CN106179809A - 一种高性能玻璃体处理装置 - Google Patents

一种高性能玻璃体处理装置 Download PDF

Info

Publication number
CN106179809A
CN106179809A CN201610605538.4A CN201610605538A CN106179809A CN 106179809 A CN106179809 A CN 106179809A CN 201610605538 A CN201610605538 A CN 201610605538A CN 106179809 A CN106179809 A CN 106179809A
Authority
CN
China
Prior art keywords
extension tube
air
hopper
pipe
pneumatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610605538.4A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610605538.4A priority Critical patent/CN106179809A/zh
Publication of CN106179809A publication Critical patent/CN106179809A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

一种高性能玻璃体处理装置,其特征是,包括干燥装置、料斗、下料管、下料阀、气动管、气动阀和搅拌转轴;所述下料管连接在料斗的下方,下料阀设置在下料管上;所述气动管连通下料管,所述气动阀设置在气动管上,且气动管的末端连接喷覆工具的料管;所述气动管由压缩空气管道供气;工作时,经过干燥装置干燥的玻璃粉体进入到料斗中,开启气动阀,使得下料管的末端产生负压,同时打开下料阀,玻璃粉体在负压的作用下进入气动管进而进入喷覆工具进行喷覆;所述搅拌转轴水平设置在料斗中。

Description

一种高性能玻璃体处理装置
技术领域
本发明涉及玻璃处理领域,具体涉及一种高性能玻璃体处理装置。
背景技术
玻璃的涂覆是玻璃的一个重要应用,一般是通过喷覆工具将玻璃粉末喷涂到管道等需要涂覆的物体上。这就需要一种能够保证玻璃体均匀涂覆、连续性好的玻璃体处理工具。
发明内容
针对上述问题,本发明提供一种高性能玻璃体处理装置。
本发明的目的采用以下技术方案来实现:
一种高性能玻璃体处理装置,包括干燥装置、料斗、下料管、下料阀、气动管、气动阀和搅拌转轴;所述下料管连接在料斗的下方,下料阀设置在下料管上;所述气动管连通下料管,所述气动阀设置在气动管上,且气动管的末端连接喷覆工具的料管;所述气动管由压缩空气管道供气;工作时,经过干燥装置干燥的玻璃粉体进入到料斗中,开启气动阀,使得下料管的末端产生负压,同时打开下料阀,玻璃粉体在负压的作用下进入气动管进而进入喷覆工具进行喷覆;所述搅拌转轴水平设置在料斗中。
有益效果为:通过气动管、气动阀等部件,实现了玻璃粉体的均匀、连续涂覆,解决了上述技术问题。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是一种高性能玻璃体处理装置的整体结构示意图;
图2是干燥装置的结构示意图;
图3是混合器和扩展管长度调节装置的局部放大图;
图4是滑轨和挂环的结构示意图;
图5是滑块、固定块和张力弹簧的结构示意图。
附图标记:螺旋输送机-10;预热套管-11;送风机-12;加热器-13;回流风温度调节器-14;外壳体-15;隔板-16;内壳体-17;回流风管-18;主喷嘴-19;旋风分离器-20;引风机-21;第一控制阀-22;第二控制阀-23;引出管-24;离心式分级器-25;引入管-26;放灰阀-27;收缩管-28;喉管-29;固定扩展管-30;可移动扩展管-31;滑动组件-32;竖直连杆-33;水平连杆-34;螺纹块-35;螺纹杆-36;上密封体-37;下密封体-38;滑轨-39;挂环-40;滑块-41;固定块-42;张力弹簧-43;挂钩-44;滑动槽-45;电机-46;固定槽-47;回流风温度调节阀-48;第一回气管-49;第二回气管-50;入口-51;出口-52;干燥装置-100;料斗-200;下料管-300;下料阀-400;气动管-500;气动阀-600;搅拌转轴-700;压缩空气管道-800;电动振打装置-900;电机-1000。
具体实施方式
结合以下实施例对本发明作进一步描述。
应用场景1:
如图1所示的一种高性能玻璃体处理装置,包括干燥装置100、料斗200、下料管300、下料阀400、气动管500、气动阀600和搅拌转轴700;所述下料管300连接在料斗200的下方,下料阀400设置在下料管300上;所述气动管500连通下料管300,所述气动阀600设置在气动管500上,且气动管500的末端连接喷覆工具的料管;所述气动管500由压缩空气管道800供气;工作时,经过干燥装置100干燥的玻璃粉体进入到料斗200中,开启气动阀600,使得下料管300的末端产生负压,同时打开下料阀400,玻璃粉体在负压的作用下进入气动管500进而进入喷覆工具进行喷覆;所述搅拌转轴700水平设置在料斗200中。
本发明通过气动管、气动阀等部件,实现了玻璃粉体的均匀、连续涂覆,解决了现有技术中存在的问题。
优选地,所述料斗200上还设置有至少一个电动振打装置900,用于防止料斗200堵塞。
优选地,所述搅拌转轴700由电机1000驱动旋转。
优选地,如图2所示,干燥装置100包括螺旋输送机10、预热套管11、送风机12、加热器13、回流风温度调节器14、外壳体15、隔板16、内壳体17、混合器、扩展管长度调节装置、主喷嘴19、旋风分离器20和引风机21。由送风机12加压后的空气经加热器13加热后分为两路,一路经过第一控制阀22进入主喷嘴19,另一路依次经过第二控制阀23、回流风温度调节器14后由回流风管24进入内壳体17中,回流风管18穿过外壳体15和隔板16后以向下倾斜的角度切向地与内壳体17的上部相连通,这种向下的切向进入方式为未干燥合格的玻璃粉体提供了带旋转的向下运动加速度。主喷嘴19设置在内壳体17的底部。
隔板16设置在内壳体17和外壳体15之间,且其上端固接在外壳体15的顶部,其下端与外壳体15的底部之间留有间隙,内壳体17和隔板16之间的空间与顶部的引出管24相连通,引出管24与引风机21相连通。且引出管21的顶端水平设置,这样能保证调节可移动扩展管31长度时不发生偏斜水平。内壳体17的顶部设置有离心式分级器25,离心式分级器25的出口与旋风分离器20相连通,隔板16与外壳体15之间的空间与引入管26相连通,引入管26与旋风式分离器20的出口相连通,且引入管26切向地连接在外壳体15上。外壳体15的底部设置有2个放灰阀27。
如图3-5所示,混合器设置在内壳体17中,其包括自下而上布置的收缩管28、喉管29和扩展管,扩展管包括固定扩展管30和可移动扩展管31,可移动扩展管31部分套接在固定扩展管30外,这样的设置能够最大限度保证混合器内向上流动的气流和混合器外向下流动的气流不会冲入固定扩展管30和可移动扩展管之间31的间隙内造成串气。混合器的扩展管是干燥的主要部件,其长度关系到干燥的效果以及扩展管的出口物料速度,如果采用传统的固定长度式混合器,就只能通过调节送风量和离心式分级器25的分离间隙来调节,这就势必要求采用容量范围比较大的送引风机才能满足干燥范围变化大的玻璃粉体要求,这对于装置的小型化和节省成本很不利,而且调节手段也过于单一,基于此还设置有扩展管长度调节装置,其用于在线调节扩展管的长度,其包括滑动组件32、竖直连杆33、水平连杆34、螺纹块35、螺纹杆36、上密封体37和下密封体38。2个对称布置的滑动组件32设置在上密封体37和下密封体38之间,每个滑动组件32包括滑轨39、挂环40、滑块41、固定块42、张力弹簧43和挂钩44,滑轨39为2个,布置在可移动扩展管31的内壁上。滑轨39的方向与可移动扩展管31的运动方向相同。挂环40设置在可移动扩展管31的内壁上,且位于2个滑轨39之间。2个滑块41对应滑轨39设置在固定扩展管30的外壁上,每个滑块41上设置有宽度与滑轨39宽度匹配的滑动槽45。固定块42固接在固定扩展管30的外壁上,且位于两个滑块41之间,张力弹簧43的一端与固定块42固接,另一端与挂钩44固接。使用时,将滑轨39安装在滑块41的滑动槽45内,并将挂钩44挂接在挂环40中,张力弹簧43的设置能保证可移动扩展管31向下复位移动时,不会因为制造误差和小卡涩而不能在可移动扩展管31自身重力的作用下复位,而且也能使得其定位更准确。上密封体37固接在固定扩展管30的外壁上且与可移动扩展管31的内壁紧密接触,其上表面为斜面,所述斜面用于防止物料集聚在上密封体37上。下密封体38固接在可移动扩展管31的内壁上,且与固定扩展管30的外壁紧密接触,这种上下密封体分开固接的方式,在可移动扩展管31移动时除非2个密封体均发生偏移,否则至少有一个能起到密封的作用,能更好地起到防止串气的作用。上密封体37和下密封体38用于防止混合器中的气流通过间隙与内壳体17中的气流发生窜流。2个竖直连杆33与可移动扩展管31的上端固接,竖直连杆33的上端穿过内壳体17和引出管24向上延伸,水平连杆34连接2个竖直连杆33的上端。2个螺纹块35设置在引出管24上方,螺纹块35内设置有螺纹孔,2个螺纹杆36旋入螺纹孔中。螺纹块35还内置有用于驱动螺纹杆36运动的电机46。水平连杆34的下部设置有2个用于保持螺纹杆36运动中不发生位置偏移的固定槽47,螺纹杆36的上端抵压在固定槽47内。当需要增长扩展管的长度时,驱动电机46使得2个螺纹杆36向上旋出,螺纹杆36向上顶起水平连杆34进而使得可移动扩展管31沿着滑轨39向上运动,从而增长了扩展管的整体长度,反之当需要缩短扩展管的长度时反向驱动电机46使得2个螺纹杆36向下旋入。固定扩展管30与可移动扩展管31的轴向长度比为2:1,送风机12的最大容量较之未改造前减小了20%。
该干燥装置工作时,主喷嘴19中的高速热空气不断喷入混合器的收缩管28中,并在高速热空气的四周形成局部真空,不断将由螺旋输送机10送入的湿玻璃粉体吸入混合器中进行干燥。从混合器的扩展管喷出的空气和玻璃粉体的混合物碰撞离心式分级器25,未干燥合格的玻璃粉体由于水分较多粘结了部分灰尘和其他杂物而颗粒较粗,被离心式分级器25阻挡,并在回流风的作用下进入内壳体17和混合器之间的空间螺旋向下运动,由回流风再干燥后再次由内壳体17的底部进入收缩管28,不断进行循环直至干燥合格为止。干燥合格的玻璃粉体由离心式分级器25的出口进入旋风分离器20,干玻璃粉体由旋风分离器20的下部排出并进入料斗200。从旋风分离器20出来气流由引入管26切向地进入外壳体15和隔板16之间的空间,并由底部进入内壳体17和隔板16之间的空间,在此过程中较重的杂质由于重力作用分离到外壳体15的底部由排灰阀27定期排出,气流最后经引出管24排出后由引风机21排大气。
在该实施例中,(1)设计了一种适用于大批量加工的干燥装置,玻璃粉体经过混合器和旋转的回流风干燥后,得到的干燥产品的温度、水含量都比较均匀,既不会出现物化性质、品质下降的现象,也不会出现局部产品过热或者干不透的现象,从而得到了高质量的玻璃粉体;(2)设计了独特的扩展管长度调节装置,相对于传统的固定长度式混合器,不仅能通过调节送风量和离心式分级器25的分离间隙来调节干燥效果,而且可以在不拆卸壳体的情况下通过在线调节扩展管的长度来调节干燥和分离效果,丰富了调节手段,为采用容量比较小的送引风机提供了条件,有利于装置的小型化,固定扩展管30与可移动扩展管31的轴向长度比为2:1,送风机12的最大容量较之未改造前减小了20%;(3)通过滑轨39、挂环40、滑块41、固定块42、张力弹簧43等部件的设置,增加了扩展管长度调节时的稳定性和可靠性;通过独特的上密封体37和下密封体38的设计,能较好地防止混合器中的气流通过间隙与内壳体17中的气流发生窜流,且能有效防止物料集聚在上密封体37上;(4)通过隔板16、外壳体15等部件的设置,将灰尘分离与内壳体17、混合器等玻璃粉体干燥部件合为一体,避免了单独设置粉尘分离装置,减小了占地面积,有利于设备的集成化。
优选地,回到图2,回流风温度调节器14为管式换热器,离心式分级器25至旋风分离器20的管道上设置有一路分支至回流风温度调节器14,通过调节回流风温度调节阀48的开度来调节进入内壳体17的回流风的温度,换热后的气流由第一回气管49切向地进入外壳体15的中部。螺旋输送机10上设置有预热套管11,用于对进入内壳体15的湿玻璃粉体进行预热以减小混合器的热应力,旋风分离器20至引入管26之间的管道上设置有一路至预热套管11的入口51,加热后的气流从预热套管11的出口52流出,经第二回气管50切向地进入外壳体15的中部。切向的第一回气管49和第二回气管50的设置,增强了已经较弱的后半段回流风的温度和旋转速度,使得干燥和分离的效果得到了提高。
在该实施例中,通过预热套管11和回流风温度调节器14的设计,有效利用了尾部气流剩余的动能和热量,来减小混合器的热应力以及回流风的温度可调性,并且通过第一回流管49和第二回流管50的设置提高了后半段回流风的温度和旋转速度,使得干燥和分离的效果得到了提高。
应用场景2:
如图1所示的一种高性能玻璃体处理装置,包括干燥装置100、料斗200、下料管300、下料阀400、气动管500、气动阀600和搅拌转轴700;所述下料管300连接在料斗200的下方,下料阀400设置在下料管300上;所述气动管500连通下料管300,所述气动阀600设置在气动管500上,且气动管500的末端连接喷覆工具的料管;所述气动管500由压缩空气管道800供气;工作时,经过干燥装置100干燥的玻璃粉体进入到料斗200中,开启气动阀600,使得下料管300的末端产生负压,同时打开下料阀400,玻璃粉体在负压的作用下进入气动管500进而进入喷覆工具进行喷覆;所述搅拌转轴700水平设置在料斗200中。
本发明通过气动管、气动阀等部件,实现了玻璃粉体的均匀、连续涂覆,解决了现有技术中存在的问题。
优选地,所述料斗200上还设置有至少一个电动振打装置900,用于防止料斗200堵塞。
优选地,所述搅拌转轴700由电机1000驱动旋转。
优选地,如图2所示,干燥装置100包括螺旋输送机10、预热套管11、送风机12、加热器13、回流风温度调节器14、外壳体15、隔板16、内壳体17、混合器、扩展管长度调节装置、主喷嘴19、旋风分离器20和引风机21。由送风机12加压后的空气经加热器13加热后分为两路,一路经过第一控制阀22进入主喷嘴19,另一路依次经过第二控制阀23、回流风温度调节器14后由回流风管24进入内壳体17中,回流风管18穿过外壳体15和隔板16后以向下倾斜的角度切向地与内壳体17的上部相连通,这种向下的切向进入方式为未干燥合格的玻璃粉体提供了带旋转的向下运动加速度。主喷嘴19设置在内壳体17的底部。
隔板16设置在内壳体17和外壳体15之间,且其上端固接在外壳体15的顶部,其下端与外壳体15的底部之间留有间隙,内壳体17和隔板16之间的空间与顶部的引出管24相连通,引出管24与引风机21相连通。且引出管21的顶端水平设置,这样能保证调节可移动扩展管31长度时不发生偏斜水平。内壳体17的顶部设置有离心式分级器25,离心式分级器25的出口与旋风分离器20相连通,隔板16与外壳体15之间的空间与引入管26相连通,引入管26与旋风式分离器20的出口相连通,且引入管26切向地连接在外壳体15上。外壳体15的底部设置有2个放灰阀27。
如图3-5所示,混合器设置在内壳体17中,其包括自下而上布置的收缩管28、喉管29和扩展管,扩展管包括固定扩展管30和可移动扩展管31,可移动扩展管31部分套接在固定扩展管30外,这样的设置能够最大限度保证混合器内向上流动的气流和混合器外向下流动的气流不会冲入固定扩展管30和可移动扩展管之间31的间隙内造成串气。混合器的扩展管是干燥的主要部件,其长度关系到干燥的效果以及扩展管的出口物料速度,如果采用传统的固定长度式混合器,就只能通过调节送风量和离心式分级器25的分离间隙来调节,这就势必要求采用容量范围比较大的送引风机才能满足干燥范围变化大的玻璃粉体要求,这对于装置的小型化和节省成本很不利,而且调节手段也过于单一,基于此还设置有扩展管长度调节装置,其用于在线调节扩展管的长度,其包括滑动组件32、竖直连杆33、水平连杆34、螺纹块35、螺纹杆36、上密封体37和下密封体38。2个对称布置的滑动组件32设置在上密封体37和下密封体38之间,每个滑动组件32包括滑轨39、挂环40、滑块41、固定块42、张力弹簧43和挂钩44,滑轨39为2个,布置在可移动扩展管31的内壁上。滑轨39的方向与可移动扩展管31的运动方向相同。挂环40设置在可移动扩展管31的内壁上,且位于2个滑轨39之间。2个滑块41对应滑轨39设置在固定扩展管30的外壁上,每个滑块41上设置有宽度与滑轨39宽度匹配的滑动槽45。固定块42固接在固定扩展管30的外壁上,且位于两个滑块41之间,张力弹簧43的一端与固定块42固接,另一端与挂钩44固接。使用时,将滑轨39安装在滑块41的滑动槽45内,并将挂钩44挂接在挂环40中,张力弹簧43的设置能保证可移动扩展管31向下复位移动时,不会因为制造误差和小卡涩而不能在可移动扩展管31自身重力的作用下复位,而且也能使得其定位更准确。上密封体37固接在固定扩展管30的外壁上且与可移动扩展管31的内壁紧密接触,其上表面为斜面,所述斜面用于防止物料集聚在上密封体37上。下密封体38固接在可移动扩展管31的内壁上,且与固定扩展管30的外壁紧密接触,这种上下密封体分开固接的方式,在可移动扩展管31移动时除非2个密封体均发生偏移,否则至少有一个能起到密封的作用,能更好地起到防止串气的作用。上密封体37和下密封体38用于防止混合器中的气流通过间隙与内壳体17中的气流发生窜流。2个竖直连杆33与可移动扩展管31的上端固接,竖直连杆33的上端穿过内壳体17和引出管24向上延伸,水平连杆34连接2个竖直连杆33的上端。2个螺纹块35设置在引出管24上方,螺纹块35内设置有螺纹孔,2个螺纹杆36旋入螺纹孔中。螺纹块35还内置有用于驱动螺纹杆36运动的电机46。水平连杆34的下部设置有2个用于保持螺纹杆36运动中不发生位置偏移的固定槽47,螺纹杆36的上端抵压在固定槽47内。当需要增长扩展管的长度时,驱动电机46使得2个螺纹杆36向上旋出,螺纹杆36向上顶起水平连杆34进而使得可移动扩展管31沿着滑轨39向上运动,从而增长了扩展管的整体长度,反之当需要缩短扩展管的长度时反向驱动电机46使得2个螺纹杆36向下旋入。固定扩展管30与可移动扩展管31的轴向长度比为2.2:1,送风机12的最大容量较之未改造前减小了18%。
该干燥装置工作时,主喷嘴19中的高速热空气不断喷入混合器的收缩管28中,并在高速热空气的四周形成局部真空,不断将由螺旋输送机10送入的湿玻璃粉体吸入混合器中进行干燥。从混合器的扩展管喷出的空气和玻璃粉体的混合物碰撞离心式分级器25,未干燥合格的玻璃粉体由于水分较多粘结了部分灰尘和其他杂物而颗粒较粗,被离心式分级器25阻挡,并在回流风的作用下进入内壳体17和混合器之间的空间螺旋向下运动,由回流风再干燥后再次由内壳体17的底部进入收缩管28,不断进行循环直至干燥合格为止。干燥合格的玻璃粉体由离心式分级器25的出口进入旋风分离器20,干玻璃粉体由旋风分离器20的下部排出并进入料斗200。从旋风分离器20出来气流由引入管26切向地进入外壳体15和隔板16之间的空间,并由底部进入内壳体17和隔板16之间的空间,在此过程中较重的杂质由于重力作用分离到外壳体15的底部由排灰阀27定期排出,气流最后经引出管24排出后由引风机21排大气。
在该实施例中,(1)设计了一种适用于大批量加工的干燥装置,玻璃粉体经过混合器和旋转的回流风干燥后,得到的干燥产品的温度、水含量都比较均匀,既不会出现物化性质、品质下降的现象,也不会出现局部产品过热或者干不透的现象,从而得到了高质量的玻璃粉体;(2)设计了独特的扩展管长度调节装置,相对于传统的固定长度式混合器,不仅能通过调节送风量和离心式分级器25的分离间隙来调节干燥效果,而且可以在不拆卸壳体的情况下通过在线调节扩展管的长度来调节干燥和分离效果,丰富了调节手段,为采用容量比较小的送引风机提供了条件,有利于装置的小型化,固定扩展管30与可移动扩展管31的轴向长度比为2.2:1,送风机12的最大容量较之未改造前减小了18%;(3)通过滑轨39、挂环40、滑块41、固定块42、张力弹簧43等部件的设置,增加了扩展管长度调节时的稳定性和可靠性;通过独特的上密封体37和下密封体38的设计,能较好地防止混合器中的气流通过间隙与内壳体17中的气流发生窜流,且能有效防止物料集聚在上密封体37上;(4)通过隔板16、外壳体15等部件的设置,将灰尘分离与内壳体17、混合器等玻璃粉体干燥部件合为一体,避免了单独设置粉尘分离装置,减小了占地面积,有利于设备的集成化。
优选地,回到图2,回流风温度调节器14为管式换热器,离心式分级器25至旋风分离器20的管道上设置有一路分支至回流风温度调节器14,通过调节回流风温度调节阀48的开度来调节进入内壳体17的回流风的温度,换热后的气流由第一回气管49切向地进入外壳体15的中部。螺旋输送机10上设置有预热套管11,用于对进入内壳体15的湿玻璃粉体进行预热以减小混合器的热应力,旋风分离器20至引入管26之间的管道上设置有一路至预热套管11的入口51,加热后的气流从预热套管11的出口52流出,经第二回气管50切向地进入外壳体15的中部。切向的第一回气管49和第二回气管50的设置,增强了已经较弱的后半段回流风的温度和旋转速度,使得干燥和分离的效果得到了提高。
该干燥装置工作时,主喷嘴19中的高速热空气不断喷入混合器的收缩管28中,并在高速热空气的四周形成局部真空,不断将由螺旋输送机10送入的湿玻璃粉体吸入混合器中进行干燥。从混合器的扩展管喷出的空气和玻璃粉体的混合物碰撞离心式分级器25,未干燥合格的玻璃粉体由于水分较多粘结了部分灰尘和其他杂物而颗粒较粗,被离心式分级器25阻挡,并在回流风的作用下进入内壳体17和混合器之间的空间螺旋向下运动,由回流风再干燥后再次由内壳体17的底部进入收缩管28,不断进行循环直至干燥合格为止。干燥合格的玻璃粉体由离心式分级器25的出口进入旋风分离器20,干玻璃粉体由旋风分离器20的下部排出并进入料斗200。从旋风分离器20出来气流由引入管26切向地进入外壳体15和隔板16之间的空间,并由底部进入内壳体17和隔板16之间的空间,在此过程中较重的杂质由于重力作用分离到外壳体15的底部由排灰阀27定期排出,气流最后经引出管24排出后由引风机21排大气。
在该实施例中,通过预热套管11和回流风温度调节器14的设计,有效利用了尾部气流剩余的动能和热量,来减小混合器的热应力以及回流风的温度可调性,并且通过第一回流管49和第二回流管50的设置提高了后半段回流风的温度和旋转速度,使得干燥和分离的效果得到了提高。
应用场景3:
如图1所示的一种高性能玻璃体处理装置,包括干燥装置100、料斗200、下料管300、下料阀400、气动管500、气动阀600和搅拌转轴700;所述下料管300连接在料斗200的下方,下料阀400设置在下料管300上;所述气动管500连通下料管300,所述气动阀600设置在气动管500上,且气动管500的末端连接喷覆工具的料管;所述气动管500由压缩空气管道800供气;工作时,经过干燥装置100干燥的玻璃粉体进入到料斗200中,开启气动阀600,使得下料管300的末端产生负压,同时打开下料阀400,玻璃粉体在负压的作用下进入气动管500进而进入喷覆工具进行喷覆;所述搅拌转轴700水平设置在料斗200中。
本发明通过气动管、气动阀等部件,实现了玻璃粉体的均匀、连续涂覆,解决了现有技术中存在的问题。
优选地,所述料斗200上还设置有至少一个电动振打装置900,用于防止料斗200堵塞。
优选地,所述搅拌转轴700由电机1000驱动旋转。
优选地,如图2所示,干燥装置100包括螺旋输送机10、预热套管11、送风机12、加热器13、回流风温度调节器14、外壳体15、隔板16、内壳体17、混合器、扩展管长度调节装置、主喷嘴19、旋风分离器20和引风机21。由送风机12加压后的空气经加热器13加热后分为两路,一路经过第一控制阀22进入主喷嘴19,另一路依次经过第二控制阀23、回流风温度调节器14后由回流风管24进入内壳体17中,回流风管18穿过外壳体15和隔板16后以向下倾斜的角度切向地与内壳体17的上部相连通,这种向下的切向进入方式为未干燥合格的玻璃粉体提供了带旋转的向下运动加速度。主喷嘴19设置在内壳体17的底部。
隔板16设置在内壳体17和外壳体15之间,且其上端固接在外壳体15的顶部,其下端与外壳体15的底部之间留有间隙,内壳体17和隔板16之间的空间与顶部的引出管24相连通,引出管24与引风机21相连通。且引出管21的顶端水平设置,这样能保证调节可移动扩展管31长度时不发生偏斜水平。内壳体17的顶部设置有离心式分级器25,离心式分级器25的出口与旋风分离器20相连通,隔板16与外壳体15之间的空间与引入管26相连通,引入管26与旋风式分离器20的出口相连通,且引入管26切向地连接在外壳体15上。外壳体15的底部设置有2个放灰阀27。
如图3-5所示,混合器设置在内壳体17中,其包括自下而上布置的收缩管28、喉管29和扩展管,扩展管包括固定扩展管30和可移动扩展管31,可移动扩展管31部分套接在固定扩展管30外,这样的设置能够最大限度保证混合器内向上流动的气流和混合器外向下流动的气流不会冲入固定扩展管30和可移动扩展管之间31的间隙内造成串气。混合器的扩展管是干燥的主要部件,其长度关系到干燥的效果以及扩展管的出口物料速度,如果采用传统的固定长度式混合器,就只能通过调节送风量和离心式分级器25的分离间隙来调节,这就势必要求采用容量范围比较大的送引风机才能满足干燥范围变化大的玻璃粉体要求,这对于装置的小型化和节省成本很不利,而且调节手段也过于单一,基于此还设置有扩展管长度调节装置,其用于在线调节扩展管的长度,其包括滑动组件32、竖直连杆33、水平连杆34、螺纹块35、螺纹杆36、上密封体37和下密封体38。2个对称布置的滑动组件32设置在上密封体37和下密封体38之间,每个滑动组件32包括滑轨39、挂环40、滑块41、固定块42、张力弹簧43和挂钩44,滑轨39为2个,布置在可移动扩展管31的内壁上。滑轨39的方向与可移动扩展管31的运动方向相同。挂环40设置在可移动扩展管31的内壁上,且位于2个滑轨39之间。2个滑块41对应滑轨39设置在固定扩展管30的外壁上,每个滑块41上设置有宽度与滑轨39宽度匹配的滑动槽45。固定块42固接在固定扩展管30的外壁上,且位于两个滑块41之间,张力弹簧43的一端与固定块42固接,另一端与挂钩44固接。使用时,将滑轨39安装在滑块41的滑动槽45内,并将挂钩44挂接在挂环40中,张力弹簧43的设置能保证可移动扩展管31向下复位移动时,不会因为制造误差和小卡涩而不能在可移动扩展管31自身重力的作用下复位,而且也能使得其定位更准确。上密封体37固接在固定扩展管30的外壁上且与可移动扩展管31的内壁紧密接触,其上表面为斜面,所述斜面用于防止物料集聚在上密封体37上。下密封体38固接在可移动扩展管31的内壁上,且与固定扩展管30的外壁紧密接触,这种上下密封体分开固接的方式,在可移动扩展管31移动时除非2个密封体均发生偏移,否则至少有一个能起到密封的作用,能更好地起到防止串气的作用。上密封体37和下密封体38用于防止混合器中的气流通过间隙与内壳体17中的气流发生窜流。2个竖直连杆33与可移动扩展管31的上端固接,竖直连杆33的上端穿过内壳体17和引出管24向上延伸,水平连杆34连接2个竖直连杆33的上端。2个螺纹块35设置在引出管24上方,螺纹块35内设置有螺纹孔,2个螺纹杆36旋入螺纹孔中。螺纹块35还内置有用于驱动螺纹杆36运动的电机46。水平连杆34的下部设置有2个用于保持螺纹杆36运动中不发生位置偏移的固定槽47,螺纹杆36的上端抵压在固定槽47内。当需要增长扩展管的长度时,驱动电机46使得2个螺纹杆36向上旋出,螺纹杆36向上顶起水平连杆34进而使得可移动扩展管31沿着滑轨39向上运动,从而增长了扩展管的整体长度,反之当需要缩短扩展管的长度时反向驱动电机46使得2个螺纹杆36向下旋入。固定扩展管30与可移动扩展管31的轴向长度比为2.4:1,送风机12的最大容量较之未改造前减小了16%。
该干燥装置工作时,主喷嘴19中的高速热空气不断喷入混合器的收缩管28中,并在高速热空气的四周形成局部真空,不断将由螺旋输送机10送入的湿玻璃粉体吸入混合器中进行干燥。从混合器的扩展管喷出的空气和玻璃粉体的混合物碰撞离心式分级器25,未干燥合格的玻璃粉体由于水分较多粘结了部分灰尘和其他杂物而颗粒较粗,被离心式分级器25阻挡,并在回流风的作用下进入内壳体17和混合器之间的空间螺旋向下运动,由回流风再干燥后再次由内壳体17的底部进入收缩管28,不断进行循环直至干燥合格为止。干燥合格的玻璃粉体由离心式分级器25的出口进入旋风分离器20,干玻璃粉体由旋风分离器20的下部排出并进入料斗200。从旋风分离器20出来气流由引入管26切向地进入外壳体15和隔板16之间的空间,并由底部进入内壳体17和隔板16之间的空间,在此过程中较重的杂质由于重力作用分离到外壳体15的底部由排灰阀27定期排出,气流最后经引出管24排出后由引风机21排大气。
在该实施例中,(1)设计了一种适用于大批量加工的干燥装置,玻璃粉体经过混合器和旋转的回流风干燥后,得到的干燥产品的温度、水含量都比较均匀,既不会出现物化性质、品质下降的现象,也不会出现局部产品过热或者干不透的现象,从而得到了高质量的玻璃粉体;(2)设计了独特的扩展管长度调节装置,相对于传统的固定长度式混合器,不仅能通过调节送风量和离心式分级器25的分离间隙来调节干燥效果,而且可以在不拆卸壳体的情况下通过在线调节扩展管的长度来调节干燥和分离效果,丰富了调节手段,为采用容量比较小的送引风机提供了条件,有利于装置的小型化,固定扩展管30与可移动扩展管31的轴向长度比为2.4:1,送风机12的最大容量较之未改造前减小了16%;(3)通过滑轨39、挂环40、滑块41、固定块42、张力弹簧43等部件的设置,增加了扩展管长度调节时的稳定性和可靠性;通过独特的上密封体37和下密封体38的设计,能较好地防止混合器中的气流通过间隙与内壳体17中的气流发生窜流,且能有效防止物料集聚在上密封体37上;(4)通过隔板16、外壳体15等部件的设置,将灰尘分离与内壳体17、混合器等玻璃粉体干燥部件合为一体,避免了单独设置粉尘分离装置,减小了占地面积,有利于设备的集成化。
优选地,回到图2,回流风温度调节器14为管式换热器,离心式分级器25至旋风分离器20的管道上设置有一路分支至回流风温度调节器14,通过调节回流风温度调节阀48的开度来调节进入内壳体17的回流风的温度,换热后的气流由第一回气管49切向地进入外壳体15的中部。螺旋输送机10上设置有预热套管11,用于对进入内壳体15的湿玻璃粉体进行预热以减小混合器的热应力,旋风分离器20至引入管26之间的管道上设置有一路至预热套管11的入口51,加热后的气流从预热套管11的出口52流出,经第二回气管50切向地进入外壳体15的中部。切向的第一回气管49和第二回气管50的设置,增强了已经较弱的后半段回流风的温度和旋转速度,使得干燥和分离的效果得到了提高。
在该实施例中,通过预热套管11和回流风温度调节器14的设计,有效利用了尾部气流剩余的动能和热量,来减小混合器的热应力以及回流风的温度可调性,并且通过第一回流管49和第二回流管50的设置提高了后半段回流风的温度和旋转速度,使得干燥和分离的效果得到了提高。
应用场景4:
如图1所示的一种高性能玻璃体处理装置,包括干燥装置100、料斗200、下料管300、下料阀400、气动管500、气动阀600和搅拌转轴700;所述下料管300连接在料斗200的下方,下料阀400设置在下料管300上;所述气动管500连通下料管300,所述气动阀600设置在气动管500上,且气动管500的末端连接喷覆工具的料管;所述气动管500由压缩空气管道800供气;工作时,经过干燥装置100干燥的玻璃粉体进入到料斗200中,开启气动阀600,使得下料管300的末端产生负压,同时打开下料阀400,玻璃粉体在负压的作用下进入气动管500进而进入喷覆工具进行喷覆;所述搅拌转轴700水平设置在料斗200中。
本发明通过气动管、气动阀等部件,实现了玻璃粉体的均匀、连续涂覆,解决了现有技术中存在的问题。
优选地,所述料斗200上还设置有至少一个电动振打装置900,用于防止料斗200堵塞。
优选地,所述搅拌转轴700由电机1000驱动旋转。
优选地,如图2所示,干燥装置100包括螺旋输送机10、预热套管11、送风机12、加热器13、回流风温度调节器14、外壳体15、隔板16、内壳体17、混合器、扩展管长度调节装置、主喷嘴19、旋风分离器20和引风机21。由送风机12加压后的空气经加热器13加热后分为两路,一路经过第一控制阀22进入主喷嘴19,另一路依次经过第二控制阀23、回流风温度调节器14后由回流风管24进入内壳体17中,回流风管18穿过外壳体15和隔板16后以向下倾斜的角度切向地与内壳体17的上部相连通,这种向下的切向进入方式为未干燥合格的玻璃粉体提供了带旋转的向下运动加速度。主喷嘴19设置在内壳体17的底部。
隔板16设置在内壳体17和外壳体15之间,且其上端固接在外壳体15的顶部,其下端与外壳体15的底部之间留有间隙,内壳体17和隔板16之间的空间与顶部的引出管24相连通,引出管24与引风机21相连通。且引出管21的顶端水平设置,这样能保证调节可移动扩展管31长度时不发生偏斜水平。内壳体17的顶部设置有离心式分级器25,离心式分级器25的出口与旋风分离器20相连通,隔板16与外壳体15之间的空间与引入管26相连通,引入管26与旋风式分离器20的出口相连通,且引入管26切向地连接在外壳体15上。外壳体15的底部设置有2个放灰阀27。
如图3-5所示,混合器设置在内壳体17中,其包括自下而上布置的收缩管28、喉管29和扩展管,扩展管包括固定扩展管30和可移动扩展管31,可移动扩展管31部分套接在固定扩展管30外,这样的设置能够最大限度保证混合器内向上流动的气流和混合器外向下流动的气流不会冲入固定扩展管30和可移动扩展管之间31的间隙内造成串气。混合器的扩展管是干燥的主要部件,其长度关系到干燥的效果以及扩展管的出口物料速度,如果采用传统的固定长度式混合器,就只能通过调节送风量和离心式分级器25的分离间隙来调节,这就势必要求采用容量范围比较大的送引风机才能满足干燥范围变化大的玻璃粉体要求,这对于装置的小型化和节省成本很不利,而且调节手段也过于单一,基于此还设置有扩展管长度调节装置,其用于在线调节扩展管的长度,其包括滑动组件32、竖直连杆33、水平连杆34、螺纹块35、螺纹杆36、上密封体37和下密封体38。2个对称布置的滑动组件32设置在上密封体37和下密封体38之间,每个滑动组件32包括滑轨39、挂环40、滑块41、固定块42、张力弹簧43和挂钩44,滑轨39为2个,布置在可移动扩展管31的内壁上。滑轨39的方向与可移动扩展管31的运动方向相同。挂环40设置在可移动扩展管31的内壁上,且位于2个滑轨39之间。2个滑块41对应滑轨39设置在固定扩展管30的外壁上,每个滑块41上设置有宽度与滑轨39宽度匹配的滑动槽45。固定块42固接在固定扩展管30的外壁上,且位于两个滑块41之间,张力弹簧43的一端与固定块42固接,另一端与挂钩44固接。使用时,将滑轨39安装在滑块41的滑动槽45内,并将挂钩44挂接在挂环40中,张力弹簧43的设置能保证可移动扩展管31向下复位移动时,不会因为制造误差和小卡涩而不能在可移动扩展管31自身重力的作用下复位,而且也能使得其定位更准确。上密封体37固接在固定扩展管30的外壁上且与可移动扩展管31的内壁紧密接触,其上表面为斜面,所述斜面用于防止物料集聚在上密封体37上。下密封体38固接在可移动扩展管31的内壁上,且与固定扩展管30的外壁紧密接触,这种上下密封体分开固接的方式,在可移动扩展管31移动时除非2个密封体均发生偏移,否则至少有一个能起到密封的作用,能更好地起到防止串气的作用。上密封体37和下密封体38用于防止混合器中的气流通过间隙与内壳体17中的气流发生窜流。2个竖直连杆33与可移动扩展管31的上端固接,竖直连杆33的上端穿过内壳体17和引出管24向上延伸,水平连杆34连接2个竖直连杆33的上端。2个螺纹块35设置在引出管24上方,螺纹块35内设置有螺纹孔,2个螺纹杆36旋入螺纹孔中。螺纹块35还内置有用于驱动螺纹杆36运动的电机46。水平连杆34的下部设置有2个用于保持螺纹杆36运动中不发生位置偏移的固定槽47,螺纹杆36的上端抵压在固定槽47内。当需要增长扩展管的长度时,驱动电机46使得2个螺纹杆36向上旋出,螺纹杆36向上顶起水平连杆34进而使得可移动扩展管31沿着滑轨39向上运动,从而增长了扩展管的整体长度,反之当需要缩短扩展管的长度时反向驱动电机46使得2个螺纹杆36向下旋入。固定扩展管30与可移动扩展管31的轴向长度比为2.4:1,送风机12的最大容量较之未改造前减小了16%。
该干燥装置工作时,主喷嘴19中的高速热空气不断喷入混合器的收缩管28中,并在高速热空气的四周形成局部真空,不断将由螺旋输送机10送入的湿玻璃粉体吸入混合器中进行干燥。从混合器的扩展管喷出的空气和玻璃粉体的混合物碰撞离心式分级器25,未干燥合格的玻璃粉体由于水分较多粘结了部分灰尘和其他杂物而颗粒较粗,被离心式分级器25阻挡,并在回流风的作用下进入内壳体17和混合器之间的空间螺旋向下运动,由回流风再干燥后再次由内壳体17的底部进入收缩管28,不断进行循环直至干燥合格为止。干燥合格的玻璃粉体由离心式分级器25的出口进入旋风分离器20,干玻璃粉体由旋风分离器20的下部排出并进入料斗200。从旋风分离器20出来气流由引入管26切向地进入外壳体15和隔板16之间的空间,并由底部进入内壳体17和隔板16之间的空间,在此过程中较重的杂质由于重力作用分离到外壳体15的底部由排灰阀27定期排出,气流最后经引出管24排出后由引风机21排大气。
在该实施例中,(1)设计了一种适用于大批量加工的干燥装置,玻璃粉体经过混合器和旋转的回流风干燥后,得到的干燥产品的温度、水含量都比较均匀,既不会出现物化性质、品质下降的现象,也不会出现局部产品过热或者干不透的现象,从而得到了高质量的玻璃粉体;(2)设计了独特的扩展管长度调节装置,相对于传统的固定长度式混合器,不仅能通过调节送风量和离心式分级器25的分离间隙来调节干燥效果,而且可以在不拆卸壳体的情况下通过在线调节扩展管的长度来调节干燥和分离效果,丰富了调节手段,为采用容量比较小的送引风机提供了条件,有利于装置的小型化,固定扩展管30与可移动扩展管31的轴向长度比为2.4:1,送风机12的最大容量较之未改造前减小了16%;(3)通过滑轨39、挂环40、滑块41、固定块42、张力弹簧43等部件的设置,增加了扩展管长度调节时的稳定性和可靠性;通过独特的上密封体37和下密封体38的设计,能较好地防止混合器中的气流通过间隙与内壳体17中的气流发生窜流,且能有效防止物料集聚在上密封体37上;(4)通过隔板16、外壳体15等部件的设置,将灰尘分离与内壳体17、混合器等玻璃粉体干燥部件合为一体,避免了单独设置粉尘分离装置,减小了占地面积,有利于设备的集成化。
优选地,回到图2,回流风温度调节器14为管式换热器,离心式分级器25至旋风分离器20的管道上设置有一路分支至回流风温度调节器14,通过调节回流风温度调节阀48的开度来调节进入内壳体17的回流风的温度,换热后的气流由第一回气管49切向地进入外壳体15的中部。螺旋输送机10上设置有预热套管11,用于对进入内壳体15的湿玻璃粉体进行预热以减小混合器的热应力,旋风分离器20至引入管26之间的管道上设置有一路至预热套管11的入口51,加热后的气流从预热套管11的出口52流出,经第二回气管50切向地进入外壳体15的中部。切向的第一回气管49和第二回气管50的设置,增强了已经较弱的后半段回流风的温度和旋转速度,使得干燥和分离的效果得到了提高。
在该实施例中,通过预热套管11和回流风温度调节器14的设计,有效利用了尾部气流剩余的动能和热量,来减小混合器的热应力以及回流风的温度可调性,并且通过第一回流管49和第二回流管50的设置提高了后半段回流风的温度和旋转速度,使得干燥和分离的效果得到了提高。
应用场景5:
如图1所示的一种高性能玻璃体处理装置,包括干燥装置100、料斗200、下料管300、下料阀400、气动管500、气动阀600和搅拌转轴700;所述下料管300连接在料斗200的下方,下料阀400设置在下料管300上;所述气动管500连通下料管300,所述气动阀600设置在气动管500上,且气动管500的末端连接喷覆工具的料管;所述气动管500由压缩空气管道800供气;工作时,经过干燥装置100干燥的玻璃粉体进入到料斗200中,开启气动阀600,使得下料管300的末端产生负压,同时打开下料阀400,玻璃粉体在负压的作用下进入气动管500进而进入喷覆工具进行喷覆;所述搅拌转轴700水平设置在料斗200中。
本发明通过气动管、气动阀等部件,实现了玻璃粉体的均匀、连续涂覆,解决了现有技术中存在的问题。
优选地,所述料斗200上还设置有至少一个电动振打装置900,用于防止料斗200堵塞。
优选地,所述搅拌转轴700由电机1000驱动旋转。
优选地,如图2所示,干燥装置100包括螺旋输送机10、预热套管11、送风机12、加热器13、回流风温度调节器14、外壳体15、隔板16、内壳体17、混合器、扩展管长度调节装置、主喷嘴19、旋风分离器20和引风机21。由送风机12加压后的空气经加热器13加热后分为两路,一路经过第一控制阀22进入主喷嘴19,另一路依次经过第二控制阀23、回流风温度调节器14后由回流风管24进入内壳体17中,回流风管18穿过外壳体15和隔板16后以向下倾斜的角度切向地与内壳体17的上部相连通,这种向下的切向进入方式为未干燥合格的玻璃粉体提供了带旋转的向下运动加速度。主喷嘴19设置在内壳体17的底部。
隔板16设置在内壳体17和外壳体15之间,且其上端固接在外壳体15的顶部,其下端与外壳体15的底部之间留有间隙,内壳体17和隔板16之间的空间与顶部的引出管24相连通,引出管24与引风机21相连通。且引出管21的顶端水平设置,这样能保证调节可移动扩展管31长度时不发生偏斜水平。内壳体17的顶部设置有离心式分级器25,离心式分级器25的出口与旋风分离器20相连通,隔板16与外壳体15之间的空间与引入管26相连通,引入管26与旋风式分离器20的出口相连通,且引入管26切向地连接在外壳体15上。外壳体15的底部设置有2个放灰阀27。
如图3-5所示,混合器设置在内壳体17中,其包括自下而上布置的收缩管28、喉管29和扩展管,扩展管包括固定扩展管30和可移动扩展管31,可移动扩展管31部分套接在固定扩展管30外,这样的设置能够最大限度保证混合器内向上流动的气流和混合器外向下流动的气流不会冲入固定扩展管30和可移动扩展管之间31的间隙内造成串气。混合器的扩展管是干燥的主要部件,其长度关系到干燥的效果以及扩展管的出口物料速度,如果采用传统的固定长度式混合器,就只能通过调节送风量和离心式分级器25的分离间隙来调节,这就势必要求采用容量范围比较大的送引风机才能满足干燥范围变化大的玻璃粉体要求,这对于装置的小型化和节省成本很不利,而且调节手段也过于单一,基于此还设置有扩展管长度调节装置,其用于在线调节扩展管的长度,其包括滑动组件32、竖直连杆33、水平连杆34、螺纹块35、螺纹杆36、上密封体37和下密封体38。2个对称布置的滑动组件32设置在上密封体37和下密封体38之间,每个滑动组件32包括滑轨39、挂环40、滑块41、固定块42、张力弹簧43和挂钩44,滑轨39为2个,布置在可移动扩展管31的内壁上。滑轨39的方向与可移动扩展管31的运动方向相同。挂环40设置在可移动扩展管31的内壁上,且位于2个滑轨39之间。2个滑块41对应滑轨39设置在固定扩展管30的外壁上,每个滑块41上设置有宽度与滑轨39宽度匹配的滑动槽45。固定块42固接在固定扩展管30的外壁上,且位于两个滑块41之间,张力弹簧43的一端与固定块42固接,另一端与挂钩44固接。使用时,将滑轨39安装在滑块41的滑动槽45内,并将挂钩44挂接在挂环40中,张力弹簧43的设置能保证可移动扩展管31向下复位移动时,不会因为制造误差和小卡涩而不能在可移动扩展管31自身重力的作用下复位,而且也能使得其定位更准确。上密封体37固接在固定扩展管30的外壁上且与可移动扩展管31的内壁紧密接触,其上表面为斜面,所述斜面用于防止物料集聚在上密封体37上。下密封体38固接在可移动扩展管31的内壁上,且与固定扩展管30的外壁紧密接触,这种上下密封体分开固接的方式,在可移动扩展管31移动时除非2个密封体均发生偏移,否则至少有一个能起到密封的作用,能更好地起到防止串气的作用。上密封体37和下密封体38用于防止混合器中的气流通过间隙与内壳体17中的气流发生窜流。2个竖直连杆33与可移动扩展管31的上端固接,竖直连杆33的上端穿过内壳体17和引出管24向上延伸,水平连杆34连接2个竖直连杆33的上端。2个螺纹块35设置在引出管24上方,螺纹块35内设置有螺纹孔,2个螺纹杆36旋入螺纹孔中。螺纹块35还内置有用于驱动螺纹杆36运动的电机46。水平连杆34的下部设置有2个用于保持螺纹杆36运动中不发生位置偏移的固定槽47,螺纹杆36的上端抵压在固定槽47内。当需要增长扩展管的长度时,驱动电机46使得2个螺纹杆36向上旋出,螺纹杆36向上顶起水平连杆34进而使得可移动扩展管31沿着滑轨39向上运动,从而增长了扩展管的整体长度,反之当需要缩短扩展管的长度时反向驱动电机46使得2个螺纹杆36向下旋入。固定扩展管30与可移动扩展管31的轴向长度比为3:1,送风机12的最大容量较之未改造前减小了10%。
该干燥装置工作时,主喷嘴19中的高速热空气不断喷入混合器的收缩管28中,并在高速热空气的四周形成局部真空,不断将由螺旋输送机10送入的湿玻璃粉体吸入混合器中进行干燥。从混合器的扩展管喷出的空气和玻璃粉体的混合物碰撞离心式分级器25,未干燥合格的玻璃粉体由于水分较多粘结了部分灰尘和其他杂物而颗粒较粗,被离心式分级器25阻挡,并在回流风的作用下进入内壳体17和混合器之间的空间螺旋向下运动,由回流风再干燥后再次由内壳体17的底部进入收缩管28,不断进行循环直至干燥合格为止。干燥合格的玻璃粉体由离心式分级器25的出口进入旋风分离器20,干玻璃粉体由旋风分离器20的下部排出并进入料斗200。从旋风分离器20出来气流由引入管26切向地进入外壳体15和隔板16之间的空间,并由底部进入内壳体17和隔板16之间的空间,在此过程中较重的杂质由于重力作用分离到外壳体15的底部由排灰阀27定期排出,气流最后经引出管24排出后由引风机21排大气。
在该实施例中,(1)设计了一种适用于大批量加工的干燥装置,玻璃粉体经过混合器和旋转的回流风干燥后,得到的干燥产品的温度、水含量都比较均匀,既不会出现物化性质、品质下降的现象,也不会出现局部产品过热或者干不透的现象,从而得到了高质量的玻璃粉体;(2)设计了独特的扩展管长度调节装置,相对于传统的固定长度式混合器,不仅能通过调节送风量和离心式分级器25的分离间隙来调节干燥效果,而且可以在不拆卸壳体的情况下通过在线调节扩展管的长度来调节干燥和分离效果,丰富了调节手段,为采用容量比较小的送引风机提供了条件,有利于装置的小型化,固定扩展管30与可移动扩展管31的轴向长度比为3:1,送风机12的最大容量较之未改造前减小了10%;(3)通过滑轨39、挂环40、滑块41、固定块42、张力弹簧43等部件的设置,增加了扩展管长度调节时的稳定性和可靠性;通过独特的上密封体37和下密封体38的设计,能较好地防止混合器中的气流通过间隙与内壳体17中的气流发生窜流,且能有效防止物料集聚在上密封体37上;(4)通过隔板16、外壳体15等部件的设置,将灰尘分离与内壳体17、混合器等玻璃粉体干燥部件合为一体,避免了单独设置粉尘分离装置,减小了占地面积,有利于设备的集成化。
优选地,回到图2,回流风温度调节器14为管式换热器,离心式分级器25至旋风分离器20的管道上设置有一路分支至回流风温度调节器14,通过调节回流风温度调节阀48的开度来调节进入内壳体17的回流风的温度,换热后的气流由第一回气管49切向地进入外壳体15的中部。螺旋输送机10上设置有预热套管11,用于对进入内壳体15的湿玻璃粉体进行预热以减小混合器的热应力,旋风分离器20至引入管26之间的管道上设置有一路至预热套管11的入口51,加热后的气流从预热套管11的出口52流出,经第二回气管50切向地进入外壳体15的中部。切向的第一回气管49和第二回气管50的设置,增强了已经较弱的后半段回流风的温度和旋转速度,使得干燥和分离的效果得到了提高。
在该实施例中,通过预热套管11和回流风温度调节器14的设计,有效利用了尾部气流剩余的动能和热量,来减小混合器的热应力以及回流风的温度可调性,并且通过第一回流管49和第二回流管50的设置提高了后半段回流风的温度和旋转速度,使得干燥和分离的效果得到了提高。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (3)

1.一种高性能玻璃体处理装置,其特征是,包括干燥装置、料斗、下料管、下料阀、气动管、气动阀和搅拌转轴;所述下料管连接在料斗的下方,下料阀设置在下料管上;所述气动管连通下料管,所述气动阀设置在气动管上,且气动管的末端连接喷覆工具的料管;所述气动管由压缩空气管道供气;工作时,经过干燥装置干燥的玻璃粉体进入到料斗中,开启气动阀,使得下料管的末端产生负压,同时打开下料阀,玻璃粉体在负压的作用下进入气动管进而进入喷覆工具进行喷覆;所述搅拌转轴水平设置在料斗中。
2.根据权利要求1所述的一种高性能玻璃体处理装置,其特征是,所述料斗上还设置有至少一个电动振打装置,用于防止料斗堵塞。
3.根据权利要求2所述的一种高性能玻璃体处理装置,其特征是,所述搅拌转轴由电机驱动旋转。
CN201610605538.4A 2016-07-28 2016-07-28 一种高性能玻璃体处理装置 Pending CN106179809A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610605538.4A CN106179809A (zh) 2016-07-28 2016-07-28 一种高性能玻璃体处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610605538.4A CN106179809A (zh) 2016-07-28 2016-07-28 一种高性能玻璃体处理装置

Publications (1)

Publication Number Publication Date
CN106179809A true CN106179809A (zh) 2016-12-07

Family

ID=57495611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610605538.4A Pending CN106179809A (zh) 2016-07-28 2016-07-28 一种高性能玻璃体处理装置

Country Status (1)

Country Link
CN (1) CN106179809A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335567A (zh) * 2017-07-14 2017-11-10 滁州鸿博自动化设备有限公司 一种高效率的喷涂工作站
CN107694685A (zh) * 2017-11-24 2018-02-16 桂林市雁山区教育局教学研究室 一种转轴对辊机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003084672A1 (fr) * 2002-04-11 2003-10-16 Freund Industrial Co.,Ltd. Dispositif d'alimentation en poudre
CN101091939A (zh) * 2007-07-20 2007-12-26 北京科技大学 一种冷喷涂高压送粉器
CN201357127Y (zh) * 2008-12-09 2009-12-09 赵士平 分子筛灌装机中的送料装置
CN203586721U (zh) * 2013-12-02 2014-05-07 中南林业科技大学 一种生物质木屑干燥系统
CN203903476U (zh) * 2014-06-10 2014-10-29 中国能建集团装备有限公司北京技术中心 活性炭吸附剂输送系统
CN204528659U (zh) * 2015-04-03 2015-08-05 成都天本生物科技有限公司 多点吸料式粉粒肥料输送装置
CN205367128U (zh) * 2015-12-18 2016-07-06 江苏瑞源加热设备科技有限公司 工业排放脱硫脱硝一体化送料设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003084672A1 (fr) * 2002-04-11 2003-10-16 Freund Industrial Co.,Ltd. Dispositif d'alimentation en poudre
CN101091939A (zh) * 2007-07-20 2007-12-26 北京科技大学 一种冷喷涂高压送粉器
CN201357127Y (zh) * 2008-12-09 2009-12-09 赵士平 分子筛灌装机中的送料装置
CN203586721U (zh) * 2013-12-02 2014-05-07 中南林业科技大学 一种生物质木屑干燥系统
CN203903476U (zh) * 2014-06-10 2014-10-29 中国能建集团装备有限公司北京技术中心 活性炭吸附剂输送系统
CN204528659U (zh) * 2015-04-03 2015-08-05 成都天本生物科技有限公司 多点吸料式粉粒肥料输送装置
CN205367128U (zh) * 2015-12-18 2016-07-06 江苏瑞源加热设备科技有限公司 工业排放脱硫脱硝一体化送料设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335567A (zh) * 2017-07-14 2017-11-10 滁州鸿博自动化设备有限公司 一种高效率的喷涂工作站
CN107335567B (zh) * 2017-07-14 2019-08-16 滁州鸿博自动化设备有限公司 一种高效率的喷涂工作站
CN107694685A (zh) * 2017-11-24 2018-02-16 桂林市雁山区教育局教学研究室 一种转轴对辊机

Similar Documents

Publication Publication Date Title
CN205593327U (zh) 一种除湿热泵烘干机
CN101088980A (zh) 己二酸氮气循环、过热蒸汽“气流-流化床”两级干燥方法及装置
CN106178563B (zh) 一种利用惰性气体带走生成蒸气的装置
CN106179809A (zh) 一种高性能玻璃体处理装置
CN107238256A (zh) 一种奶粉加工用高效喷雾干燥装置
CN107356069A (zh) 一种可回收热量的食品烘干机
CN105806072A (zh) 氧化铝干燥系统及干燥方法
CN106766818A (zh) 一种彝族药物提取物节能高效气流干燥器及其干燥方法
CN102836672B (zh) 喷雾制粒流化干燥系统的卧式沸腾床
CN209116635U (zh) 一种喷动鼓泡流态化联合颗粒烘干装置
CN106247781A (zh) 一种钢铁粉体烘干干燥系统
CN106182412A (zh) 一种不偏色强搅拌陶瓷加工系统
CN203731802U (zh) 一种节能立式烘干机
CN106179679A (zh) 一种高性能污水处理剂制备系统
CN106216061A (zh) 一种利用超声波的染料体处理系统
CN106075941A (zh) 一种喷雾干燥设备
CN106241431A (zh) 一种具有防飞扬功能的滑石粉制备装置
CN106273068A (zh) 一种废旧橡胶连续处理系统
CN107655311B (zh) 氯化聚乙烯的干燥装置及方法
CN102847329B (zh) 喷雾制粒流化干燥机组的离心式喷雾干燥塔
CN106064492A (zh) 一种快速生物质燃料成型系统
CN109210870A (zh) 一种回形惰性粒子流化床干燥设备及其干燥方法
RU2339436C1 (ru) Многофункциональный аппарат со встречными закрученными потоками
CN205667308U (zh) 一种茶叶烘干机
CN106902529A (zh) 一种中药喷雾干燥系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207

RJ01 Rejection of invention patent application after publication