CN106166643A - 一种提高飞秒激光加工精度的方法 - Google Patents

一种提高飞秒激光加工精度的方法 Download PDF

Info

Publication number
CN106166643A
CN106166643A CN201610455158.7A CN201610455158A CN106166643A CN 106166643 A CN106166643 A CN 106166643A CN 201610455158 A CN201610455158 A CN 201610455158A CN 106166643 A CN106166643 A CN 106166643A
Authority
CN
China
Prior art keywords
mobile platform
sample
dimensional mobile
femtosecond laser
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610455158.7A
Other languages
English (en)
Other versions
CN106166643B (zh
Inventor
刘画池
宋宝安
姚剑婷
金友良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201610455158.7A priority Critical patent/CN106166643B/zh
Publication of CN106166643A publication Critical patent/CN106166643A/zh
Application granted granted Critical
Publication of CN106166643B publication Critical patent/CN106166643B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种提高飞秒激光加工精度的方法,将测量平台与微纳结构加工平台集成在一起,利用样品距离检测装置与旋转矩阵法相结合,利用该检测装置获得四个待加工区域的位置数据代入旋转矩阵后,计算获得修正后的微纳结构位置数据,并将该数据代入加工系统,精确地将激光光斑中心定位在样品上,优点在于不需要在不同平台间互相切换,表面高度数据测量后可以直接输入到计算机,利用旋转矩阵法消除待加工样品、衬底及三维移动平台表面等的倾斜造成的误差,精确定位被加工样品的位置,使得待加工样品准确设置在激光光斑的中心处,进而提高激光微纳加工的精度,使飞秒激光加工的精度可以达到300nm左右,并保证实际获得的结构与预设的结构相同。

