CN106164277A - 生产小麦属转基因植物用的无选择标记根瘤菌科介导方法 - Google Patents

生产小麦属转基因植物用的无选择标记根瘤菌科介导方法 Download PDF

Info

Publication number
CN106164277A
CN106164277A CN201480067902.5A CN201480067902A CN106164277A CN 106164277 A CN106164277 A CN 106164277A CN 201480067902 A CN201480067902 A CN 201480067902A CN 106164277 A CN106164277 A CN 106164277A
Authority
CN
China
Prior art keywords
plant
triticum
transgenic
gene
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480067902.5A
Other languages
English (en)
Inventor
K·施密特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KWS SAAT SE and Co KGaA
Original Assignee
KWS SAAT SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KWS SAAT SE and Co KGaA filed Critical KWS SAAT SE and Co KGaA
Publication of CN106164277A publication Critical patent/CN106164277A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Abstract

本发明提出一种改善了的小麦属转基因植物生产方法,包括下列步骤:a)用一种基因成分根瘤菌科介导转化小麦属植物的至少一个细胞,和b)从转化了的细胞再生小麦属转基因植物,其中从步骤(a)至步骤(b)都没有根据一个用该基因成分或其一部分介导的特性选择转化的细胞。

Description

生产小麦属转基因植物用的无选择标记根瘤菌科介导方法
技术领域
本发明涉及生物技术领域,并包括一种改善了的借助于来自根瘤菌科,尤其土壤杆菌属的细菌细胞生产小麦属转基因植物的方法,以及用该改善了的方法生产的转基因植物或其一部分,
背景技术
小麦属植物,诸如,例如小麦(Triticum aestivum)产品是最重要的原料,并作为世界大部分地区的基本食物起决定性的作用。近五十年来,例如在小麦上在各种特征,例如,产量方面传统栽培所达到的进展,比其他作物类型,诸如玉米、甜菜或油菜明显地落后。小麦属转基因植物的研制提出一种至少部分地再次弥补这些耽误的进展的可能性。然而转基因小麦属植物通过根瘤菌科(例如,根癌农杆菌)介导转化的生产,自古以来就是极其困难的。一般在这里,例如,在小麦上每个分离输出外植株只达到1%-3%转基因植株的效率。在个别情况下文献转化方案(Transformationsprotokolle)(Hensel等人,2009;Shrawat和Loerz,2006)中描述高达10%的效率,然而这在实践中往往不可实现。已知的方案包括差不多只应用标记基因在共转化中进行选择(选择标记)。这时,该选择标记通常与要转化的目标基因(goi)耦合。作为标记基因一般不是采用一种抗生素抗体基因,就是采用除草剂抗体基因,转化的细胞在确定的体外条件下才能在再生阶段期间获得存活优势。因此标记基因提供一种区别非转基因植物和转基因植物的途径。最后,应用以标记基因选择使比较有效转化成为可能,或使转化完全成为可能。
因为选择标记只在转基因植物体外阶段期间才需要,所以它以后在植物中不再实现任何功能,因此这时是多余的。但因为可供支配的选择标记数量有限,所以不再需要的选择标记的存在恶化用第二目标基因附加对已经转基因植物的超级转化。因此,借助于顺序转化堆集多个基因只有有限的可能,并且各自的植物种类可供使用的不同的选择标记受到数量限制。
此外,在转基因植物中,尤其应用抗生素抗体基因作为选择标记,在社会上是受批判的,基本上在法律许可上和在商业化上只有无选择标记的转基因植物才可能被接受。然而,排除选择标记非常费工、费钱和费时间。
技术上今天对专业人员出现有从转基因植株的基因组中清除选择标记的不同方法和和辅助剂可供使用。一方面,人们可以利用高特异性核酸酶(例如,锌指核酸酶)。为此,这样的核酸酶必须通过与核酸酶表达系在含有要清除选择标记的转基因植物的基因组杂交导入。此外,在富有成效地排除选择标记之后,还需要借助于减数分离从转基因植物基因组排除该核酸酶。以此为了鉴定无选择标记植物至少需要下两代。作为这种方法的一个方案,可以考虑使用特异性重组酶(例如,Cre重组酶),然而这总是导致在该转基因植物中残留重组位点。从法律角度看这是有问题的,因为它在这里也是不需要的,因而在转基因植物内部是多余的基序。
另一方面,可以用两个T-DNA的植物转化,其中该一个T-DNA使目标基因和其他T-DNA携带选择标记。在约30%至50%所建立的转基因植物中,这时会在一个细胞中整合这两个T-DNAs,但处在基因组的不同的位置上。以此可能借助于减数分裂分离选择标记,并可能在下一代分离目标基因。然而,只有在输出转化体的第一子代才可能鉴定无选择标记植物。然而,由于这两个转化的T-DNA在接近相邻的基因组区域频繁的共整合,通过析出分离选择标记和目标基因效率非常低,以致必须建立数量很大的输出转化体,以便可以识别出足够数量的无选择标记的转基因植株。
在转化过程期间不使用选择步骤生产转基因植物,长时间以来被认为是不可能的(Potrykus等人,1998;Erikson等人,2005;Joersbo等人,2001)。在其2006年回顾文章中Shrawat和Loerz描述生产无选择标记谷类植物的各种可能性,然而所有方法都基于应用上述策略,因而不是实施共转化(目标基因和选择标记处于两个单独的T-DNA上),通过减数分裂分离选择标记和目标基因,接着通过特异性重组酶附带地排除选择标记。没有描述无选择标记转化的应用。
在不久以前出现的Tuteja等人(2012)的回顾文章中,同样提及很多建立无标记基因植物的方法。然而,即使在该文中也只是再一次显示Shrawat和Loerz(2006)提及的共转化或附加的排除选择标记的可能性。没有说明借助于诸如根癌农杆菌等根瘤菌科细菌,在小麦属植物中进行无选择标记的转化。DeVetten等人,2003,Ahmad等人,2008),烟草(Li等人,2009),橙(Ballester等人,2010)和苜蓿(Ferradini等人,2011)描述对于其他几种植物种类,此外马铃薯借助于土壤杆菌属的没有选择标记存在和应用的情况下植物转化。
今天已知下列在拒绝采用标记基因选择时可能出现的不希望出现的现象:
转化的外植体通过一般在愈伤阶段上的多个选择步骤。在这种选择阶段期间抗生素或灭草剂的存在使愈伤组织中转基因细胞的富集,它们携带相应的抗体基因,因而是转基因。非转基因细胞在其生长中受到抑制并死去,这使首先从被选择的愈伤组织再生转基因苗的概率明显提高。于是,Faize等人(2010)表示,在杏转化过程期间,杏苗中转基因组织的比例可以通过在选择性培养基上多次传代培养提高,并因此该苗的嵌合特性可以通过应用选择减少或消除。因而选择步骤失败,有目共睹地出现这样来自转基因细胞的非转基因苗在再生期间处于优势的危险。由此得出,通过土壤杆菌属感染转化的细胞与非转化的细胞相比具有活力劣势。因此,在无选择标记转化时,主要非转基因苗再生的概率提高。因此,与带有选择的转化相比,转化效率明显降低。在无选择标记马铃薯转化时,这进行了很好的研究,其中(De Vetten等人,2003)描述效率为1-4%,而在带有选择标记转化时可以获得约30%的效率(Chang和Chan,1991)。
另外,人们一般观察到,在基于标记子的选择不存在时,还有这样的苗再生,它不仅由转基因组织,而且由非转基因组织组成(嵌合苗)。这时,可以存在不同形式的嵌合特性。若应该存在平周(periklinale)嵌合,则可能在植物分生组织中出现形成配子所需要的L2细胞层是非转基因的。因此在这种植物中只形成非转基因配子,而在该植物中导入的转基因不传递到下一代。这时,在再生要繁殖的植物时,这样的嵌合转基因植物丢失。在局部嵌合植物上,该植物的几个区域是转基因的,其他区域是非转基因。在该植物非转基因的区域/部分中,只形成非转基因配子。因此,非转基因配子的比例明显提高,使得在后代中可以检测到非转基因的后代的比例增大。在子代中分裂比例不符合孟德尔定律。通过应用基于标记子的选择通常抑制嵌合苗形成,或在部分嵌合中转基因组织的比例通过应用选择压力这样高,以致没有再生转基因植物的嵌合特性的负作用或只有非常小,甚至出现不符合孟德尔定律的遗传。
从技术现状看,对于单子叶植物经济作物先有技术已知只有很少可以应用的无标记子基因的植物转化和生产方法。尤其对于小麦只有Liu等人2011年描述小麦植物富有成效的无选择标记生产。然而达到的产出率极低,只有0.28%,因此所描述的方法不适宜日常应用。此外,该作者为了转化使用微粒轰击和诸如根癌农杆菌等非根瘤菌科细菌。
WO 2008/028121描述可以不用选择产生的无选择标记玉米植物建立。该作者建议,所公开的方法还应用于其他禾本科,诸如小麦,然而所显示的实施例只限于用来产生转基因玉米植物。为此虽然该作者引证,所产生的玉米植物优选应该是非嵌合的,然而没有把转基因遗传到下一代的试验数据,以致无法排除所产生的转基因玉米植株仍然是嵌合的。在EP 2 274 973中同样描述借助于土壤杆菌属介导转化,其间没有应用选择步骤,产生转基因的单子叶植物,尤其玉米和水稻作物。对于玉米清楚地表示,在嵌合植物上出现的数目并非无关紧要,必须费用高昂的鉴别和筛选。嵌合的输出转化体的比例占所获得的转基因苗的>50%。只有小于20%产生转基因植物是完全非嵌合(一致的)。于是,带有嵌合特性的转化体数目,就像想象中的那样,比带有相应的选择步骤转化时高出一倍。这样,例如,在Coussens等人(2012)文中表示,在应用选择标记的情况下产生转基因玉米植物时,所建立的植物只有约5%的部分是嵌合的,或所建立的植物95%是非嵌合的,因此按照孟德尔定律转基因传递到下一代。此外,作者在EP 2 274 973描述不应用选择标记稻的转化,然而没有进行在所产生的无选择标记植物群体中嵌合植物的比例有多高的分析。在这方面,有趣的是,在应用选择压力的稻转化时已经出现嵌合植物(Hiei等人,1994)。因此在这里还可以预期,无选择标记转化时稻中嵌合植物的比例明显的高。作者从EP 2 274 973还建议把所公开的制造方法用来产生转基因小麦,然而没有找到为此的预期对于小麦何种效率和嵌合趋势的试验数据。尽管小麦像玉米和稻一样属于单子叶植物,但专业人员知道,这种作物植物类型的细胞在转化和再生过程中,可以具有明显不同的行为,因此必须怀疑,其他单子叶植物的转化结果是否可以毫无困难地转移到小麦植物上。于是,例如,Hensel等人在2009年在大麦、玉米、小黑麦属和小麦转化的比较中表示这样的区别。
EP 2 460 402 A1公开了一种特别有效的借助于根癌农杆菌转化小麦细胞的方法,在再生时应该使产出率为70%和每次分离的输出外植株较多的转基因植株成为可能。但是这里应用的转化方案总是包含选择标记潮霉素磷酸转移酶(hpt)或膦基麦黄酮乙酰基转移酶(PAT/bar)。虽然该作者宣称,对于产生转基因小麦植物的选择并不一定需要,然而在这里也缺少相应的试验证据。
发明内容
本发明是在上述先有技术的背景下进行的,本发明的任务是,提供一种根瘤菌科介导生产小麦属转基因植物的方法,它不用基于标记子的选择也行,而且把上述不希望的作用减到最小,或者只在较小的程度上呈现出来。此外,本发明的任务是一种小麦属转基因植物生产方法,它不仅从经济上看,而且从法律角度看,比至今的方法都有优势。
按照本发明,该任务用小麦属转基因植物生产方法解决,包括步骤:(a)通过小麦属植物外植体细胞与来自根瘤菌科的包括一种基因成分的至少一个细菌细胞共培养,用该基因成分转化小麦属植物的至少一个细胞,和(b)从来自(a)的至少一个转化的细胞再生小麦属转基因植物,其中从步骤(a)至步骤(b)都没有根据一种通过该基因成分或其一部分介导的特性对来自(a)的转化的细胞进行选择。
来自根瘤菌科的细菌细胞,最好是土壤杆菌属细菌细胞,和特别优选根癌农杆菌类型的细菌细胞(Broothaerts等人2005)。该细菌细胞优选在一个载体上,尤其在二元载体、超二元载体上或一个共整合载体系统的一个载体上包括该基因成分。
该基因成分优选是核酸分子,尤其是一个DNA分子或一个重组体DNA,并包括至少该目标基因。此外该基因成分还可以具有调节序列、内含子、RNA分子用的识别序列、DNA分子或蛋白质或一个5′-或3′-UTR(未翻译的区域)。
在本发明的一个方法中,在步骤(a)转化在允许小麦属植物外植体的至少一个细胞用来自根瘤菌科的细菌细胞富有成效的感染的条件下进行。这样的转化条件是专业人员从技术现状已知的(Cheng等人,1997)。在步骤(a)使用的外植体是一个胚性组织、细根、胚轴、胚麟或胚芽,或其一部分,而且是未成熟的胚胎或成熟的种子(EP 0 672 752 B1)。但还有其他适当的组织是已知的,对于诸如小麦等小麦属植物的转化可以成功使用(Shrawat和Loerz(2006))。
此外,来自(a)的至少一个转化的细胞在步骤(b)再生小麦属转基因植物,也意味着从来自(a)的至少一个转化的细胞再生植物,它从至少一个转化的细胞通过细胞分裂,例如在形成愈伤组织转化为体细胞胚的过程中产生的,以便这时导致苗的再生。专业人员从先有技术已知小麦属植物再生的不同技术。例如,一种再生可以从未成熟的胚胎进行(Vasil等人,1993)。再生的另一种可能性由Antheren或由Mikrosporen给出(例如:Maluszynski等人,2003)。此外,小麦植物还已经由花组织(Amoah等人,2001)以及由成熟胚胎的愈伤组织再生(Wang等人,2009)。
在根据本发明的方法中,从步骤(a)至步骤(b)都没有根据一个通过该基因成分或其一部分介导的特性选择来自(a)转化的细胞。这里来自(a)的转化的细胞,同样可以意味着从至少一个来自(a)的转化的细胞通过细胞分裂产生的一个转化的细胞。最好不根据一个通过该基因成分或其一部分介导的特性进行选择,不根据除草剂或抗生素抗性进行选择。
除草剂抗性可以,例如,通过来自链霉菌属hygroscopicus或链霉菌属viridochromogenes的膦基麦黄酮乙酰基转移酶的表达,它介导对草丁膦或双丙氨磷灭草剂的抗性(De Block等人,1987)。另一个除草剂抗性,相对于镇草宁有效成分的抗性可以通过5-烯醇式丙酮酸(Enolpyruvylshikimat)-3-磷酸盐合酶的过表达达到。通常为此使用一种对镇草宁不敏感的酶(Comai等人,1983)。
此外,对除草剂类,磺胺尿素、磺酰基氨基羰基三唑烷酮、咪唑酮、三唑并嘧啶和硫代)苯甲酸嘧啶酯的抗性,可以通过乙酰乳酸合酶(ALS)突变形式的表达达到。这时,不同的变异导致对不同除草剂的抗性。在关于通常使用的除草剂抗性的总览可在Tuteja等人(2012)、Kraus(2010)或Shrawat和Loerz(2006)文中找到。
抗生素抗性可以通过细菌基因的表达达到,所用的抗生素通过磷酸酯或醋酸基的传递失活。为此的示例是新霉素磷酸转移酶(npt),它介导对氨基糖苷类类别(例如,卡那霉素、巴龙霉素、遗传霉素)的抗生素的抗性。作为其他经常使用的抗生素抗性,例如,使用潮霉素磷酸转移酶,它介导对潮霉素B抗生素的抗性。关于在植物转化中采用的抗生素抗性的总览可在Tuteja等人(2012)、Kraus(2010)或Shrawat和Loerz(2006)文中找到。
但除了抗生素和除草剂抗性以外,还可以使用其他使转基因细胞和非转基因细胞之间出现差别成为可能的选择标记。为此的示例是,例如,花色素苷或其他植物染料产品的激励,通过一定的转录因子的表达(Kortstee等人,2011)、荧光蛋白的表达(Mussmann等人,2011)或营养缺陷型标记子的表达,诸如磷酸甘露糖异构酶(PMI),其表达使转基因细胞在甘露糖上作为唯一的糖源的生长成为可能,反之非转基因细胞不能利用这种碳源(Reed等人,2001)。
专业人员认识到,由于在转化上所缺的选择压力以及来自根据本发明的方法步骤(a)至步骤(b)的非转化的细胞除了转基因植物以外还可以在步骤(b)再生非转基因或嵌合植物。在可用的转基因植物(非嵌合)上产出率低,长期妨碍无标记子基因方法在生产转基因植物的经济合理的应用。一般是带有根据一个标记基因进行选择和紧跟着附加的排除选择标记的转基因植物生产,尽管它与工作量、成本和时间消耗相联系,此外是建立转基因的无选择标记植物的选择方法。为了提高建立转基因的单子叶植物的效率,专家一致认为,这只可以这样做到,即在外植体细胞与土壤杆菌属共培养的时刻,必须明显提高感染率。这时,这应该导致转化率增大,亦即,在外植体中存在较多的转化的细胞,这时由此还应该再生较多的转基因植物。从技术现状看,已知(US 2011/0030101 A1)这类提高转化效率不同的着手方法。它们还成功用在玉米和稻的无标记子基因的生产方法上。尽管今天转基因的玉米和水稻作物的无标记子基因生产方法在基于标记基因的选择的方法后面的转化效率仍旧落后,转基因的玉米和水稻作物生产仍旧总是首先应用基于标记基因的选择。此外在拒绝选择标记及其接着不可避免的鉴别和分选时,在并非无关紧要的程度上,这还导致存在的嵌合植物产生增大的问题。习惯上在拒绝基于标记子的选择时,嵌合植物的比例,与应用标记基因时达到的比例相比高得多。
按照本发明的方法首次描述在应用根瘤菌科介导转化的情况下,小麦属转基因植物的生产,其中没有根据一个通过在转化期间引入基因成分或其一部分进行介导的特性选择转化的细胞。与预想的相反,本发明的方法表明转化效率高得令人吃惊,比先有技术已知的不应用诸如根癌农杆菌等根瘤菌科细菌的转基因小麦属植物已知的无标记子基因的制造方法的转化效率高得多。该方法有利地具有至少5%,6%,7%,8%,9%或10%的转化效率,特别优选至少11%,12%,13%,14%,15%,16%,17%,18%,19%,20%,或更加特别优选的是至少21%,22%,23%,24%,25%,26%,27%,28%,29%,30%,31%,32%,33%,34%,35%,36%,37%,38%,39%,40%或40%以上。
在根据本发明的方法一个推荐的设计方案中,转化效率可与相应对比方法的转化效率相比,其差别在于,根据一个通过基因成分或其一部分介导的特性,因而根据至少一个选择标记选择转化的细胞。此外,根据本发明的方法的转化效率,具有一种根据通过该基因成分或其一部分介导的特性选择,因而根据至少一个选择标记选择的等效方法的转化效率的至少95%,至少90%,至少85%,至少80%,至少75%,至少70%,至少65%,至少60%,至少55%,至少50%,至少45%,至少40%,至少35%,至少30%或至少25%。由于与附加的从稳定的转基因植物排除选择标记相联系的工作量消耗大,即使当在根据本发明的方法中达到这样的转化效率时,专业人员仍然注意到,按照本发明的方法仍旧是有利的,并比先有技术有优势。另外,这样高的转化效率应该使专业人员感到意外,因为他从,例如,转基因的玉米和水稻作物无标记子基因生产的实践经验预期转化效率低得多。
在根据本发明的方法另一个推荐的实施中,上面描述的方法的特征在于,通过一个提高转化效率的处理提高转化效率。提高转化效率用的处理,可以实现至少5%,6%,7%,8%,9%或10%,的转化效率,最好至少11%,12%,13%,14%,15%,16%,17%,18%,19%,20%,或特别优选至少21%,22%,23%,24%,25%,26%,27%,28%,29%,30%,31%,32%,33%,34%,35%,36%,37%,38%,39%,40%或大于40%。在生产转基因植物的方法,尤其生产转基因单子叶植物的方法中,提高转化效率用的不同的处理是在先有技术中描述的。提高转化效率用的处理,可以包括至少一个由下列选定的处理:
i.在共培养期间或共培养之后,使组织或其一部分受到物理和/或化学损伤(EP 2460 402),
ii.共培养之前、在共培养期间或共培养之后的离心处理(Hiei等人,2006,WO2002/012520),
iii.在共培养用的培养基中添加硝酸银和/或硫酸铜(Zhao等人,2002;Ishida等人,2003;WO 2005/017152),
iv.共培养之前或在共培养期间外植体的热处理(WO 1998/054961),
v.共培养之前或在共培养期间或共培养之后的压力处理(WO 2005/017169),
vi.在粉剂存在的情况下用土壤杆菌属接种(WO 2007/069643)和
vii.在共培养用的培养基中添加半胱氨酸(Frame等人,2002)。
此外,在本发明的方法中可以采用先有技术已知的其他提高转化效率用的处理。为此提高转化效率用的处理,还可以是已知的提高转化效率用的处理的结合。
在根据本发明的方法另一个推荐的实施中,上面描述的方法不是其特征在于,在步骤(b)中小麦属转基因植物的再生是非嵌合的、转基因植物产生至少15%,至少16%,至少17%,至少18%,至少19%,至少20%,至少22%,至少24%,至少26%,至少28%,至少30%,至少32%,至少34%,至少36%,至少38%或至少40%,最好至少45%,至少50%,至少55%,至少60%,至少65%或至少70%,特别优选至少75%,至少80%,至少85%或至少90%的出现频率,就是其特征在于,小麦属转基因植物在步骤(b)的再生产生小于70%,65%,60%,55%,50%,45%,40%,35%,30%,28%,26%,24%,22%,20%,18%16%,15%,14%,13%,12%,11%,10%,9%,8%,7%,6%或5%嵌合转基因植物。
在根据本发明的方法一个特别推荐的设计方案中,来自步骤(b)小麦属非嵌合的转基因植物的比例,可与用相应的对比方法再生的小麦属非嵌合的转基因植物的比例相比较,差别在于,根据一个通过该基因成分或其一部分介导的特性,因而根据至少一个选择标记选择转化的细胞。这同样令是人吃惊的,因为专业人员从,例如,无标记子基因生产转基因的玉米植物的方法的实践经验指望,非嵌合小麦属转基因植物的比例要低得多。尽管来自步骤(b)的小麦属非嵌合转基因植物的比例,比对比方法的低,但由于带有上述附加的移除选择标记基因的无选择标记小麦属植物的建立工作量消耗大,专业人员仍会注意到,按照本发明的方法仍旧是有利的并比先有技术有优势。这时,该比例可以低出最多一个因数(倍)10、最多一个因数9、最多一个因数8、最多一个因数7、最多一个因数6、最多一个因数5、最多一个因数4.5、最多一个因数4、最多一个因数3.5、最多一个因数3、最多一个因数2.5、最多一个因数2。
如上所述,当再生苗由其中这些细胞的一部分是转基因的,而另一部分是非转基因的多个原始细胞形成时,可能出现嵌合的转基因植物。这时,例如,可能出现局部嵌合或平周嵌合(Periklinalchimaere)。通过非转基因组织在嵌合植物中的比例,例如,这可以通过定量PCR鉴别出来(Faize等人,2010)。
嵌合的转基因植物的另一个测试方法乃是分析输出转化体的第一子代。导入输出转化体的基因成分或其一部分可以按照孟德尔定律传递到下一代。在该植物细胞基因组中整合一个基因成分或其一部分的副本时,它只整合在二倍体基因组的单个染色体中。这时在一个非嵌合植物中在减数分裂中,该基因成分或其一部分可以在所形成的配子的50%找到。但是,在嵌合转基因植物中还由植物配子的非转基因零件形成。在这些组织中只形成不含有该基因成分或其一部分的配子。因此,在整个植物看来,在嵌合转基因植物中非转基因配子的比例提高到50%以上。在嵌合输出转化体Selbstungs后代中,非转基因后代的比例因此还提高到>25%的数值,因此大于按照孟德尔定律的期望值。在嵌合的转基因植物第一子代中不遵循孟德尔定律的分离的示例见于Coussens等人(2012)的论文。
在根据本发明的方法另一个特别推荐的设计方案中,来自步骤(b)的小麦属嵌合转基因植物的比例,可与以相应的对比方法再生的小麦属嵌合转基因植物的比例相比较,差别在于根据一个通过该基因成分或其一部分介导的特性,因而根据至少一个选择标记,选择转化的细胞。这同样令人吃惊,因为专业人员从,例如,无标记基因生产转基因的玉米植物的方法的实践经验中预期,小麦属嵌合转基因植物的比例会高得多。由于为了建立带有上述附加的移除选择标记基因的无选择标记小麦属植物的工作量消耗大,尽管来自步骤(b)的小麦属嵌合转基因植物的比例高于对比方法,专业人员也会注意到,按照本发明的方法仍旧是有利的而且比先有技术有优势。这时,该比例可能高出最多一个因数10、最多一个因数8、最多一个因数6、最多一个因数5、最多一个因数4、最多一个因数3.5、最多一个因数3、最多一个因数2.5、最多一个因数2、最多一个因数1.8、最多一个因数1.6、最多一个因数1.4、最多一个因数1.2、最多一个因数1.1。
在一个特别推荐的设计方案中,按照本发明的方法的特征在于,在步骤(b)之后包括另一步骤(c),选择来自步骤(b)的再生转基因植物。优选进行根据该基因成分或其一部分的分子结构或根据特性,尤其通过基因成分直接或间接地介导的表型特性(例如,除草剂抗性、病原体抗性、株高、产量、叶子结构)进行选择。基因成分或其一部分的分子结构意味着,尤其该基因成分或其一部分的核苷酸的顺序。步骤(c)用来检测小麦属植物细胞中基因成分或其一部分富有成效的转化,亦即,还检测植物基因组中基因成分或其一部分的传递。为此专业人员有很多先有技术的分子生物学的不同方法可供使用。这样导入细胞的基因成分的检测,例如,通过聚合酶链式反应(Mullis,1988)、通过与所导入的基因成分互补的可检测单链核酸、与转基因植物基因组DNA的杂交,例如,所谓DNA印迹(Southern,1975),或转基因植物基因组序列测定(Kovalic等人,2012)成为可能。此外,该基因成分或其一部分的分子结构还可以意味着,例如,通过从该基因成分转录、处理和/或翻译给出的衍生成分的分子结构。这样转基因植物中导入的基因成分或其一部分的转录物或编码的肽/多肽/蛋白质的检测同样作为基因成分或其一部分成功转化的证明,因而适宜于选择。专业人员已知的可以用于转录物检测目的方法的示例是:由该基因成分或其一部分形成的RNA重写为cDNA,和紧跟着聚合酶链式反应(RT-PCR;Sambrook等人,2001)、对导入基因成分的互补的可检测单链核酸与该转基因植物RNA的杂交(Northern Blot,Sambrook等人,2001)、或由基因成分或其一部分形成的RNA重写为cDNA,并紧跟着的对所获得的cDNA整个库的序列测定。所编码的肽/多肽/蛋白质,例如,可以借助于免疫检测通过不同的方法,诸如蛋白质印迹或ELISA鉴定。另外,为了进行选择,可以检测一种通过该基因成分直接或间接介导的表型特性。这样的表型检测还可以包括检测植物细胞改变了的化学成份。这时,这个改变了的化学成份可以借助于已知的化学分析方法检测。
在根据本发明的方法另一个特别推荐的设计方案中,在步骤(a)小麦属植物的该至少一个细胞与该完全基因成分转化,尤其稳定转化。完全意味着,小麦属植物至少一个细胞优选与该基因成分转化,其中该基因成分不经历损害小麦属植物细胞中基因成分想要的功能的截短(例如,从5′-或3′-端),而且小麦属植物的至少一个细胞特别优选与该基因成分的全部核苷酸转化。
在根据本发明的方法另一个特别推荐的设计方案中,在步骤(a)转化之后,该基因成分表现出小麦属植物的使该基因成分想要的功能成为可能的细胞中的表达高度。按照本发明的方法优选特征在于来自步骤(a)转化的细胞的10%,20%,30%,40%,50%,60%,70%,75%,80%,85%,90%,95%或100%具有一个可检测的表达高度,最好具有使该基因成分想要的功能成为可能的表达高度,或来自步骤(b)再生小麦属转基因植物的10%,20%,30%,40%,50%,60%,70%,75%,80%,85%,90%,95%或100%包括具有可检测表达高度的细胞,最好具有使该基因成分想要的功能成为可能的表达高度。
反而上面描述的生产小麦属转基因植物的方法允许有利地采用,因为从该转基因植物可以研制出质量较高的无选择标记的转基因植株。为了生产质量可比的转基因植株,目前只有借助于共转化和紧跟着的分离产生无选择标记植物的可能性。若比较以下运行通过应用共转化来产生无选择标记转基因植株所必须的消耗,与采用本发明的方法时的消耗,则研制纯合的无选择标记转基因植株的成本约高50倍。图1表示在采用共转化时以及在无选择标记转化时,产生100TO转基因的植株的成本估算。在下一代中进一步分析所产生的输出转化体,目的是获得纯合的无选择标记种子库。应用共转化时单副本无选择标记植株的产出率由只有30-50%的共转化率,和不仅目标基因而且该选择标记都必须存在单副本事件,以便收到足够高的这两个转基因的分离概率的要求决定,只有2纯合的种子库,而在按照本发明的无选择标记转化时可以从100输出转化体出发,以30纯合的种子库计算。
此外,本发明还包括用上述方法生产的小麦属的转基因植物,以及后代,其一部分或由此而得的种子,其中该后代、该部分或该种子具有在根据本发明的方法的步骤(a)传递的基因成分作为转基因的。这时,一部分可以意味着一个细胞、一个组织或一个器官。
在下文中首先较详细地说明在本申请书中使用的某些概念:
“目标基因”可以是每个类型的DNA或RNA-分子,例如,编码蛋白质的或者是一个核酸分子。
“小麦属植物”意味着,例如,Triticum aestivum(小麦种)植物、Triticum durum(小麦种)植物或Triticum spelta(小麦种)植物。
“调节序列”与本发明相联系是控制目标基因表达的一个核酸序列。示例是启动子、操纵子、增强子元件、减弱子、顺式元件等。
概念“选择标记”与本发明相联系,与选择标记基因或标记基因同义使用。可供使用的选择标记的示例如上述。
“转化效率”可以意味着带有阳性转基因的苗的外植体数目对输出外植株数目的比率。转化效率优选作为百分数给出。
概念“可比较”表示与两个或多个面对面的数字数据一起,使得这些数据彼此偏离最高+/-5%。
附图说明
现将参照附图和序列以举例的方式描述本发明的配置和实施方式:
图1:借助于共转化(左)和借助于本发明的方法产生100T0植物,和纯合无选择标记种子库的进一步鉴定的成本对比;
图2:带有用根癌农杆菌感染之后5天tDT转化小麦胚胎的胚麟的景色(左:荧光下;右:日光下);箭头表示举例提示通过土壤杆菌属给出的输出外植株中的荧光区域;
图3:二元载体pLH70SubiintrontDT(tDT(tDT是串联二聚体西红柿,一种红荧光蛋白质);
图4:各植株的基因组DNA的转化研究WA1.20ug选定的无选择标记转基因植株的DNA印迹,完全用酶Hindlll消化,在0.8%的琼脂糖凝胶中分离,在尼龙薄膜上转印,并接着用DIG标记出的PCR产物(tDTrev/tDT-for)杂交;
图5所导入的tDT基因借助于qRT-PCR在选定的转基因小麦植物的表达分析;
图6:借助于qPCR在所导入的转基因tDT上以及在所导入的nos终止子上受精卵状态的测定(见图3)。
具体实施方式
Taifun栽培品种小麦植物无选择标记转化:
Taifun品种小麦植物在暖室中栽培。培养条件是白天18℃和晚上16℃,其中光照时间等于16小时。作为照明光源使用钠灯(Master SON-T Agro 400W)。胚胎尺寸一般在发育穗中测试,而包含带胚胎的麦粒的麦穗具有1.5-2.5mm大小,收获并存放在4℃水中避光备用。
作为分离未成熟的麦胚胎的准备,麦粒从麦穗分离,并接着表面消毒。为此麦粒首先在70%乙醇中孵育45秒,接着,在1%次氯化钠溶液中孵育10分钟。消毒之后麦粒通过在无菌水中多次洗涤,释放仍旧粘附的次氯化钠。消毒后的麦粒这时避光存放在4℃下储存待用。
转化用的根癌农杆菌的培养菌株从根癌农杆菌菌株AGL1的甘油培养基出发,它在二元载体pLH70SublitrontDT(图3)中携带要转化的基因构建物。在选择性LB培养基上铺平板之后(用100mg/L利福平、100mg/L羧苄青霉素、50mg/L奇霉素、25mg/L放线壮观素)以单个菌落在2ml液体培养基在MG/L-培养基(Wu等人,2009)带有100mg/L利福平、100mg/L羧苄青霉素、50mg/L奇霉素、25mg/L放线壮观素接种,并在28℃和200rpm下生长过夜。在次日为了接种50ml新鲜MG/L培养基(100mg/L利福平、100mg/L羧苄青霉素、50mg/L奇霉素、25mg/L放线壮观素)使用250μl液体培养基,该培养基在28℃和200rpm下生长过夜。接着,一小份过夜培养基离心(4℃下和3500xg5分钟),弃去上清液,细菌沉淀在相同容积的lnf液体培养基(表1)以100μM乙酰丁香酮重悬浮。这样制造的根瘤土壤杆菌悬浮液可以用来感染该未成熟的胚胎。
从消毒的麦粒分离未成熟的胚胎,并在Inf液体培养基中收集(表1)。接着,该胚胎用新鲜液体培养基冲洗一次,这时通过离心处理在15.000rpm预处理10分钟。为了用土壤杆菌属感染,制备好的根瘤土壤杆菌悬浮液给到该胚胎上,该胚胎在该根瘤土壤杆菌悬浮液摆动30秒。接着,其上该胚胎在室温下在该根瘤土壤杆菌悬浮液中再孵育5分钟。这时该未成熟的胚胎放在共培养培养基(表1)上使胚麟面朝上。这样处理的外植体在23℃下避光孵育两天。图2表示用根癌农杆菌感染之后多天转化小麦胚胎的胚麟。小麦胚胎用报告基因结构转化,它导致在转化细胞中红色荧光蛋白质的形成。左图表示日光下的胚麟,右图表示荧光下的胚麟。可以明显看出,大部分胚麟细胞表达转基因,并因此成功用根癌农杆菌感染。
未成熟的小麦胚胎与土壤杆菌属共培养两天之后,借助于一个锋利小刀把该胚轴从每个胚胎移开,并将剩余的胚麟置设在静息培养基上(表1)。接着,带有胚麟的平板在25℃下避光孵育5天。接着,成长的愈伤组织再一次在25℃下在静息培养基上(表1)避光继代培养21天。
所诱生的愈伤组织在LSZ培养基上完全转化(表1),并在光照下放置14天。所形成的绿苗与愈伤组织分离,并在LSF培养基上(表1)扎根转化。这时,该苗只要它已经可能,就彼此分离,以便获得单苗。该苗从初始外植体发源(胚麟),这时捆绑在一起。苗生长到足够的高度之后,从这些叶子样本萃取DNA,紧跟着进行PCR测试。
表1:可用培养基成份
结果:
小麦的三个独立转化实验,如上所述,不用选择标记进行。在所有三个实验中,转基因植物都是不用选择子获得的(见表2)。令人吃惊的是导致转基因苗的外植体的高比例。在实验WA1中,151个被感染的胚胎激活苗的再生。PCR分析用的再生苗首先合计总共341苗库。视每个输出外植株的再生苗的数量而定,为此一个外植体各2-3苗用于DNA萃取目的汇集到样品容器中。若每个输出外植株再生大于三根苗,则从输出外植株要求更多苗库。然而,叶子样本绝不从多个输出外植株的苗提取。从所分析的苗库阳性的数量高得惊人(78或约23%)。从89外植体的341苗库中可以鉴定出42外植体78转基因的苗库。这时单独测试了基于78苗库的111苗,这时单独实验,并重新研究了转基因的存在。
为了检测再生苗中的转基因,从苗库或从单苗分离的DNA借助于PCR在重组体DNA存在的情况下进行研究。为此使用引物tDT-1(SEQ ID NO:1)和tDT-2(SEQ ID NO:2)。其中287bp碎片可以被扩增的DNA,表明导入的重组体DNA的存在并被视为转基因。为了测定在小麦基因组中导入转基因副本的数量,用引物nosTxxxf01(SEQ ID NO:3)和nosTxxxr03(SEQID NO:4)以及探针nosTxxxMGB(SEQ ID NO:5)进行定量PCR。定量PCR确认用经典的PCR首先获得的结果。
在实验WA1中总共可以检测82苗转基因。该82苗源于首先用根癌农杆菌感染的37个外植体/胚胎。据此,在实验WA1中尽管放弃基于标记子的选择,转化效率仍达到约25%。这个效率是从原有151所使用的外植体中37个外植体阳性苗算出的。
在实验WA2和WA3中直接借助于PCR研究所有从外植体再生的单苗,因为在实验WA1中高得令人吃惊的转基因苗的产出率,并因此应用库PCR策略(Pool-PCR-Strategie)是多余的。在再生苗的直接分析中,鉴定出56%(WA2)或75%(WA3)可再生外植体转基因单苗。
若转化效率是根据所使用的输出外植株数量算出的,则对于实验WA2给出27%的转化效率,而实验WA3给出40%。
对所有三个不应用基于标记子选择的小麦转化研究求平均给出,突出平均55%可再生外植体转基因的单苗,而平均转化效率达到约30%。
平行地进行了对比试验WA1K,WA2K和WA3K,其中选择标记潮霉素磷酸转移酶(hpt)与目标基因一起整合进小麦属Taifun基因组中。该转化正如在EP2460402中描述地进行,亦即,在愈伤组织和再生阶段期间以15mg/L或30mg/L浓度加入培养基潮霉素。
在WAK1时,这时可以达到37%的转化效率(204输出外植株中75外植体阳性苗)。在试验WAK2中转化效率等于24%(153输出外植株中37外植体阳性苗),而在WAK3中转化效率等于27%(175输出外植株中47外植体阳性苗)。因此,平均在这些转化实验中可以达到30%的效率(ΦWAK)。
因此,不应用选择时所发现的转化效率对应于在带有基于标记基因的选择的小麦转化实验中通常达到的效率,部分地该效率甚至更高。
表2:小麦(品种Taifun)不应用基于标记基因的选择的三个转化研究结果;WAKx表示带有基于标记基因的选择的对比试验,WAx表示不带基于标记基因的选择的实验
所生产的无选择标记转基因植株的转基因性检测,如上所述,通过qPCR进行。同时这个分析允许估计对商业目的其他用途特殊感兴趣的单副本植株的比例。这里还表明,该在应用和不应用选择标记的转化之间的结果并无区别。
这样在实验WA2中通过qPCR附加物可以鉴别出十二个独立的单副本植株。因为总共产生了27个独立转基因事件,这对应于44%的单副本事件比率。在实验WA3中同样产生12个独立的单副本事件,在总共42个产生的独立事件中,这对应于比率29%。
为了进一步证实所建立的植株的转基因性,从实验WA1的选出的植物中进行DNA印迹。专业人员知道,在T-DNA从根癌农杆菌传递到植物基因组时,往往只有传递缩短了的T-DNA碎片。这个在LB(左边沿)侧被删除。因此,应用于带有标记基因转化的T-DNA往往这样设计,使得该选择所使用的选择标记定位在T-DNA的LB-侧。因此,这时只有带有完整的T-DNA的事件,因而还有完整传递的标记基因才可以被选择。因为在无标记子基因转化时,只有作为T-DNA的目标基因存在,因此该目标基因可能在传递时无意中被缩短,这一般导致要向植物基因组传递的目标基因有缺陷的表达。
为了检查所传递的T-DNA的完整性进行杂交试验。这时,所导入的tDT-基因作为杂交探针使用。基因组DNA用HindlIl消化,以便完整整合的T-DNA给出大于3.0kb的杂交片段。如图4所示,在所有测试的PCR-阳性植株中发现杂交片段。阴性对照(Taifun)的基因组DNA不与探针杂交。因为所获得的全部杂交片段具有>3.0kb的大小,因此检测表明,在所有显示的植株中T-DNA都是完整整合的。这表明,传递之后转基因的质量,可与在应用带有LB侧标记基因的转化时的质量相比较。这是专业人员预先没有想到的。
此外,在所整合的转基因的表达高度方面,准确研究了用无标记子基因的转化方法产生的转基因植株。在应用带有选择标记的T-DNA时,为了富有成效地选择转基因植株,需要表达选择标记的基因,因此形成功能蛋白质。因此,使读不出所导入的基因构建物成为可能的基因组区域中T-DNA-整合不作为转基因植株鉴定。在应用无选择标记转化时,整合在使读不出转基因成为可能的基因组区域的事件,借助于诸如PCR等分子生物学方法同样作为转基因植株鉴定。因此,存在这样的危险,生产丝毫不表达所导入的转基因的转基因植株的比例增高。
因此,借助于qRT-PCR确定转化实验WA1的随机选定的植株所导入的转基因的表达高度(图5)。在所分析的13个转基因植株中,只有3个可以确认不表达转基因。当在各植株之间表达高度也有明显的差异时,所有其他植株表明明显的转基因表达。但即使在应用选择标记的情况下转化的转基因植株也是如此。因此,在借助于选择标记建立的和没有选择标记建立的转基因植株之间,还没有给出转基因质量上的差异。
为了检测嵌合的转基因植物的形成,研究了所导入的转基因是否按照孟德尔定律传递给下一代。为此,摆出6个转基因植株的种子(各30粒/植株),并借助于qPCR在所导入的转基因tDT上以及在所引入的nos-终止子上,确定转基因的存在以及其受精卵状态。作为示例在图6显示一个子代的分析结果。唯有要观察经典的单基因遗传经典的1∶2∶1遗传模式。子代分析结果的摘要列于表3。
6个被分析的子代中有5个表示按照孟德尔定律遗传(对应于83%)。因此,出发点可以是,所建立的转基因的输出转化体最大部分在转基因方面是均匀的。在转基因植株WA1-T-014非孟德尔遗传,一方面可以归因于非各向同性,因而归因于嵌合转基因植物,另一方面但还可以在该植物重要的基因中转基因的整合。以此导致部分致命的植物/胚胎,这还解释该子代低劣的发芽力(30粒种子只有20粒发芽)。
表3:检测嵌合转基因的子代分析结果
转基因植株 单性合子 半合子 纯合子 合计 分裂比 Chi2
WA1-T-006 8 16 3 27 1∶2∶1 0.25
WA1-T-008 8 14 7 29 1∶2∶1 0.95
WA1-T-009 4 16 9 29 1∶2∶1 0.36
WA1-T-014 11 6 3 20 0.01
WA1-T-024 8 13 9 30 1∶2∶1 0.74
WA1-T-028 9 17 4 30 1∶2∶1 0.33
参考文献
Ahmad,R.,Kim,Y.H.,Kim,M.D.,Phung,M.N.,Chung,W.I.,Lee,H.S.,...&Kwon,S.Y.(2008).Development of selection marker-free transgenic potato plants withenhanced tolerance to oxidative stress.Journal of Plant Biology,51(6),401-407.
Amoah,B.K.,Wu,H.,Sparks,C.,&Jones,H.D.(2001).Factors influencingAgrobacterium-mediated transient expression of uidA in wheat inflorescencetissue.Journal of Experimental Botany,52(358),1135-1142.
Ballester,A.,Cervera,M.,&L.(2010).Selectable marker-freetransgenic orange plants recovered under non-selective conditions and throughPCR analysis of all regenerants.Plant Cell,Tissue and Organ Culture(PCTOC),102(3),329-336.
Broothaerts,W.,Mitchell,H.J.,Weir,B.,Kaines,S.,Smith,L.M.,Yang,W.,...&Jefferson,R.A.(2005).Gene transfer to plants by diverse species ofbacteria.Nature,433(7026),629-633.
Chang,H.H.,&Chan,M.T.(1991).Improvement of potato(Solanum tuberosumL.)transformation efficiency by Agrobacterium in the presence of silverthiosulfate.Bot.Bull.Acad.Sin,32,63-70.
Cheng,M.,Fry,J.E.,Pang,S.,Zhou,H.,Hironaka,C.M.,Duncan,D.R.,...&Wan,Y.(1997).Genetic transformation of wheat mediated by Agrobacteriumtumefaciens.Plant Physiology,115(3),971-980.
Comai,L.,Sen,L.C.,&Stalker,D.M.(1983).An altered aroA gene productcoffers resistance to the herbicide glyphosate.Science,221(4608),370-371.
Coussens,G.,Aesaert,S.,Verelst,W.,Demeulenaere,M.,De Buck,S.,Njuguna,E.,...&Van Lijsebettens,M.(2012).Brachypodium distachyon promoters asefficient building blocks for transgenic research in maize.Journal ofexperimental botany,63(11),4263-4273.
De Block,M.,Botterman,J.,Vandewiele,M.,Dockx,J.,Thoen,C.,Gossele,V.,...&Leemans,J.(1987).Engineering herbicide resistance in plants byexpression of a detoxifying enzyme.The EMBO journal,6(9),2513.
De Vetten,N.,Wolters,A.M.,Raemakers,K.,van der Meer,I.,ter Stege,R.,Heeres,E.,...&Visser,R.(2003).A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop.Naturebiotechnology,21(4),439442.
Erikson,O.,Hertzberg,M.,&T.(2005).The dsdA gene fromEscherichia coli provides a novel selectable marker for plant transformation.Plant molecular biology,57(3),425-433.
Faize,M.,Faize,L.,&Burgos,L.(2010).Using quantitative real-time PCRto detect chimeras in transgenic tobacco and apricot and to monitor theirdissociation. BMC biotechnology,10(1),53.
Ferradini,N.,Nicolia,A.,Capomaccio,S.,Veronesi,F.,&Rosellini,D.(2011).Assessment of simple marker-free genetic transformation techniques inalfalfa. Plant cell reports,30(11),1991-2000.
Frame,B.R.,Shou,H.,Chikwamba,R.K.,Zhang,Z.,Xiang,C.,Fonger,T.M.,...&Wang,K.(2002).Agrobacterium tumefaciens-mediated transformation of maizeembryos using a standard binary vector system.Plant Physiology,129(1),13-22.
Hiei,Y.,Ohta,S.,Komari,T.,&Kumashiro,T.(1994).Efficienttransformation of rice (Oryza sativa L.)mediated by Agrobacterium andsequence analysis of the boundaries of the T-DNA.The Plant Journal,6(2),271-282.
Hiei,Y.,Ishida,Y.,Kasaoka,K.,&Komari,T.(2006).Improved frequency oftransformation in rice and maize by treatment of immature embryos withcentrifugation and heat prior to infection with Agrobacteriumtumefaciens.Plant cell,tissue and organ culture,87(3),233-243.
Hensel,G.,Kastner,C.,Oleszczuk,S.,Riechen,J.,&Kumlehn,J.(2009).Agrobacterium-mediated gene transfer to cereal crop plants:current protocolsfor barley,wheat,triticale,and maize.International Journal of Plant Genomics,2009.
Ishida,Y.,Saito,H.,Hiei,Y.,&Komari,T.(2003).Improved protocol fortransformation of maize(Zea mays L.)mediated by Agrobacteriumtumefaciens.Plant Biotechnology,20(1),57-66.
Ishida,Y.,Hiei,Y.,&Komari,T.(2007).Agrobacterium-mediatedtransformation of maize.Nature protocols,2(7),1614-1621.
Joersbo,M.(2001).Advances in the selection of transgenic plants usingnon-antibiotic marker genes.Physiologia plantarum,111(3),269-272.
Kortstee,A.J.,Khan,S.A.,Helderman,C.,Trindade,L. M.,Wu,Y.,Visser,R.G. F.,...&Jacobsen,E.(2011).Anthocyanin production as a potential visualselection marker during plant transformation.Transgenic research,20(6),1253-1264.
Kovalic,D.,Garnaat,C.,Guo,L.,Yan,Y.,Groat,J.,Silvanovich,A.,...&Bannon,G.(2012).The Use of Next Generation Sequencing and Junction SequenceAnalysis Bioinformatics to Achieve Molecular Characterization of CropsImproved Through Modern Biotechnology.The Plant Genome,5(3),149-163.
Kraus,J.(2010).Concepts of marker genes for plants.In GeneticModification of Plants(pp.39-60).Springer Berlin Heidelberg.
Li,B.,Xie,C.,&Qiu,H.(2009).Production of selectable marker-freetransgenic tobacco plants using a non-selection approach:chimerism or escape,transgene inheritance,and efficiency.Plant cell reports,28(3),373-386.
Liu,X.,Jin,W.,Liu,J.,Zhao,H.,&Guo,A.(2011).Transformation of wheatwith the HMW-GS 1Bx14 gene without markers.Russian Journal of Genetics,47(2),182-188.Maluszynski,M.(Ed.).(2003).Doubled haploid production in crop plants:a manual.Springer.
Mullis,K.B.,&Erlich,H. A.(1988).Primer-directed enzymaticamplification of DNA with a thermostable DNA polymerase.Science,239(4839),487-491.
Muβmann,V.,Serek,M.,&Winkelmann,T.(2011).Selection of transgenicPetunia plants using the green fluorescent protein(GFP).Plant Cell,Tissue andOrgan Culture (PCTOC),107(3),483-492.
Potrykus,I.,Bilang,R.,Futterer,J.,Sautter,C.,Schrott,M.,&Spangenberg,G.(1998).Genetic engineering of crop plants.Agricultural Biotechnology,119-159.
Reed,J.,Privalle,L.,Powell,M.L.,Meghji,M.,Dawson,J.,Dunder,E.,...&Wright,M.(2001).Phosphomannose isomerase:an efficient selectable marker forplant transformation. In Vitro Cellular &Developmental Biology-Plant,37(2),127-132.
Sambrook,J.,Russell,D.W.,&Russell,D.W.(2001).Molecular cloning:alaboratory manual(3-volume set).
Shrawat,A.K.,&H.(2006).Agrobacterium-mediated transformation ofcereals:a promising approach crossing barriers.Plant Biotechnology Journal,4(6),575-603.
Southern,E.M.(1975).Detection of specific sequences among DNAfragments separated by gel electrophoresis.Journal of molecular biology,98(3),503-517.
Tuteja,N.,Verma,S.,Sahoo,R.K.,Raveendar,S.,&Reddy,I.B.L.(2012).Recentadvances in development of marker free transgenic plants:regulation andbiosafety concern.Journal of Bioscience,37(1),162-197.
Vasil V, V Srivastava,AM Castillo,ME Fromm,IK Vasil(1993)Rapidproduction of transgenic wheat plants by direct bombardment of culturedimmature embryos.Bio/Technology 11:1553-1558.
Wang,Y. L.,Xu,M.X.,Yin,G. X.,Tao,L. L.,Wang,D.W.,&Ye,X.G.(2009).Transgenic wheat plants derived from Agrobacterium-mediated transformationof mature embryo tissues.Cereal Research Communications,37(1),1-12.
Wu,H.,Doherty,A.,&Jones,H. D.(2009).Agrobacterium-mediatedtransformation of bread and durum wheat using freshly isolated immatureembryos.In Transgenic wheat,barley and oats(pp.93-103).Humana Press.
Zhao,Z.Y.,Gu,W.,Cai,T.,Tagliani,L.,Hondred,D.,Bond,D.,...&Pierce,D.(2002).High throughput genetic transformation mediated by Agrobacteriumtumefaciens in maize.Molecular Breeding,8(4),323-333.
WO 1998/054961 A2(Novartis AG et al.),,Plant transformation methods“
WO 2002/012520 A1(Japan Tobacco Inc.)“Method of improving genetransfer efficiency into plants cells”
WO 2005/017152 A1(Japan Tobacco Inc.et al.)“Method for improvingplant transformation efficiency by adding copper ion”
WO 2005/017169 A1(Japan Tobacco Inc.et al.)“Method of transducinggene into plant material”
WO 2007/069643 A1(Japan Tobacco Inc.et al.)“Method for ImprovingTransformation Efficiency Using Powder“
WO 2008/028121 A1(Monsanto Technology LLC et al.)“Methods forproducing transgenic plants”
EP 0 672 752 B1(Japan Tobacco Inc.)“Method of transformingmonocotyledons using scutella of immature embryos”
EP 2 274 973 A1(Japan Tobacco Inc.)“Agrobacterium-mediated method forproducing transformed plant”
EP 2 460 402 A1(Japan Tobacco Inc.)“Method for gene transfer intoTriticum plants using Agrobacterium bacterium,and Method for production oftransgenic plant of triticum plant”
US 2011/0030101 A1(Japan Tobacco Inc.et al.)“Agrobacterium-mediatedmethod for producing transformed plant”

Claims (14)

1.小麦属转基因植物生产方法,包括下列步骤:
(a)通过小麦属植物外植体细胞与至少一个来自根瘤菌科的包括一个基因成分的细菌细胞的共培养,用该基因成分转化小麦属植物至少一个细胞,和
(b)从至少一个来自(a)的转化的细胞再生小麦属转基因植物,
其中从步骤(a)至步骤(b)都没有根据一个通过该基因成分或其一部分介导的特性选择来自(a)的转化的细胞。
2.根据权利要求1的方法,其特征在于,该小麦属植物是小麦(Triticum aestivum)、小麦(Triticum durum)或小麦(Triticum spelta)种植物。
3.根据权利要求1或2中一项的方法,其特征在于,该外植体是胚性组织,尤其是细根、胚轴、胚麟或胚芽,或其一部分。
4.根据权利要求3的方法,其特征在于,胚性组织是未成熟的胚胎或成熟种子的一部分。
5.根据权利要求1至4中一项的方法,其特征在于,没有根据一个通过该基因成分或其一部分介导的特性进行选择,没有根据除草剂或抗生素抗性的选择。
6.根据权利要求1至5中一项的方法,其特征在于,该方法具有至少5%的转化效率。
7.根据权利要求1至5中一项的方法,其特征在于,该方法的转化效率可与相应对比方法的相比,差别在于,根据一个通过该基因成分或其一部分介导的特性选择转化的细胞。
8.根据权利要求1至7中一项的方法,其特征在于,通过一个提高转化效率的处理来提高转化效率。
9.根据权利要求8的方法,其特征在于,提高转化效率用的处理导致至少5%的转化效率。
10.根据权利要求8和9中一项的方法,其特征在于,提高转化效率用的处理包括从下列选定的至少一种处理:
i.在共培养期间或共培养之后,组织或其一部分的物理和或化学损伤,
ii.共培养之前、在共培养期间或共培养之后的离心处理,
iii.在共培养用的培养基中添加硝酸银和/或硫酸铜、共培养之前或在共培养期间外植株的热处理,
iv.共培养之前或在共培养期间或共培养之后的压力处理,
v.在共培养用的培养基中存在粉剂和添加半胱氨酸的情况下用土壤杆菌属接种。
vi.在粉剂存在的情况下用土壤杆菌属接种,
vii.共培养用的培养基中和添加半胱氨酸。
11.根据权利要求1至10的方法,其特征在于,步骤(b)以至少15%的出现频率产生非嵌合转基因植物。
12.根据权利要求1至11中一项的方法,其特征在于,该方法包括另一步骤:(c)选择来自步骤(b)的再生转基因植物。
13.根据权利要求12的方法,其特征在于,在步骤(c)的选择根据该基因成分或其一部分的分子结构,或根据通过该基因成分直接或间接介导的特性,尤其表型特性进行。
14.用根据权利要求1-13中一项的方法生产的小麦属转基因植物,以及后代、其一部分或其种子。
CN201480067902.5A 2013-12-15 2014-12-13 生产小麦属转基因植物用的无选择标记根瘤菌科介导方法 Pending CN106164277A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013020605.7A DE102013020605A1 (de) 2013-12-15 2013-12-15 Selektionsmarker-freies rhizobiaceae-vermitteltes verfahren zur herstellung einer transgenen pflanze der gattung triticum
DE102013020605.7 2013-12-15
PCT/DE2014/000639 WO2015085990A1 (de) 2013-12-15 2014-12-13 Selektionsmarker-freies rhizobiaceae-vermitteltes verfahren zur herstellung einer transgenen pflanze der gattung triticum

Publications (1)

Publication Number Publication Date
CN106164277A true CN106164277A (zh) 2016-11-23

Family

ID=52468861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480067902.5A Pending CN106164277A (zh) 2013-12-15 2014-12-13 生产小麦属转基因植物用的无选择标记根瘤菌科介导方法

Country Status (8)

Country Link
US (1) US20160312235A1 (zh)
EP (1) EP3080278A1 (zh)
CN (1) CN106164277A (zh)
AR (1) AR098760A1 (zh)
AU (1) AU2014361303B2 (zh)
CA (1) CA2933922A1 (zh)
DE (1) DE102013020605A1 (zh)
WO (1) WO2015085990A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019018059A2 (pt) 2017-03-07 2020-08-04 BASF Agricultural Solutions Seed US LLC molécula de ácido nucleico recombinante, célula hospedeira, plantas, sementes transgênicas, polipeptídeo recombinante, método para produzir um polipeptídeo, método de controle de ervas daninhas, uso do ácido nucleico e produto de utilidade
US11180770B2 (en) 2017-03-07 2021-11-23 BASF Agricultural Solutions Seed US LLC HPPD variants and methods of use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983007A (zh) * 2008-03-31 2011-03-02 日本烟草产业株式会社 利用土壤杆菌制作转化植物的方法
CN102469769A (zh) * 2009-07-29 2012-05-23 日本烟草产业株式会社 使用土壤杆菌对小麦属的植物进行基因导入的方法及小麦属的植物的转化植物的制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU687863B2 (en) 1993-09-03 1998-03-05 Japan Tobacco Inc. Method of transforming monocotyledon by using scutellum of immature embryo
MX257801B (en) 1997-06-02 2008-06-10 Syngenta Participations Ag Plant transformation methods
CN1268752C (zh) 2000-08-03 2006-08-09 日本烟草产业株式会社 提高植物细胞转基因效率的方法
KR20060057586A (ko) 2003-08-13 2006-05-26 니뽄 다바코 산교 가부시키가이샤 구리이온의 첨가에 의해 식물의 형질전환 효율을향상시키는 방법
KR20060061354A (ko) 2003-08-13 2006-06-07 니뽄 다바코 산교 가부시키가이샤 식물재료로의 유전자 도입을 행하는 방법
WO2007069301A1 (ja) 2005-12-13 2007-06-21 Japan Tobacco Inc. 粉体を用いて形質転換効率を向上させる方法
ATE497008T1 (de) 2006-08-31 2011-02-15 Monsanto Technology Llc Verfahren zur herstellung transgener pflanzen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983007A (zh) * 2008-03-31 2011-03-02 日本烟草产业株式会社 利用土壤杆菌制作转化植物的方法
CN102469769A (zh) * 2009-07-29 2012-05-23 日本烟草产业株式会社 使用土壤杆菌对小麦属的植物进行基因导入的方法及小麦属的植物的转化植物的制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. CAMPA等: "Production of marker-free wheat (Triticum aestivum) plants transformed by Agrobacterium", 《PROCEEDINGS OF THE XLIX ITALIAN SOCIETY OF AGRICULTURAL GENETICS ANNUAL CONGRESS》 *
RANIN BEN-SAAD等: "Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses", 《MOLECULAR BREEDING》 *

Also Published As

Publication number Publication date
AR098760A1 (es) 2016-06-15
EP3080278A1 (de) 2016-10-19
US20160312235A1 (en) 2016-10-27
CA2933922A1 (en) 2015-06-18
WO2015085990A1 (de) 2015-06-18
DE102013020605A1 (de) 2015-06-18
AU2014361303B2 (en) 2017-12-07
AU2014361303A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
CN104357535B (zh) 植物无选择转化
JP6990653B2 (ja) 迅速な植物形質転換のための方法および組成物
WO2001025459A1 (fr) Vecteurs de transformation de plantes
Sidorova et al. A non-antibiotic selection strategy uses the phosphomannose-isomerase (PMI) gene and green fluorescent protein (GFP) gene for Agrobacterium-mediated transformation of Prunus domestica L. leaf explants
Hensel et al. Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack)
US20190127755A1 (en) Construct and vector for intragenic plant transformation
CN107338230B (zh) OsMPK11蛋白及其编码基因在调控植物抗旱性中的应用
CN102725414B (zh) 用于通过在转化过程中诱导bbm提供可育植物的方法
Hoque et al. Agrobacterium-mediated transformation of Indica rice genotypes: an assessment of factors affecting the transformation efficiency
CN109983122A (zh) 植物中的靶向基因组优化
JP2009534019A (ja) サトウダイコンの抽薹を制御するトランスジェニック植物およびそのための方法
Ahn et al. Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.)
US20120131691A1 (en) Light-regulated promoters
CN106164277A (zh) 生产小麦属转基因植物用的无选择标记根瘤菌科介导方法
CN107338231A (zh) OsMPK21-1蛋白及其编码基因在调控植物抗旱性中的应用
CN102337294A (zh) 水稻细胞转化方法
BR102018073082A2 (pt) Método para obtenção de sementes de mamoneira sem ricina/rca, plantas de mamona sem ricina/rca, método de identificação de plantas de mamona sem ricina/rca, polinucleotídeos, construções, e usos das mesmas
CN112430684B (zh) 一种用于检测水稻植物h23的核酸序列及其检测方法
Arrillaga et al. In vitro plant regeneration and gene transfer in the wild tomato Lycopersicon cheesmanii
CN101662932A (zh) R基因作为选择标记在植物转化中的用途和同种源基因在植物转化中的用途
Al-Forkan et al. Agrobacterium-mediated transformation of Bangladeshi Indica rices
AU2018253628B2 (en) Construct and vector for intragenic plant transformation
CN112342218B (zh) Boc1蛋白在调控水稻愈伤组织褐化中的应用
Hanley An investigation into the tissue culture and transformation of embryonic
KR20230022743A (ko) 콩 유전자교정 효율 증대를 위한 유전자교정 시스템 및 이의 용도

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination