CN106154825A - 一种带有时延的网络化控制系统的非脆弱h∞控制方法 - Google Patents

一种带有时延的网络化控制系统的非脆弱h∞控制方法 Download PDF

Info

Publication number
CN106154825A
CN106154825A CN201610534363.2A CN201610534363A CN106154825A CN 106154825 A CN106154825 A CN 106154825A CN 201610534363 A CN201610534363 A CN 201610534363A CN 106154825 A CN106154825 A CN 106154825A
Authority
CN
China
Prior art keywords
matrix
controller
time delay
network
epsiv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610534363.2A
Other languages
English (en)
Other versions
CN106154825B (zh
Inventor
潘丰
高敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing amber Technology Co.,Ltd.
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201610534363.2A priority Critical patent/CN106154825B/zh
Publication of CN106154825A publication Critical patent/CN106154825A/zh
Application granted granted Critical
Publication of CN106154825B publication Critical patent/CN106154825B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/14Automatic controllers electric in which the output signal represents a discontinuous function of the deviation from the desired value, i.e. discontinuous controllers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/26Automatic controllers electric in which the output signal is a pulse-train

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种带有时延的网络化控制系统的非脆弱H∞控制方法,考虑NCSs中存在的网络诱导时延与控制器参数摄动问题,设计了一种加性非脆弱状态反馈控制器u(k)=(K+ΔK)x(k‑d(k)),控制器增益参数表达式为:使得被控线性离散时不变系统在一定的参数摄动和时延条件下达到渐近稳定并满足设定的H性能指标。

Description

一种带有时延的网络化控制系统的非脆弱H∞控制方法
技术领域:
本发明属于网络控制系统领域,特别涉及一种带有时延的网络化控制系统的非脆弱H∞控制方法。
背景技术:
通过网络形成的反馈控制系统统称为网络控制系统NCSs(networked controlsystems)。该类系统中,传感器与控制器以及控制器与执行器之间的数据传输都是通过网络实现的。在传统的控制系统中加入网络作为通信媒介,有限的网络带宽则不可避免的会出现资源竞争和网络拥塞等现象,进而导致数据传输的延迟,这种延迟称为网络时延[2]。由于网络时延的存在,网络控制系统的控制输入得不到及时更新,不仅会降低系统的控制性能,甚至会影响系统的稳定性。
在实际的网络化控制系统中,往往存在一些不可预测的外界干扰,容易导致控制器的增益发生微小的摄动,保证系统在控制器增益摄动条件下的稳定性具有重要意义。因此,在进行系统分析与设计时,往往需要考虑控制器对其自身参数不确定的鲁棒性能,但已有的研究提供的控制方法未涉及控制器参数摄动情况。本发明综合考虑NCSs中存在的网络诱导时延与控制器参数摄动问题,设计了一种非脆弱控制器,使得被控系统在一定的参数摄动和时延条件下达到渐近稳定并满足设定的H性能指标。
发明内容:
为了解决上述问题,本发明提供了带有时延的网络化控制系统的非脆弱H∞控制方法。
本发明所采用的技术方案其主要实现步骤如下:
(1)针对线性离散时不变系统
x ( k + 1 ) = A x ( k ) + B 2 u ( k ) + B 1 w ( k ) z ( k ) = C x ( k ) + D w ( k ) - - - ( 1 )
其中x(k)∈Rn、u(k)∈Rm、w(k)∈Rp、z(k)∈Rq分别表示系统状态、控制输入、外部扰动输入和被控输出,A∈Rn*n、B2∈Rn*m、B1∈Rn*p、C∈Rq*n、D∈Rq*p为对应适当维数的系数矩阵,矩阵B2满足列满秩;
(2)数据在网络中传输产生的时延为d(k),控制器端的状态为x(k)=x(k-d(k)),其中0<d(k)≤dmax,dmax为输入时延d(k)的上界;
(3)设计加性非脆弱状态反馈控制器
u(k)=(K+ΔK)x(k-d(k))
K∈Rm×n为控制器增益矩阵,ΔK∈Rm×n为控制器的增益摄动,具体形式为:
ΔK=HF(k)E,F(k)FT(k)≤I
其中H∈Rm×m和E∈Rm×n是具有特定维数的常数矩阵,反映增益摄动的强弱,
F(k)∈Rm×m为不确定加性时变扰动矩阵;
(4)矩阵B2列满秩,由
UB 2 V = U 1 U 2 B 2 V = B 21 0
求出两个正交矩阵U∈Rn×n和V∈Rm×m,其中U1∈Rm×n,U2∈R(n-m)×n,B21=diag{b1,b2,...,bm},bi(i=1,2,...,m)是B2的非零奇异值;
(5)矩阵B2列满秩,给定对称正定矩阵P,由可求出P11,其中P∈Rn×n,P11∈Rm×m,P22∈R(n-m)×(n-m)
存在非奇异矩阵P1∈Rm×m,使得矩阵等式B2P1=PB2成立,可求出矩阵P1=(VT)-1B21 - 1P11B21VT
(6)给定的常数γ,标量ε>0,使得线性矩阵不等式成立
&Xi; 22 &Theta; 22 &Theta; 23 &Theta; 24 &Theta; 25 * - &epsiv; I 0 0 0 * * - &epsiv; I 0 0 * * * - &epsiv; I 0 * * * * - &epsiv; I < 0
其中:
&Pi; = A T P A - P A T PB 2 K 0 A T PB 1 * 0 0 K T B 2 T P T B 1 * * - P 0 * * * B 1 T PB 1 - &gamma; 2 I ,
Θ11=[0 PB2K 0 0 0],Θ22=[0 0 0 HTB2 TPB1 0 0]T
Θ23=Θ25=[0 E 0 0 0 0],Θ24=[HTB2 TPA 0 0 0 0 HTB2 TP]T
由于PB2=B2P1,将上述式子中的PB2用B2P1替代,并令N=P1K,在MATLAB中
通过LMI工具箱求解线性矩阵不等式求出N,则控制器增益参数表达式为:
K=P1 -1N=VB21 -1P11 -1B21VTN (2)
(7)构成闭环离散控制系统
x ( k + 1 ) = A x ( k ) + B 2 ( K + &Delta; K ) x ( k - d ( k ) ) + B 1 w ( k ) z ( k ) = C x ( k ) + D w ( k )
对给定的正常数γ,闭环系统具有以下性质:
1)系统是渐近稳定的;
2)从外部扰动w(k)到被调输出z(k)的传递函数矩阵Gwz(k)的H范数不超过给定的常数γ,即在零初始条件x(k)=0下,有
| | z ( k ) | | 2 &le; &gamma; | | w ( k ) | | 2 , &ForAll; w &Element; L 2 &lsqb; 0 , &infin; )
闭环系统具有H性能γ,此不等式反映了系统对外部扰动的抑制能力,γ越小表明系统的性能越好。
本发明的有益效果:在一定的时变时延与控制器参数摄动作用下,本发明设计的非脆弱H控制器能使闭环系统达到渐近稳定并满足预设的H性能指标
附图说明:
图1为带有时延的网络化控制系统的非脆弱H∞控制框图。
具体实施方式:
本发明考虑了网络诱导时延对网络控制系统的影响,设计状态反馈控制器,使得在一定的网络诱导时延和控制器参数摄动的条件下,被控系统能够达到渐近稳定并满足预设的H性能指标γ。
以下结合一个线性离散时不变系统控制例子来说明发明的有效性。
考虑如式(1)所描述的网络控制系统,其参数如下:
A = 0.85 0 0.01 0.96 0 0 0 0 1.11 , B 1 = 0.1 0 0 0 0.1 0 0.1 0 0 , B 2 = 0.1 0 0 0 0.1 0 0 0 0.1 ,
D=0.5,H=0.5,
系统参数矩阵A的特征值为{0,0.85,1.}1,1可知系统(1)是不稳定的,假设扰动为w(k)=[sin(k^2)/k cos(k^2)/k 0],初始状态为时延d(k)满足0<d(k)≤3。根据公式(2)中控制器增益的表达式,利用LMI工具箱直接求解得到
K = - 3.4399 - 1.2932 - 0.1945 - 3.8515 - 1.4870 - 0.1657 - 0.2503 - 0.1948 - 6.3194
被控系统能够达到渐近稳定,H性能指标γ=3.5730。
以上是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何的简单修改、等同变化与修饰,均属于发明技术方案的范围内。

Claims (1)

1.一种带有时延的网络化控制系统的非脆弱H∞控制方法,其特征在于,其主要实现步骤如下:
(1)针对线性离散时不变系统
x ( k + 1 ) = A x ( k ) + B 2 u ( k ) + B 1 w ( k ) z ( k ) = C x ( k ) + D w ( k )
其中x(k)∈Rn、u(k)∈Rm、w(k)∈Rp、z(k)∈Rq分别表示系统状态、控制输入、外部扰动输入和被控输出,A∈Rn*n、B2∈Rn*m、B1∈Rn*p、C∈Rq*n、D∈Rq*p为对应适当维数的系数矩阵,矩阵B2满足列满秩;
(2)数据在网络中传输产生的时延为d(k),控制器端的状态为x(k)=x(k-d(k)),其中0<d(k)≤dmax,dmax为输入时延d(k)的上界;
(3)设计加性非脆弱状态反馈控制器
u(k)=(K+ΔK)x(k-d(k))
K∈Rm×n为控制器增益矩阵,ΔK∈Rm×n为控制器的增益摄动,具体形式为:
ΔK=HF(k)E,F(k)FT(k)≤I
其中H∈Rm×m和E∈Rm×n是具有特定维数的常数矩阵,反映增益摄动的强弱,F(k)∈Rm×m为不确定加性时变扰动矩阵;
(4)矩阵B2列满秩,由
UB 2 V = U 1 U 2 B 2 V = B 21 0
求出两个正交矩阵U∈Rn×n和V∈Rm×m,其中U1∈Rm×n,U2∈R(n-m)×n,B21=diag{b1,b2,...,bm},bi(i=1,2,...,m)是B2的非零奇异值;
(5)矩阵B2列满秩,给定对称正定矩阵P,由可求出P11,其中P∈Rn×n,P11∈Rm×m,P22∈R(n-m)×(n-m)
存在非奇异矩阵P1∈Rm×m,使得矩阵等式B2P1=PB2成立,可求出矩阵P1=(VT)-1B21 - 1P11B21VT
(6)给定的常数γ,标量ε>0,使得线性矩阵不等式成立
&Xi; 22 &Theta; 22 &Theta; 22 &Theta; 24 &Theta; 25 * - &epsiv; I 0 0 0 * * - &epsiv; I 0 0 * * * - &epsiv; I 0 * * * * - &epsiv; I < 0
其中:
&Pi; = A T P A - P A T PB 2 K 0 A T PB 1 * 0 0 K T B 2 T P T B 1 * * - P 0 * * * B 1 T PB 1 - &gamma; 2 I ,
Θ11=[0 PB2K 0 0 0],Θ22=[0 0 0 HTB2 TPB1 0 0]T
Θ23=Θ25=[0 E 0 0 0 0],Θ24=[HTB2 TPA 0 0 0 0 HTB2 TP]T
由于PB2=B2P1,将上述式子中的PB2用B2P1替代,并令N=P1K,在MATLAB中通过LMI工具箱求解线性矩阵不等式,求出N,则控制器增益参数表达式为:
K=P1 -1N=VB21 -1P11 -1B21VTN;
(7)构成闭环离散控制系统
x ( k + 1 ) = A x ( k ) + B 2 ( K + &Delta; K ) x ( k - d ( k ) ) + B 1 w ( k ) z ( k ) = C x ( k ) + D w ( k )
对给定的正常数γ,闭环系统具有以下性质:
1)系统是渐近稳定的;
2)从外部扰动w(k)到被调输出z(k)的传递函数矩阵Gwz(k)的H范数不超过给定的常数γ,即在零初始条件x(k)=0下,有
| | z ( k ) | | 2 &le; &gamma; | | w ( k ) | | 2 , &ForAll; w &Element; L 2 &lsqb; 0 , &infin; )
闭环系统具有H性能γ,此不等式反映了系统对外部扰动的抑制能力,γ越小表明系统的性能越好。
CN201610534363.2A 2016-07-07 2016-07-07 一种带有时延的网络化控制系统的非脆弱h∞控制方法 Active CN106154825B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610534363.2A CN106154825B (zh) 2016-07-07 2016-07-07 一种带有时延的网络化控制系统的非脆弱h∞控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610534363.2A CN106154825B (zh) 2016-07-07 2016-07-07 一种带有时延的网络化控制系统的非脆弱h∞控制方法

Publications (2)

Publication Number Publication Date
CN106154825A true CN106154825A (zh) 2016-11-23
CN106154825B CN106154825B (zh) 2019-01-29

Family

ID=58061598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610534363.2A Active CN106154825B (zh) 2016-07-07 2016-07-07 一种带有时延的网络化控制系统的非脆弱h∞控制方法

Country Status (1)

Country Link
CN (1) CN106154825B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988710A (zh) * 2018-07-18 2018-12-11 南京邮电大学 考虑长时延的网络化h∞模型参考直流电机调速方法和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049533A (zh) * 2013-03-11 2014-09-17 王岩 基于隐半马尔可夫模型的网络控制系统控制器设计方法
US8868221B1 (en) * 2008-08-22 2014-10-21 Marvell International Ltd. Adaptive neural net feed forward system and method for adaptive control of mechanical systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8868221B1 (en) * 2008-08-22 2014-10-21 Marvell International Ltd. Adaptive neural net feed forward system and method for adaptive control of mechanical systems
CN104049533A (zh) * 2013-03-11 2014-09-17 王岩 基于隐半马尔可夫模型的网络控制系统控制器设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JENQ-DER CHEN 等: ""New delay-dependent non-fragile H∞ observer-based control for continuous time-delay systems"", 《INFORMATION SCIENCES》 *
林瑞全 等: ""具有反馈增益摄动的网络化控制系统H∞控制"", 《信息与控制》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988710A (zh) * 2018-07-18 2018-12-11 南京邮电大学 考虑长时延的网络化h∞模型参考直流电机调速方法和系统
CN108988710B (zh) * 2018-07-18 2021-01-22 南京邮电大学 考虑长时延的网络化h∞模型参考直流电机调速方法和系统

Also Published As

Publication number Publication date
CN106154825B (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
Sakthivel et al. Reliable mixed $ H_\infty $ and passivity-based control for fuzzy Markovian switching systems with probabilistic time delays and actuator failures
Lin et al. Sparse feedback synthesis via the alternating direction method of multipliers
Bobtsov et al. Fradkov theorem-based design of the control of nonlinear systems with functional and parametric uncertainties
CN108427288B (zh) 一类具有时变时延的网络化线性参数变化系统的h∞容错控制方法
Qin et al. Analysis and adaptive control for robust synchronization and H∞ synchronization of complex dynamical networks with multiple time-delays
CN106338917B (zh) 一种基于状态观测器的网络化控制系统的非脆弱h∞控制方法
Borgers et al. Stability analysis of large-scale networked control systems with local networks: A hybrid small-gain approach
Pisano On the multi‐input second‐order sliding mode control of nonlinear uncertain systems
US11301598B2 (en) Method and system for fast determining time-delay stability margin of power system
Yuan et al. Analysis and synthesis of linear hybrid systems with state-triggered jumps
Tian et al. Decentralized fuzzy H∞ filtering for networked interconnected systems under communication constraints
Yan et al. Analysis of two-dimensional feedback systems over networks using dissipativity
CN106154825A (zh) 一种带有时延的网络化控制系统的非脆弱h∞控制方法
CN110262334B (zh) 一种随机通信协议下状态饱和系统的有限时域h∞控制方法
Imran et al. A distributed adaptive scheme for multiagent systems
Vlahakis et al. Distributed LQR methods for networks of non-identical plants
Ding et al. Intermittent quasi-synchronization criteria of chaotic delayed neural networks with parameter mismatches and stochastic perturbation mismatches via Razumikhin-type approach
Sui et al. Adaptive output‐feedback finite‐time stabilisation of stochastic non‐linear systems with application to a two‐stage chemical reactor
Zhang et al. Robust adaptive DSC of directly input‐coupled nonlinear systems with input unmodeled dynamics and time‐varying output constraints
Chatterjee et al. Mean-square boundedness of stochastic networked control systems with bounded control inputs
Xi et al. Global decentralised output regulation for a class of large-scale nonlinear systems with nonlinear exosystem
CN106200382B (zh) 一种非线性网络化控制系统的非脆弱耗散控制方法
Furtat Robust suboptimal control with disturbances compensation
Wang et al. Discrete‐Time H∞ Preview Control Problem in Finite Horizon
Fakharian et al. Design of Hï¿ ½ Congestion Controller for TCP Networks Based on LMI Formulation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200814

Address after: 313000 1-C, building 1, No. 656, Qixing Road, high tech Zone, Wuxing District, Huzhou City, Zhejiang Province

Patentee after: Huzhou xinbeilian Network Technology Co.,Ltd.

Address before: 518000 Baoan District Xin'an street, Shenzhen, Guangdong, No. 625, No. 625, Nuo platinum Plaza,

Patentee before: SHENZHEN SHANGGE INTELLECTUAL PROPERTY SERVICE Co.,Ltd.

Effective date of registration: 20200814

Address after: 518000 Baoan District Xin'an street, Shenzhen, Guangdong, No. 625, No. 625, Nuo platinum Plaza,

Patentee after: SHENZHEN SHANGGE INTELLECTUAL PROPERTY SERVICE Co.,Ltd.

Address before: No. 1800 road 214122 Jiangsu Lihu Binhu District City of Wuxi Province

Patentee before: Jiangnan University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211125

Address after: 314500 Tongxiang, Jiaxing, Zhejiang, Wutong Street East Road (East) 55, Tongxiang chamber of Commerce Building 1 unit 1702, 1703 room -D-402

Patentee after: Jiaxing amber Technology Co.,Ltd.

Address before: 313000 1-C, building 1, No. 656 Qixing Road, high tech Zone, Wuxing District, Huzhou City, Zhejiang Province

Patentee before: Huzhou xinbeilian Network Technology Co.,Ltd.