Description

一种提高飞秒激光加工精度的方法
技术领域
本发明涉及一种飞秒激光加工的方法,尤其是涉及一种提高飞秒激光加工精度的方法。
背景技术
与CO2激光、Nd:YAG激光和KrF2紫外准分子激光相比,飞秒激光直写微纳结构具有热效应小、精度高和真三维加工能力,它是微纳光器件制备的理想工具,可以广泛应用于光流控芯片、光子晶体、微腔激光器及高密度光存储等领域。飞秒激光能够在短于晶格热扩散时间内,将能量注入材料中具有高度空间选择的区域。聚焦后激光功率密度可高达1015W/cm2,即使材料本身在该波长处不存在本征吸收,也会因激光诱导的多光子电离、雪崩电离与碰撞电离等非线性过程,实现纳秒或皮秒激光都难以实现的微纳结构调控,赋予材料独特的光电功能。为了获得预设的光功能微纳结构,除了要求飞秒激光功率稳定、三维平台位移精确及聚焦物镜高数值孔径以外,被加工材料表平面的精确定位尤其重要。
利用飞秒激光加工样品时,使用的激光波长是800nm,由于其利用非线性效应,仅仅在光强最强的聚焦光斑中心才能使得被加工材料改性,形成特定的结构。实际加工过程中,聚焦光斑的纵向长度仅有1μm左右,为了得到预设的微纳结构,整个待加工区域的纵向高度误差必须小于1μm,在大面积加工时此条件很难满足,尤其是被加工区域长度大于50μm时,由于三维移动平台、薄膜及衬底等的倾斜造成的高度差常常都大于1μm,这样就会导致实际加工的结果与预设的情况有较大差异。实际加工过程中需要对预设的微纳结构数据进行修正才能保证加工的精度。
发明内容
本发明所要解决的技术问题是提供一种简单有效地提高飞秒激光加工精度的方法。
本发明解决上述技术问题所采用的技术方案为:一种提高飞秒激光加工精度的方法,在加工设备上设置样品距离检测装置,通过所述的样品距离检测装置在飞秒激光加工前对放置在加工设备上的待加工样品的距离进行检测,从而提高飞秒激光加工的精度;所述的样品距离检测装置包括沿主光路顺序排列的用于发出加工光束的飞秒激光器、激光功率调谐机构、快门、第一偏振分光棱镜、全反镜、激光光束直径调整系统、第二偏振分光棱镜、物镜和用于放置样品的三维移动平台,所述的三维移动平台背面设置有对样品进行背景照明的LED光源,所述的第二偏振分光棱镜的分光路上设置有成像CCD,所述的第一偏振分光棱镜的分光路上设置有聚焦透镜和光电倍增管,所述的光电倍增管与放置在所述的三维移动平台上的样品表面处在共聚焦位置,所述的激光器、所述的三维移动平台、所述的快门、所述的激光功率调谐机构和所述的光电倍增管分别与控制计算机连接,对样品的距离进行检测的具体步骤为:
(1)顺序调节光路中涉及的各个光学元器件,使得全部光学元件中心等高且同轴;
(2)控制计算机调谐激光功率,使得飞秒激光输出功率为10μW;
(3)打开背景照明LED光源,调节三维移动平台的上下、前后及左右位置,使得感兴趣的目标区域移动到物镜的焦平面上,通过共焦的CCD观察样品表面,直至形成清晰的图像;
(4)上下扫描三维移动平台,通过调节全反镜的角度以及光电倍增管的电压,直到在控制计算机屏幕上观察到随着三维移动平台上下扫描光强由小到大,然后又由大到小变化的图像,最后通过调节三维移动平台的参考位置及扫描范围,将光强最强的位置移动到屏幕的中心并且整个变化的波形正好充满整个屏幕;
(5)控制计算机控制三维移动平台在待加工区域的四个角选取四个不同的测试点,重复步骤(4),分别扫描测量光强随着垂直扫描位置不同而变化的图像,得到四个最强光强所对应的位置数据,定义为P1(x1 y1 z1),P2(x2 y2 z2),P3(x3 y3 z3)和P4(x4 y4 z4),选取其中三个位置P1(x1 y1 z1),P2(x2 y2 z2),P3(x3 y3 z3)的数据计算旋转所需要的角度,并定义为利用另外一个位置P4(x4 y4 z4)的数据对计算所得的角度进行校验,若校验通过则进行下一步,否则重复步骤(4);
(6)将步骤(5)得到的校验合格的数据,通过旋转矩阵法进行修正,使得每一个加工点都精确定位在飞秒激光的焦斑中心。
所述的激光功率调谐机构由第一偏振片、波片和第二偏振片组成,所述的波片与所述的控制计算机连接,所述的控制计算机控制波片旋转使得飞秒激光输出功率为10μW。
所述的激光光束直径调整系统由一组透镜组成,从所述的激光光束直径调整系统出射后的光束直径为5mm。
所述的物镜的数值孔径为1.4。
通过旋转矩阵法对待加工的微纳结构原始数据进行修正,包括四个步骤:平移三维移动平台对称中心到旋转中心、三维移动平台绕X轴旋转、三维移动平台绕Y轴旋转、平移三维移动平台对称中心到初始位置,对应的四个矩阵分别是M1、M2、M3和M4:
M 1 = 1 0 0 v x 0 1 0 v y 0 0 1 v z 0 0 0 1 , M 2 = cosθ y 0 sinθ y 0 0 1 0 0 - sinθ y 0 cosθ y 0 0 0 0 1
M 3 = 1 0 0 0 0 cosθ x - sinθ x 0 0 sinθ x cosθ x 0 0 0 0 1 , M 4 = 1 0 0 - v x 0 1 0 - v y 0 0 1 - v z 0 0 0 1
vx,vy,vz为理论计算得到的微纳结构的初始坐标,定义初始向量为P0=[vx vy vz1],通过平移、旋转、旋转及平移四个操作获得最终的向量为:
P=M4×M3×M2×M1×P0
对于校验合格的三个位置P1(x1 y1 z1),P2(x2 y2 z2),P3(x3 y3 z3),旋转角度为将该数据代入最终向量P的计算公式中即得到校正后的微纳结构的位置数据。
步骤(5)中的角度校验方法为:利用第4个测试点数据P4(x4 y4 z4)与另外三个测试点P1(x1 y1 z1),P2(x2 y2 z2),P3(x3 y3 z3)中的任意两个的数据组合计算出另外一组旋转角度如果该数据与θx,θy之间的误差小于1%,则校验合格。
样品在安装固定在三维移动平台前要检测其表面粗糙度,采用激光干涉仪检测其表面粗糙度小于20nm。
与现有技术相比,本发明的优点在于测量平台与微纳结构加工平台集成在一起,不需要在不同平台间互相切换。表面高度数据测量后可以直接输入到计算机,利用旋转矩阵法修正待加工的微纳结构位置数据,然后直接控制飞秒激光进行微纳结构加工。本发明的检测装置结构简单,测量精度高,测量中使用的成像CCD、光电倍增管PMT等关键器件价格都较便宜,故成本低容易实现。在本发明的方法中,利用旋转矩阵法可以消除待加工样品、衬底及三维移动平台表面等的倾斜造成的误差,精确定位被加工样品的位置,使得待加工样品准确设置在激光光斑的中心处,进而提高激光微纳加工的精度,使得飞秒激光加工的精度可以达到300nm左右,同时能保证实际加工获得的结构与预设的结构相同。
附图说明
图1为本发明使用的样品距离检测装置的结构示意图;
图2为充满整个控制计算机屏幕的光强变化曲线的示意图;
图3为共聚焦显微镜得到使用本发明方法加工的微纳光栅的照片。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例一:一种提高飞秒激光加工精度的方法,在加工设备上设置如图1所示的样品距离检测装置,通过样品距离检测装置在飞秒激光加工前对放置在加工设备上的待加工样品14的距离进行检测,从而提高飞秒激光加工的精度;,样品距离检测装置包括沿主光路顺序排列的用于发出加工光束的激光器1、激光功率调谐机构2、快门3、第一偏振分光棱镜4、全反镜5、激光光束直径调整系统6、第二偏振分光棱镜7、物镜8和用于放置样品的三维移动平台9,激光功率调谐机构2由第一偏振片21、波片22和第二偏振片23组成,功率调谐精度为1μW,激光光束直径调整系统6由一组透镜组成,从激光光束直径调整系统6出射后的光束直径为5mm,物镜8的数值孔径为1.4,三维移动平台9背面放置有对样品进行背景照明的LED光源10,第二偏振分光棱镜7的分光路上设置有成像CCD 11,第一偏振分光棱镜4的分光路上设置有聚焦透镜12和光电倍增管13,光电倍增管13与放置在三维移动平台9上的待加工样品14表面处在共聚焦位置,激光器1、三维移动平台9、快门3、激光功率调谐机构2中的波片22和光电倍增管13分别与控制计算机15连接。对样品的距离进行检测的具体步骤为:
(1)顺序调节光路中涉及的各个光学元器件,使得全部光学元件中心等高且同轴;
(2)控制计算机调谐激光功率,使得飞秒激光输出功率为10μW;
(3)打开背景照明LED光源,调节三维移动平台的上下、前后及左右位置,使得感兴趣的目标区域移动到物镜的焦平面上,通过共焦的CCD观察样品表面,直至形成清晰的图像;
(4)上下扫描三维移动平台,通过调节全反镜的角度以及光电倍增管的电压,直到在控制计算机屏幕上观察到随着三维移动平台上下扫描光强由小到大,然后又由大到小变化的图像,最后通过调节三维移动平台的参考位置及扫描范围,将光强最强的位置移动到屏幕的中心并且整个变化的波形正好充满整个屏幕;
(5)控制计算机控制三维移动平台在待加工区域的四个角选取四个不同的测试点,重复步骤(4),分别扫描测量光强随着垂直扫描位置不同而变化的图像,得到四个最强光强所对应的位置数据,定义为P1(x1 y1 z1),P2(x2 y2 z2),P3(x3 y3 z3)和P4(x4 y4 z4),选取其中三个位置P1(x1 y1 z1),P2(x2 y2 z2),P3(x3 y3 z3)的数据计算旋转所需要的角度,并定义为利用第4个测试点数据P4(x4 y4 z4)与另外三个测试点数据P1(x1 y1 z1),P2(x2 y2 z2),P3(x3 y3 z3)中的任意两个组合计算出另外一组旋转角度如果该数据与θx,θy之间的误差小于1%,则校验合格,进行下一步,否则重复步骤(4);
(6)将步骤(5)得到的校验合格的数据,通过旋转矩阵法进行修正,使得每一个加工点都精确定位在飞秒激光的焦斑中心。
通过旋转矩阵法对待加工的微纳结构原始数据进行修正,包括四个步骤:平移三维移动平台对称中心到旋转中心、三维移动平台绕X轴旋转、三维移动平台绕Y轴旋转、平移三维移动平台对称中心到初始位置,对应的四个矩阵分别是M1、M2、M3和M4:
M 1 = 1 0 0 v x 0 1 0 v y 0 0 1 v z 0 0 0 1 , M 2 = cosθ y 0 sinθ y 0 0 1 0 0 - sinθ y 0 cosθ y 0 0 0 0 1
M 3 = 1 0 0 0 0 cosθ x - sinθ x 0 0 sinθ x cosθ x 0 0 0 0 1 , M 4 = 1 0 0 - v x 0 1 0 - v y 0 0 1 - v z 0 0 0 1
vx,vy,vz为理论计算得到的微纳结构的初始坐标,定义初始向量为P0=[vx vy vz1],通过平移、旋转、旋转及平移四个操作获得最终的向量为:
P=M4×M3×M2×M1×P0
对于校验合格的三个位置P1(x1 y1 z1),P2(x2 y2 z2),P3(x3 y3 z3),旋转角度为将该数据代入最终向量P的计算公式中即得到校正后的微纳结构的位置数据。
本发明的工作原理如下:
待加工的样品14为表面平整度良好的薄膜或块体材料。在此使用的待加工样品14是在厚度为1mm的二氧化硅玻璃衬底上,通过磁控溅射法镀上的厚度为1.2μm的硫系玻璃薄膜。打开激光器1的电源,将待加工样品14固定安装到三维移动平台9上,待加工样品14在安装固定在三维移动平台9前9采用激光干涉仪检测其表面粗糙度小于20nm。顺序开启照明LED光源10、光电倍增管13、成像CCD 11。调节三维移动平台9的Z轴,使得待加工样品14表面在成像CCD 11的焦平面上。然后调节三维移动平台9的X轴与Y轴,定位在加工区域的边缘一个角。开启激光器1并调节其功率到10μW。驱动三维移动平台9沿着Z轴方向在±200μm的大范围内扫描,扫描速度100μm/s。同时手动微调固定三维移动平台的基座高低,直到观察到成像CCD 11中出现由大变小,然后又由小变大的光斑。缩小Z轴方向的扫描范围为±100μm,同时调节扫描中心的参考位置,将扫描速度调低为50μm/s,依然清晰地看到由小变大,然后又由大变小的光斑。调节入射到光电倍增管13表面光斑的位置以及光电倍增管13的驱动电压,直到在控制计算机15屏幕上清晰地观察到光强随着扫描位置由小变大然后又变小的图像,调节Z轴扫描范围与扫描中心的参考位置,直到光强变化曲线填充满整个控制计算机15屏幕,如图2所示。读出光强最强处所对应的Z轴位置数据P1。然后分别移动三维移动平台9,定位到加工区域的另外三个角附近,利用相同的方法,重复前面的操作步骤,依次获得另外三个角落处的Z轴位置数据P2、P3和P4。
获得四个数据P1、P2、P3和P4后,选取其中三个位置数据计算旋转所需要的角度并利用另外一个位置数据对计算所得的角度进行校验,校验方法为利用第4个测试点数据P4(x4 y4 z4)与另外三个测试点数据P1(x1 y1 z1),P2(x2 y2 z2),P3(x3 y3 z3)中的任意两个组合计算出另外一组旋转角度如果该数据与θx,θy之间的误差小于1%,则校验合格,校验合格后将该旋转角度代入旋转矩阵对待加工的微纳结构原始数据进行修正。
采用旋转矩阵法由四个步骤构成:平移三维移动平台对称中心到旋转中心、三维移动平台绕X轴旋转、三维移动平台绕Y轴旋转、平移三维移动平台对称中心到初始位置,对应的四个矩阵分别是M1、M2、M3和M4:
M 1 = 1 0 0 v x 0 1 0 v y 0 0 1 v z 0 0 0 1 , M 2 = cosθ y 0 sinθ y 0 0 1 0 0 - sinθ y 0 cosθ y 0 0 0 0 1
M 3 = 1 0 0 0 0 cosθ x - sinθ x 0 0 sinθ x cosθ x 0 0 0 0 1 , M 4 = 1 0 0 - v x 0 1 0 - v y 0 0 1 - v z 0 0 0 1
vx,vy,vz为理论计算得到的微纳结构的初始坐标,定义初始向量为P0=[vx vy vz1],通过平移、旋转、旋转及平移四个操作获得最终的向量为:
P=M4×M3×M2×M1×P0
对于校验合格的三个位置P1(x1y1z1),P2(x2y2z2),P3(x3y3z3),旋转角度为将该数据代入最终向量P的计算公式中即得到校正后的微纳结构的位置数据。将该位置数据代入加工系统后将飞秒激光光斑中心精确地定位在待加工样品上,加工出微纳光栅,如图3所示,由图可知该方法可以获得间距为1μm,加工线宽为300nm的精度,而常规方法下使用800nm的激光波长能够达到的加工线宽为1μm,本发明提出的方法显著提高了激光加工精度。

Claims (7)

1.一种提高飞秒激光加工精度的方法,其特征在于在加工设备上设置样品距离检测装置,通过所述的样品距离检测装置在飞秒激光加工前对放置在加工设备上的待加工样品的距离进行检测,从而提高飞秒激光加工的精度;所述的样品距离检测装置包括沿主光路顺序排列的用于发出加工光束的飞秒激光器、激光功率调谐机构、快门、第一偏振分光棱镜、全反镜、激光光束直径调整系统、第二偏振分光棱镜、物镜和用于放置样品的三维移动平台,所述的三维移动平台背面设置有对样品进行背景照明的LED光源,所述的第二偏振分光棱镜的分光路上设置有成像CCD,所述的第一偏振分光棱镜的分光路上设置有聚焦透镜和光电倍增管,所述的光电倍增管与放置在所述的三维移动平台上的样品表面处在共聚焦位置,所述的激光器、所述的三维移动平台、所述的快门、所述的激光功率调谐机构和所述的光电倍增管分别与控制计算机连接,对样品的距离进行检测的具体步骤为:
(1)顺序调节光路中涉及的各个光学元器件,使得全部光学元件中心等高且同轴;
(2)控制计算机调谐激光功率,使得飞秒激光输出功率为10μW;
(3)打开背景照明LED光源,调节三维移动平台的上下、前后及左右位置,使得感兴趣的目标区域移动到物镜的焦平面上,通过共焦的CCD观察样品表面,直至形成清晰的图像;
(4)上下扫描三维移动平台,通过调节全反镜的角度以及光电倍增管的电压,直到在控制计算机屏幕上观察到随着三维移动平台上下扫描光强由小到大,然后又由大到小变化的图像,最后通过调节三维移动平台的参考位置及扫描范围,将光强最强的位置移动到屏幕的中心并且整个变化的波形正好充满整个屏幕;
(5)控制计算机控制三维移动平台在待加工区域的四个角选取四个不同的测试点,重复步骤(4),分别扫描测量光强随着垂直扫描位置不同而变化的图像,得到四个最强光强所对应的位置数据,定义为P1(x1y1z1),P2(x2y2z2),P3(x3y3z3)和P4(x4y4z4),选取其中三个位置P1(x1y1z1),P2(x2y2z2),P3(x3y3z3)的数据计算旋转所需要的角度,并定义为利用另外一个位置P4(x4y4z4)的数据对计算所得的角度进行校验,若校验通过则进行下一步,否则重复步骤(4);
(6)将步骤(5)得到的校验合格的数据,通过旋转矩阵法进行修正,使得每一个加工点都精确定位在飞秒激光的焦斑中心。
2.如权利要求1所述的一种提高飞秒激光加工精度的方法,其特征在于所述的激光功率调谐机构由第一偏振片、波片和第二偏振片组成,所述的波片与所述的控制计算机连接,所述的控制计算机控制波片旋转使得飞秒激光输出功率为10μW。
3.如权利要求1所述的一种提高飞秒激光加工精度的方法,其特征在于所述的激光光束直径调整系统由一组透镜组成,从所述的激光光束直径调整系统出射后的光束直径为5mm。
4.如权利要求1所述的一种提高飞秒激光加工精度的方法,其特征在于所述的物镜的数值孔径为1.4。
5.如权利要求1所述的一种提高飞秒激光加工精度的方法,其特征在于通过旋转矩阵法对待加工的微纳结构原始数据进行修正,包括四个步骤:平移三维移动平台对称中心到旋转中心、三维移动平台绕X轴旋转、三维移动平台绕Y轴旋转、平移三维移动平台对称中心到初始位置,对应的四个矩阵分别是M1、M2、M3和M4:
M 1 = 1 0 0 v x 0 1 0 v y 0 0 1 v z 0 0 0 1 , M 2 = cosθ y 0 sinθ y 0 0 1 0 0 - sinθ y 0 cosθ y 0 0 0 0 1
M 3 = 1 0 0 0 0 cosθ x - sinθ x 0 0 sinθ x cosθ x 0 0 0 0 1 , M 4 = 1 0 0 - v x 0 1 0 - v y 0 0 1 - v z 0 0 0 1
vx,vy,vz为理论计算得到的微纳结构的初始坐标,定义初始向量为P0=[vx vy vz 1],通过平移、旋转、旋转及平移四个操作获得最终的向量为:
P=M4×M3×M2×M1×P0
对于校验合格的三个位置P1(x1 y1 z1),P2(x2 y2 z2),P3(x3 y3 z3),旋转角度为将该数据代入最终向量P的计算公式中即得到校正后的微纳结构的位置数据。
6.如权利要求5所述的一种提高飞秒激光加工精度的方法,其特征在于步骤(5)中的角度校验方法为:利用第4个测试点数据P4(x4 y4 z4)与另外三个测试点P1(x1 y1 z1),P2(x2y2 z2),P3(x3 y3 z3)中的任意两个的数据组合计算出另外一组旋转角度如果该数据与θx,θy之间的误差小于1%,则校验合格。
7.如权利要求1所述的一种提高飞秒激光加工精度的方法,其特征在于样品在安装固定在三维移动平台前要检测其表面粗糙度,采用激光干涉仪检测其表面粗糙度小于20nm。
CN201610455158.7A 2016-06-21 2016-06-21 一种提高飞秒激光加工精度的方法 Active CN106166643B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610455158.7A CN106166643B (zh) 2016-06-21 2016-06-21 一种提高飞秒激光加工精度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610455158.7A CN106166643B (zh) 2016-06-21 2016-06-21 一种提高飞秒激光加工精度的方法

Publications (2)

Publication Number Publication Date
CN106166643A true CN106166643A (zh) 2016-11-30
CN106166643B CN106166643B (zh) 2017-08-25

Family

ID=58064535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610455158.7A Active CN106166643B (zh) 2016-06-21 2016-06-21 一种提高飞秒激光加工精度的方法

Country Status (1)

Country Link
CN (1) CN106166643B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106903434A (zh) * 2017-01-06 2017-06-30 长春理工大学 一种微型车刀表面织构的制造装置及制造方法
CN108413867A (zh) * 2017-04-18 2018-08-17 北京理工大学 激光微纳加工分光瞳差动共焦在线监测一体化方法与装置
CN108901118A (zh) * 2018-07-04 2018-11-27 北京大学 一种激光离子加速器中透明靶体定位系统及其定位方法
CN109128511A (zh) * 2018-09-12 2019-01-04 中国工程物理研究院激光聚变研究中心 激光抛光系统及方法
CN109332879A (zh) * 2018-09-17 2019-02-15 上海航天设备制造总厂有限公司 基于迈克尔逊干涉在线振镜定位精度校正加工系统和方法
CN109366384A (zh) * 2018-10-16 2019-02-22 滁州市云米工业设计有限公司 一种基于光圈校对的穿孔安装机构装置
CN110090075A (zh) * 2019-05-14 2019-08-06 北京航空航天大学 一种基于光信号监测的飞秒激光骨加工定位和加工方法
CN110643788A (zh) * 2018-06-27 2020-01-03 上海赛科利汽车模具技术应用有限公司 一种拉延模r凸角激光淬火路径线选择方法
CN112894149A (zh) * 2021-01-21 2021-06-04 北京理工大学 超短脉冲激光烧蚀物体的超快连续三维成像系统及方法
CN114012272A (zh) * 2021-10-19 2022-02-08 宁波大学 一种硫系玻璃微透镜阵列的制备方法
CN114985908A (zh) * 2022-07-13 2022-09-02 中南大学 一种微型回转式谐振结构的高精度加工系统和方法
CN117664933A (zh) * 2024-01-31 2024-03-08 季华实验室 激光光谱检测装置、方法、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244486A (zh) * 2007-02-13 2008-08-20 富士通株式会社 装置制造方法、激光处理方法以及激光处理设备
CN101856773A (zh) * 2010-04-22 2010-10-13 广州中国科学院工业技术研究院 一种激光加工初始位置的对焦定位方法及激光加工装置
CN102974936A (zh) * 2012-11-02 2013-03-20 中国人民解放军国防科学技术大学 激光焦点定位系统及将材料定位于激光焦点处的方法
CN103878478A (zh) * 2014-01-28 2014-06-25 华中科技大学 一种三维激光加工工件定位测量装置及其方法
JP2015082551A (ja) * 2013-10-22 2015-04-27 株式会社日本製鋼所 レーザ照射装置
JP5847291B2 (ja) * 2012-03-23 2016-01-20 三菱電機株式会社 レーザ加工装置
CN105598595A (zh) * 2016-02-16 2016-05-25 广东正业科技股份有限公司 一种激光喷嘴与加工面垂直度的校核方法与系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244486A (zh) * 2007-02-13 2008-08-20 富士通株式会社 装置制造方法、激光处理方法以及激光处理设备
CN101856773A (zh) * 2010-04-22 2010-10-13 广州中国科学院工业技术研究院 一种激光加工初始位置的对焦定位方法及激光加工装置
JP5847291B2 (ja) * 2012-03-23 2016-01-20 三菱電機株式会社 レーザ加工装置
CN102974936A (zh) * 2012-11-02 2013-03-20 中国人民解放军国防科学技术大学 激光焦点定位系统及将材料定位于激光焦点处的方法
JP2015082551A (ja) * 2013-10-22 2015-04-27 株式会社日本製鋼所 レーザ照射装置
CN103878478A (zh) * 2014-01-28 2014-06-25 华中科技大学 一种三维激光加工工件定位测量装置及其方法
CN105598595A (zh) * 2016-02-16 2016-05-25 广东正业科技股份有限公司 一种激光喷嘴与加工面垂直度的校核方法与系统

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106903434A (zh) * 2017-01-06 2017-06-30 长春理工大学 一种微型车刀表面织构的制造装置及制造方法
CN108413867A (zh) * 2017-04-18 2018-08-17 北京理工大学 激光微纳加工分光瞳差动共焦在线监测一体化方法与装置
CN110643788B (zh) * 2018-06-27 2021-07-23 上海赛科利汽车模具技术应用有限公司 一种拉延模r凸角激光淬火路径线选择方法
CN110643788A (zh) * 2018-06-27 2020-01-03 上海赛科利汽车模具技术应用有限公司 一种拉延模r凸角激光淬火路径线选择方法
CN108901118A (zh) * 2018-07-04 2018-11-27 北京大学 一种激光离子加速器中透明靶体定位系统及其定位方法
CN109128511A (zh) * 2018-09-12 2019-01-04 中国工程物理研究院激光聚变研究中心 激光抛光系统及方法
CN109128511B (zh) * 2018-09-12 2021-02-02 中国工程物理研究院激光聚变研究中心 激光抛光系统及方法
CN109332879A (zh) * 2018-09-17 2019-02-15 上海航天设备制造总厂有限公司 基于迈克尔逊干涉在线振镜定位精度校正加工系统和方法
CN109366384B (zh) * 2018-10-16 2020-10-27 太仓德纳森机电工程有限公司 一种基于光圈校对的穿孔安装机构装置
CN109366384A (zh) * 2018-10-16 2019-02-22 滁州市云米工业设计有限公司 一种基于光圈校对的穿孔安装机构装置
CN110090075A (zh) * 2019-05-14 2019-08-06 北京航空航天大学 一种基于光信号监测的飞秒激光骨加工定位和加工方法
CN112894149A (zh) * 2021-01-21 2021-06-04 北京理工大学 超短脉冲激光烧蚀物体的超快连续三维成像系统及方法
US11313971B1 (en) 2021-01-21 2022-04-26 Beijing Institute Of Technology Three-dimensional imaging system and method
CN114012272A (zh) * 2021-10-19 2022-02-08 宁波大学 一种硫系玻璃微透镜阵列的制备方法
CN114012272B (zh) * 2021-10-19 2023-09-05 宁波大学 一种硫系玻璃微透镜阵列的制备方法
CN114985908A (zh) * 2022-07-13 2022-09-02 中南大学 一种微型回转式谐振结构的高精度加工系统和方法
CN117664933A (zh) * 2024-01-31 2024-03-08 季华实验室 激光光谱检测装置、方法、电子设备及存储介质
CN117664933B (zh) * 2024-01-31 2024-05-07 季华实验室 激光光谱检测装置、方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN106166643B (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
CN106166643B (zh) 一种提高飞秒激光加工精度的方法
JP6704462B2 (ja) 露光システム、露光装置及び露光方法
JP6080877B2 (ja) スピンウェーハ検査システムおよび高周波高速オートフォーカス機構
CN102974936B (zh) 激光焦点定位系统及将材料定位于激光焦点处的方法
EP3531185A1 (en) Light illumination device, light processing apparatus using light illumination device, and light illumination method
JP5207213B2 (ja) オートフォーカス装置
US20110198322A1 (en) In-line metrology methods and systems for solar cell fabrication
US20100328643A1 (en) Multiple mirror calibration system
CN109702323B (zh) 一种深度连续可调的近4π立体角飞秒激光直写加工的方法及应用
US11959821B2 (en) Comprehensive test platform for fluorescence microscope objective lenses
CN109416461A (zh) 显微镜的光学路径中盖玻片的倾斜度测量和校正
CN109648191A (zh) 一种可实时调控能量的微米级高分辨率超快激光加工系统
CN103317228B (zh) 飞秒激光微加工的同步监测装置
US5543918A (en) Through-the-lens confocal height measurement
JP2014511020A (ja) 干渉格子を試料上に形成するための装置
CN108681093A (zh) 双光束激光准直系统
CN107064064B (zh) 一种飞秒激光加工中透明薄膜折射率改变量的获取方法
CN116884872B (zh) 晶圆表面曲率半径检测装置、方法及薄膜应力检测方法
CN114112322A (zh) 一种基于差分共焦的显微镜焦点偏移测量方法
CN112595493A (zh) 一种激光损伤阈值和非线性吸收的共靶面测量装置和方法
CN107138862A (zh) 一种激光旋转切割装置及方法
KR20130088585A (ko) 승하강이 조절되는 레이저간섭계를 이용한 두께측정장치
CN205748294U (zh) 一种用于激光加工的样品距离检测装置
US20240219699A1 (en) High-performance euv microscope device with free-form illumination system structure
JP2006119210A (ja) 焦点位置調整装置、レーザ照射装置及び光照射方法。

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant