行置换,在30W功率下进行等离子激发30s,激发后关闭等离子体,通入丙烯酸单体蒸汽进行接枝反应,反应40min后取出,放入真空干燥箱中,在40℃下干燥4h,即可得到太阳能电池背膜。
将本发明制得的太阳能电池背膜经机械剪切加工后,平贴于太阳能电池背板上,贴合完毕即可。该太阳能电池背膜在100℃下放置250h,无老化发黄、龟裂现象发生,自然环境下可以使用寿命27年,且具有耐湿热老化、尺寸稳定、耐撕裂,易加工,接触角68°。
实例2
首先称取10g纳米二氧化钛粉末,按固液比1:5与质量分数80%乙醇溶液混合,用165W功率超声分散13min,得二氧化钛分散液,将分散液倒入烧瓶,放入水浴锅中,设置温度为60℃,先用质量分数25%盐酸调节pH为3.5,保温搅拌25min后,用质量分数20%氢氧化钠调节pH至7.0,调节后继续搅拌18min;向上述搅拌结束后的烧瓶中加入75mL无水乙醇,升温至75℃,向烧瓶中滴加10mL异丁基三乙氧基硅烷,控制滴加时间为4min,滴加完毕,搅拌反应3h,反应后将反应物旋转蒸发去除乙醇,得异丁基三乙氧基硅烷改性纳米二氧化钛溶胶;再称取8g聚氟乙烯放入三口烧瓶中,按固液比1:40与 N,N-二甲基甲酰胺混合,放入水浴锅中,在65℃水浴温度中搅拌至聚氟乙烯完全溶解,再分别向烧瓶中加入混合物总质量2%上述异丁基三乙氧基硅烷改性纳米二氧化钛溶胶和混合物总质量2%γ-丁内酯,在85℃、450r/min下搅拌混合35min,得透明的聚合物溶液;然后将上述透明的聚合物溶液倒在玻璃板上迅速流延成膜,并在75℃的烘箱中热处理13h,得透明的聚氟乙烯膜,分别用无水乙醇、丙酮清洗膜表面,清洗后膜表面用吹风机吹干;最后将上述风干后聚氟乙烯膜放入等离子体处理装置的反应腔中,打开真空室电源,将真空室抽真空至7×10-4Pa,并通入氩气进行置换,在38W功率下进行等离子激发45s,激发后关闭等离子体,通入丙烯酸单体蒸汽进行接枝反应,反应45min后取出,放入真空干燥箱中,在45℃下干燥5h,即可得到太阳能电池背膜。
将本发明制得的太阳能电池背膜经机械剪切加工后,平贴于太阳能电池背板上,贴合完毕即可。该太阳能电池背膜在110℃下放置275h,无老化发黄、龟裂现象发生,自然环境下可以使用寿命高于25年,且具有耐湿热老化、尺寸稳定、耐撕裂,易加工,接触角66°。
实例3
首先称取12g纳米二氧化钛粉末,按固液比1:5与质量分数80%乙醇溶液混合,用180W功率超声分散15min,得二氧化钛分散液,将分散液倒入烧瓶,放入水浴锅中,设置温度为65℃,先用质量分数25%盐酸调节pH为4.0,保温搅拌30min后,用质量分数20%氢氧化钠调节pH至7.0,调节后继续搅拌20min;向上述搅拌结束后的烧瓶中加入100mL无水乙醇,升温至80℃,向烧瓶中滴加12mL异丁基三乙氧基硅烷,控制滴加时间为5min,滴加完毕,搅拌反应3h,反应后将反应物旋转蒸发去除乙醇,得异丁基三乙氧基硅烷改性纳米二氧化钛溶胶;再称取10g聚氟乙烯放入三口烧瓶中,按固液比1:30与 N,N-二甲基甲酰胺混合,放入水浴锅中,在70℃水浴温度中搅拌至聚氟乙烯完全溶解,再分别向烧瓶中加入混合物总质量3%上述异丁基三乙氧基硅烷改性纳米二氧化钛溶胶和混合物总质量2%γ-丁内酯,在90℃、500r/min下搅拌混合40min,得透明的聚合物溶液;然后将上述透明的聚合物溶液倒在玻璃板上迅速流延成膜,并在80℃的烘箱中热处理14h,得透明的聚氟乙烯膜,分别用无水乙醇、丙酮清洗膜表面,清洗后膜表面用吹风机吹干;最后将上述风干后聚氟乙烯膜放入等离子体处理装置的反应腔中,打开真空室电源,将真空室抽真空至7×10-4Pa,并通入氩气进行置换,在45W功率下进行等离子激发60s,激发后关闭等离子体,通入丙烯酸单体蒸汽进行接枝反应,反应50min后取出,放入真空干燥箱中,在50℃下干燥5h,即可得到太阳能电池背膜。
将本发明制得的太阳能电池背膜经机械剪切加工后,平贴于太阳能电池背板上,贴合完毕即可。该太阳能电池背膜在120℃下放置300h,无老化发黄、龟裂现象发生,自然环境下可以使用寿命28年,且具有耐湿热老化、尺寸稳定、耐撕裂,易加工,接触角65°。

Claims (1)

1.一种太阳能电池背膜的制备方法,其特征在于具体制备步骤为:
(1)称取8~12g纳米二氧化钛粉末,按固液比1:5与质量分数80%乙醇溶液混合,用150~180W功率超声分散10~15min,得二氧化钛分散液,将分散液倒入烧瓶,放入水浴锅中,设置温度为55~65℃,先用质量分数25%盐酸调节pH为3.0~4.0,保温搅拌20~30min后,用质量分数20%氢氧化钠调节pH至7.0,调节后继续搅拌15~20min;
(2)向上述搅拌结束后的烧瓶中加入50~100mL无水乙醇,升温至70~80℃,向烧瓶中滴加8~12mL异丁基三乙氧基硅烷,控制滴加时间为3~5min,滴加完毕,搅拌反应2~3h,反应后将反应物旋转蒸发去除乙醇,得异丁基三乙氧基硅烷改性纳米二氧化钛溶胶;
(3)称取5~10g聚氟乙烯放入三口烧瓶中,按固液比1:50~1:30与 N,N-二甲基甲酰胺混合,放入水浴锅中,在60~70℃水浴温度中搅拌至聚氟乙烯完全溶解,再分别向烧瓶中加入混合物总质量1~3%上述异丁基三乙氧基硅烷改性纳米二氧化钛溶胶和混合物总质量1~2%γ-丁内酯,在80~90℃、400~500r/min下搅拌混合30~40min,得透明的聚合物溶液;
(4)将上述透明的聚合物溶液倒在玻璃板上迅速流延成膜,并在70~80℃的烘箱中热处理12~14h,得透明的聚氟乙烯膜,分别用无水乙醇、丙酮清洗膜表面,清洗后膜表面用吹风机吹干;
(5)将上述风干后聚氟乙烯膜放入等离子体处理装置的反应腔中,打开真空室电源,将真空室抽真空至6×10-4~7×10-4Pa,并通入氩气进行置换,在30~45W功率下进行等离子激发30~60s,激发后关闭等离子体,通入丙烯酸单体蒸汽进行接枝反应,反应40~50min后取出,放入真空干燥箱中,在40~50℃下干燥4~5h,即可得到太阳能电池背膜。
CN201610635948.3A 2016-08-05 2016-08-05 一种太阳能电池背膜的制备方法 Pending CN106188604A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610635948.3A CN106188604A (zh) 2016-08-05 2016-08-05 一种太阳能电池背膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610635948.3A CN106188604A (zh) 2016-08-05 2016-08-05 一种太阳能电池背膜的制备方法

Publications (1)

Publication Number Publication Date
CN106188604A true CN106188604A (zh) 2016-12-07

Family

ID=57498442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610635948.3A Pending CN106188604A (zh) 2016-08-05 2016-08-05 一种太阳能电池背膜的制备方法

Country Status (1)

Country Link
CN (1) CN106188604A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624370A (zh) * 2021-07-28 2021-11-09 东莞市万科建筑技术研究有限公司 建筑外墙监测模块及建筑

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199304A (zh) * 2011-03-31 2011-09-28 西北工业大学 聚偏二氟乙烯薄膜的改性方法
CN102653652A (zh) * 2012-05-02 2012-09-05 常州大学 一种纳米复合氟碳涂料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199304A (zh) * 2011-03-31 2011-09-28 西北工业大学 聚偏二氟乙烯薄膜的改性方法
CN102653652A (zh) * 2012-05-02 2012-09-05 常州大学 一种纳米复合氟碳涂料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王琛等: "《高分子材料改性技术》", 30 April 2007, 中国纺织出版社 *
许晓慧: "《盐化工生产技术》", 31 January 2014, 中央广播电视大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624370A (zh) * 2021-07-28 2021-11-09 东莞市万科建筑技术研究有限公司 建筑外墙监测模块及建筑
CN113624370B (zh) * 2021-07-28 2023-08-04 东莞市万科建筑技术研究有限公司 建筑外墙监测模块及建筑

Similar Documents

Publication Publication Date Title
CN105576267B (zh) 一种有机无机杂化质子交换膜及其制备方法和应用
CN1269257C (zh) 染料敏化型太阳能电池用金属氧化物分散液,光活性电极以及染料敏化型太阳能电池
CN107359246A (zh) 一种甲胺铅碘钙钛矿太阳能电池的制作方法
CN101921480B (zh) 纳/微米孔结构聚酰亚胺杂化质子交换膜的制备方法
CN101113207B (zh) 一种杂化阴离子交换膜的溶胶凝胶紫外/热交联制备方法
CN104371128B (zh) 高强度机械性能碱性阴离子交换复合膜、制备及应用
CN106744805B (zh) 原位氮掺杂的超大孔径介孔碳材料及其制备方法
CN104275098B (zh) 一种仿贝壳结构层状氧化石墨烯纳米复合膜的制备方法
CN105885092A (zh) 一种聚合物用氧化石墨烯-凹凸棒土复合改性剂以及聚合物的改性方法
CN106390775B (zh) 一种改性超滤膜及其制备方法
CN107565023A (zh) 一种钙钛矿太阳能电池及制备方法
CN103413973B (zh) 掺杂PAALi-g-SiO2的纳米纤维基复合凝胶聚合物电解质的制备方法
CN106188604A (zh) 一种太阳能电池背膜的制备方法
CN107634262B (zh) 一种全固态环保型生物聚合物电解质膜的制备方法
CN106099182A (zh) 一种锂电池细菌纤维素凝胶聚合物电解质的制备方法
CN104692444A (zh) 一种制备二氧化铈纳米晶薄膜的方法
CN106944111B (zh) 一种钨酸铋/磷酸铋复合薄膜及其制备方法和应用
CN102013329B (zh) 一种提高染料敏化太阳能电池光能转化率的方法
CN110960990A (zh) 一种无机纳米均相杂化pvdf超亲水性超滤膜的制备方法
CN105810441B (zh) 对电极及其制备方法和染料敏化太阳能电池
CN110240841A (zh) 一种太阳能电池片黑色焊带及其制作方法
CN108975316A (zh) 一种石墨烯薄膜的制备方法
CN106927691B (zh) 一种具有光响应特性的磷酸铋薄膜及其制备方法和应用
CN210449197U (zh) 一种用于有机纳米导电膜生产的高温反应处理装置
CN106865617A (zh) 一种多孔网状结构的钨酸铋薄膜及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161207

WD01 Invention patent application deemed withdrawn after publication