CN106124293A - 小冲杆试验获取材料单轴应力‑应变关系的方法 - Google Patents

小冲杆试验获取材料单轴应力‑应变关系的方法 Download PDF

Info

Publication number
CN106124293A
CN106124293A CN201610606265.5A CN201610606265A CN106124293A CN 106124293 A CN106124293 A CN 106124293A CN 201610606265 A CN201610606265 A CN 201610606265A CN 106124293 A CN106124293 A CN 106124293A
Authority
CN
China
Prior art keywords
test
relation
stress
materials
bill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610606265.5A
Other languages
English (en)
Other versions
CN106124293B (zh
Inventor
蔡力勋
彭云强
陈辉
刘晓坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201610606265.5A priority Critical patent/CN106124293B/zh
Publication of CN106124293A publication Critical patent/CN106124293A/zh
Application granted granted Critical
Publication of CN106124293B publication Critical patent/CN106124293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种小冲杆试验获取材料单轴应力‑应变关系的方法,在冲压圆片试样获取其连续的载荷‑位移曲线后,对P‑V曲线的第Ⅲ阶段进行幂律拟合,将得到的特征载荷和位移指数带入Hollomon方程而获取材料单轴应力‑应变关系。本发明适用于延性、幂律等向强化材料,在高温、辐照等特殊环境下,只需从服役构件中截取小圆片试样即可获取材料的单轴应力‑应变关系曲线,从而评估材料的劣化性能。该方法对服役构件的破坏性较弱,符合微损检测的目的,试样加工和试验原理都比较简单,所得结果具有较高的精度,克服了传统单轴拉伸试验受到材料尺寸很大限制等不足,成本较低。本方法对于贵重金属、服役构建微创圆片等小试样的本构关系的微力材料测试有较大优势。

Description

小冲杆试验获取材料单轴应力-应变关系的方法
技术领域
本发明涉及延性材料的力学性能测试技术,尤其对稀有、微尺度材料以及服役构件材料的力学性能测试领域。
背景技术
在石油化工、核电、航空航天等领域中,存在大量的在高温高压、辐照等条件下服役的构件,随着时间的增长,材料势必发生蠕变、氧化、腐蚀等现象,造成材料的劣化和损伤,如何进行材料的可靠性和安全性评定具有重要意义。传统的方法是对服役构件进行无损检测或者取样试验,无损检测能对结构的均匀性和微缺陷进行检测,但无法定量给出材料的许多力学性能参数,如屈服强度、抗拉强度和断裂韧性等;试验取样具有破坏性,传统试样尺寸一般较大,对服役构件损伤过大,难以实现材料性能测试。20世纪80年代,Baik[1]等人首次提出使用小冲杆法来评定材料的力学性能,这种方式仅对结构产生微损,因而小冲杆试验方法为“微损检测”,并能定量获取材料的相关力学参量,从而得到了迅速的发展。20世纪90年代,SPT被扩展应用于各种工程领域。然而现行的SPT方法获取材料的屈服强度和抗拉强度,需要预先进行大量实验来建立基于SPT所获屈服载荷、最大载荷与通过大尺寸试样拉伸试验所获的屈服强度、抗拉强度之间的对应关系,最终通过大量数据的拟合来获取经验公式[2-3]。传统方法过程较繁琐,且所得结果精度不高。
本文所提出的小冲杆试验方法获取材料单轴应力-应变关系曲线,只需对传统SPT获取的载荷-位移曲线进行简单的分析计算,即可获取材料单轴应力-应变关系曲线的材料参数,所得结果精度较高,无需进行大量试验,试验方法和试验原理相对简单,十分便于工程应用。
参考文献:
[1]Baik J M,Kameda J,Buck O.Small punch test evaluation ofintergranular embrittlement of an alloy steel[J].ScriptaMetallurgica,1983,17(12):1443-1447.
[2]Mao X,Takahashi H.Development of a further-miniaturized specimenof 3mm diameter for tem disksmall punch test[J].Journal of NuclearMaterials,1987,150(1):42-52.
[3]邹晓慧.小冲杆试验法评价材料力学性能的研究[D].华东理工大学,2012.
发明内容
本发明旨在提供一种基于能量理论的弹塑性公式(由简单有限元分析获取公式参量)的小冲杆试验技术方案,可实现材料单轴应力-应变关系的简易精确测量。
本发明目的是通过如下手段实现的。一种小冲杆试验获取材料单轴应力-应变关系的方法,用于严苛条件下的压力容器局部力学性能或稀贵重金属的微创圆片力学性能测试,通过小尺寸冲压试样的本构关系测量以获取材料单轴应力-应变关系;其主要步骤包括:
1)冲压获取具有四个阶段的圆片试样载荷-位移试验曲线—P-V曲线,然后采用幂律拟合P-V曲线第Ⅲ阶段数据可得
P P * = ( V D ) m - - - ( 1 )
其中D为圆片直径,P*为特征载荷,m为位移指数,可由试验获取的P-V试验数据回归得到;
2)将P*和m值代入如下公式组
P * = c ( k 1 n + k 2 ) k 3 n m = k 4 n + k 5 - - - ( 2 )
即可获取材料屈服强度强度σy和应变硬化指数n;式中c=Enσy 1-n/(1+n),E为材料弹性模量;k1~k5为模型常数;
3)将σy和n代入Hollomon方程
σ = E ϵ σ ≤ σ y E n σ y 1 - n ϵ n σ ≥ σ y - - - ( 3 )
即可获取材料的单轴应力-应变关系。
本发明方法适用于获取稀有、微尺度材料以及在役构件材料的单轴应力-应变关系。采用国标GB/T 29459.2-2012推荐的小冲杆试验装置(见图1),圆片直径D=10mm,厚度B=0.5mm,小冲杆球形冲头半径r=1.25mm,下夹具孔径d=4mm;冲压获取圆片试样P-V试验曲线,典型的SPT载荷-位移曲线如图2所示,可分为四个阶段,本发明方法采用幂律拟合第Ⅲ阶段的P-V曲线。
上述k1~k5为模型常数,其值依次为:7.783;7.832;5.681;1.642;0.6529。
本发明适用于延性、幂律等向强化材料,能够获取多种类延性材料的应力-应变关系曲线,可以对在役构件进行微损取样,所得结果具有较高的精度,能够定量评价材料的劣化性能,克服了传统单轴拉伸试验受到材料尺寸很大限制等不足。本方法对于贵重金属、服役构建微创圆片等小试样的本构关系的微力材料测试有较大优势,试样加工、试验原理以及数据处理都较简单,研究者只需对传统SPT获取的试样P-V曲线进行简单的数据处理即可获取材料单轴应力-应变关系,无需建立与大尺寸单轴拉伸试样之间的定量关系。本发明方法具有充分的理论基础,公式简洁,试验成本低廉,便于普及和应用。
附图说明
图1为小冲杆试验装置示意图。
图2为典型的SPT载荷-位移曲线分段示意图。
图3为相同σy不同n有限元输入本构关系与公式反求本构关系对比结果。
图4为相同n不同σy有限元输入本构关系与公式反求本构关系对比结果。
图5为DP600钢小冲杆试验获取载荷-位移曲线。
图6为能量理论获取DP600本构曲线。
具体实施方式
下面结合附图对本发明方法做进一步的详述。
本发明所采用的技术方案包括两个部分:小冲杆试验、小冲杆试验理论-有限元模型。
(1)小冲杆试验
对延性材料进行小冲杆试验,采用国标GB/T 29459.2-2012推荐的小冲杆试验装置,圆片直径D=10mm,厚度B=0.5mm,小冲杆球形冲头半径r=1.25mm,下夹具孔径d=4mm;冲压获取圆片试样载荷-位移试验曲线。
(2)小冲杆试验等效能量理论-有限元模型
图2给出了典型的小冲杆载荷-位移关系曲线,通过理论推导和有限元数值模拟可以发现,SPT法获取的载荷-位移曲线包含几何、材料等信息,之间关系存在规律。图2所示小冲杆试验的载荷P-位移V曲线第Ⅲ阶段可用如下幂律表达
P P * = ( V r ) m - - - ( 1 )
其中特征载荷P*和位移指数m为
P * = c ( k 1 n + k 2 ) k 3 n m = k 4 n + k 5 c = E n σ y 1 - n / ( 1 + n ) - - - ( 2 )
E为材料弹性模量(可通过振动法、超声法等经典方式测量),k1~k5为模型常数。材料屈服强度σy和应变硬化指数n可由P-V曲线得到的系数P*和指数m及公式(2)求解。
在本发明技术方案中,可以对在役构件进行微损取样,利用SPT获取其相应的载荷-位移曲线,试验方法简单,利用式(2)简单推导,即可获取材料的性能参数σy、n,进而确定其单轴应力-应变关系。此外,本发明对贵重金属、服役构建微创圆片等小试样的本构关系的微力材料测试有较大优势。
实施例
在本发明技术方案中,基于等效能量理论推导和少量有限元模拟提出了采用SPT获取材料单轴应力-应变关系的技术理论体系。
依据国标GB/T 29459.2-2012推荐的小冲杆试验装置和试样尺寸,在ANSYS商用软件中建立有限元仿真模型,对同一屈服强度、不同硬化指数,以及同一硬化指数、不同屈服强度的多种工况进行了有限元模拟,获取其对应的载荷-位移曲线。将曲线的第Ⅲ阶段进行幂律拟合,得到特征载荷和位移指数,带入式(2)进行联立方程求解,即可获得材料或构件的力学性能参数σy与n,借助式(3)所示Hollomon本构关系模型即可得到材料的应力-应变曲线。图3为σy=300MPa,变化硬化指数n得到的有限元输入本构关系与本发明专利根据仿真载荷反求得到的本构关系的对比结果,图4为固定硬化指数n=0.2,变化屈服强度σy得到的有限元输入本构关系与本发明专利根据仿真载荷反求得到的本构关系的对比结果,从图中可以看出,采用本发明方案反求得到的材料应力-应变曲线具有较高的精度,且实验操作和计算方法都比较简单,便于实际工程应用。图5即为DP600小冲杆试验获取的载荷-位移曲线,图6即为通过能量法反算获取的DP600本构关系与单轴拉伸试验获取的本构关系对比结果。
在实际使用时,依据情况,其使用范围可作适当修正扩宽。例如,对于不同厚度的试样,不同半径的球形冲头,不同直径的下夹具孔,本方法同样适用,只需将式(2)中参数k1~k5重新标定。

Claims (2)

1.一种小冲杆试验获取材料单轴应力-应变关系的方法,用于严苛条件下的压力容器局部力学性能或稀贵重金属的微创圆片力学性能测试,通过小尺寸冲压试样的本构关系测量以获取材料单轴应力-应变关系;其主要步骤包括:
1)冲压获取具有四个阶段的圆片试样载荷-位移试验曲线—P-V曲线,然后采用幂律拟合P-V曲线第Ⅲ阶段数据可得
P P * = ( V D ) m - - - ( 1 )
其中D为圆片直径,P*为特征载荷,m为位移指数,可由试验获取的P-V试验数据回归得到;
2)将P*和m值代入如下公式组
P * = c ( k 1 n + k 2 ) k 3 n m = k 4 n + k 5 - - - ( 2 )
即可获取材料屈服强度强度σy和应变硬化指数n;式中c=Enσy 1-n/(1+n),E为材料弹性模量;k1~k5为模型常数;
3)将σy和n代入Hollomon方程
σ = E ϵ σ ≤ σ y E n σ y 1 - n ϵ n σ ≥ σ y - - - ( 3 )
即可获取材料的单轴应力-应变关系。
2.根据权利要求1所述的小冲杆试验获取材料单轴应力-应变关系的方法,其特征在于,所述模型常数k1~k5依次为:7.783;7.832;5.681;1.642;0.6529。
CN201610606265.5A 2016-07-28 2016-07-28 小冲杆试验获取材料单轴应力-应变关系的方法 Active CN106124293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610606265.5A CN106124293B (zh) 2016-07-28 2016-07-28 小冲杆试验获取材料单轴应力-应变关系的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610606265.5A CN106124293B (zh) 2016-07-28 2016-07-28 小冲杆试验获取材料单轴应力-应变关系的方法

Publications (2)

Publication Number Publication Date
CN106124293A true CN106124293A (zh) 2016-11-16
CN106124293B CN106124293B (zh) 2018-10-30

Family

ID=57254420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610606265.5A Active CN106124293B (zh) 2016-07-28 2016-07-28 小冲杆试验获取材料单轴应力-应变关系的方法

Country Status (1)

Country Link
CN (1) CN106124293B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644711A (zh) * 2016-11-17 2017-05-10 西南交通大学 一种延性材料单轴本构关系测试方法
CN108152133A (zh) * 2017-12-12 2018-06-12 国电锅炉压力容器检验中心 一种耐热钢部件劣化评估方法
CN110032765A (zh) * 2019-03-11 2019-07-19 武汉科技大学 一种耐火材料断裂参数的优化方法、系统、装置及介质
CN110672417A (zh) * 2019-10-31 2020-01-10 中国石油大学(华东) 一种小冲杆试验获取超薄材料弹塑性性能的方法
CN110967213A (zh) * 2018-09-29 2020-04-07 天津大学 一种基于小冲孔蠕变技术的服役部件剩余寿命预测方法
CN112284921A (zh) * 2020-10-22 2021-01-29 苏州热工研究院有限公司 基于高温液压鼓胀试样测试的材料单轴应力-应变关系确定方法
CN112485113A (zh) * 2020-11-17 2021-03-12 核工业西南物理研究院 一种小尺寸样品的材料拉伸性能测试方法及装置
CN112924278A (zh) * 2021-01-27 2021-06-08 中国科学院近代物理研究所 一种用于高能重离子辐照样品的小冲杆测试装置和方法
CN112964568A (zh) * 2021-01-18 2021-06-15 江阴兴澄特种钢铁有限公司 一种使用L-gauge进行高应变速率单轴压缩试验的方法
CN113029569A (zh) * 2021-03-11 2021-06-25 北京交通大学 一种基于循环强度指数的列车轴承自主故障识别方法
CN113312817A (zh) * 2021-05-31 2021-08-27 中国石油大学(华东) 一种小冲杆疲劳试验获得材料应变-寿命曲线的方法
CN114674683A (zh) * 2022-04-15 2022-06-28 成都微力特斯科技有限公司 获取材料单轴应力应变关系的锥压入式小冲杆试验方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063529A (zh) * 2013-01-04 2013-04-24 中国原子能科学研究院 一种用于反应堆压力容器钢的小冲杆测试方法
CN104931348A (zh) * 2015-06-08 2015-09-23 西南交通大学 圆环径向压缩能量预测材料单轴本构关系测定方法
CN105675420A (zh) * 2016-01-14 2016-06-15 西南交通大学 圆球形压入预测材料单轴应力-应变关系测定方法
CN105716946A (zh) * 2016-01-14 2016-06-29 西南交通大学 圆柱形平头压入预测材料单轴本构关系的测定方法
CN105784481A (zh) * 2016-03-23 2016-07-20 西南交通大学 圆盘试样压缩获取材料单轴应力-应变关系的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063529A (zh) * 2013-01-04 2013-04-24 中国原子能科学研究院 一种用于反应堆压力容器钢的小冲杆测试方法
CN104931348A (zh) * 2015-06-08 2015-09-23 西南交通大学 圆环径向压缩能量预测材料单轴本构关系测定方法
CN105675420A (zh) * 2016-01-14 2016-06-15 西南交通大学 圆球形压入预测材料单轴应力-应变关系测定方法
CN105716946A (zh) * 2016-01-14 2016-06-29 西南交通大学 圆柱形平头压入预测材料单轴本构关系的测定方法
CN105784481A (zh) * 2016-03-23 2016-07-20 西南交通大学 圆盘试样压缩获取材料单轴应力-应变关系的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
姚博 等: "基于70.3°圆锥形压头的材料压入测试方法研究", 《工程力学》 *
徐彤 等: "小冲杆试验方法标准化研究(一)—通用要求", 《压力容器》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644711B (zh) * 2016-11-17 2018-12-25 西南交通大学 一种延性材料单轴本构关系测试方法
CN106644711A (zh) * 2016-11-17 2017-05-10 西南交通大学 一种延性材料单轴本构关系测试方法
CN108152133A (zh) * 2017-12-12 2018-06-12 国电锅炉压力容器检验中心 一种耐热钢部件劣化评估方法
CN110967213B (zh) * 2018-09-29 2022-04-05 天津大学 一种基于小冲孔蠕变技术的服役部件剩余寿命预测方法
CN110967213A (zh) * 2018-09-29 2020-04-07 天津大学 一种基于小冲孔蠕变技术的服役部件剩余寿命预测方法
CN110032765A (zh) * 2019-03-11 2019-07-19 武汉科技大学 一种耐火材料断裂参数的优化方法、系统、装置及介质
CN110672417A (zh) * 2019-10-31 2020-01-10 中国石油大学(华东) 一种小冲杆试验获取超薄材料弹塑性性能的方法
CN112284921A (zh) * 2020-10-22 2021-01-29 苏州热工研究院有限公司 基于高温液压鼓胀试样测试的材料单轴应力-应变关系确定方法
CN112284921B (zh) * 2020-10-22 2022-12-27 苏州热工研究院有限公司 基于高温液压鼓胀试样测试的材料单轴应力-应变关系确定方法
CN112485113A (zh) * 2020-11-17 2021-03-12 核工业西南物理研究院 一种小尺寸样品的材料拉伸性能测试方法及装置
CN112485113B (zh) * 2020-11-17 2023-04-21 核工业西南物理研究院 一种小尺寸样品的材料拉伸性能测试方法及装置
CN112964568A (zh) * 2021-01-18 2021-06-15 江阴兴澄特种钢铁有限公司 一种使用L-gauge进行高应变速率单轴压缩试验的方法
CN112964568B (zh) * 2021-01-18 2022-09-30 江阴兴澄特种钢铁有限公司 一种使用L-gauge进行高应变速率单轴压缩试验的方法
CN112924278A (zh) * 2021-01-27 2021-06-08 中国科学院近代物理研究所 一种用于高能重离子辐照样品的小冲杆测试装置和方法
CN112924278B (zh) * 2021-01-27 2022-09-27 中国科学院近代物理研究所 一种用于高能重离子辐照样品的小冲杆测试装置和方法
CN113029569A (zh) * 2021-03-11 2021-06-25 北京交通大学 一种基于循环强度指数的列车轴承自主故障识别方法
CN113312817A (zh) * 2021-05-31 2021-08-27 中国石油大学(华东) 一种小冲杆疲劳试验获得材料应变-寿命曲线的方法
CN114674683A (zh) * 2022-04-15 2022-06-28 成都微力特斯科技有限公司 获取材料单轴应力应变关系的锥压入式小冲杆试验方法
CN114674683B (zh) * 2022-04-15 2023-09-19 成都微力特斯科技有限公司 获取材料单轴应力应变关系的锥压入式小冲杆试验方法

Also Published As

Publication number Publication date
CN106124293B (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
CN106124293A (zh) 小冲杆试验获取材料单轴应力‑应变关系的方法
CN102589995B (zh) 一种压入硬度预测材料单轴本构关系的方法
CN105784481B (zh) 圆盘试样压缩获取材料单轴应力-应变关系的方法
Mao et al. Characterization of fracture behavior in small punch test by combined recrystallization-etch method and rigid plastic analysis
CN106053222A (zh) 一种铝硅合金ADC12材料Johnson‑Cook本构模型的拟合方法
CN112284921B (zh) 基于高温液压鼓胀试样测试的材料单轴应力-应变关系确定方法
CN106644711A (zh) 一种延性材料单轴本构关系测试方法
Song et al. Size effect criteria on the small punch test for AISI 316L austenitic stainless steel
US6405600B1 (en) Test specimen design incorporating multiple fracture sites and multiple strain state material fractures
CN104198313A (zh) 一种基于仪器化压入技术的残余应力检测方法
CN101776551A (zh) 仪器化微米压入测试材料单轴强度均值的方法
CN108645706A (zh) 一种通过硬化强度和抗拉强度预测金属材料疲劳强度的方法
CN114088528A (zh) 一种rpv钢的小尺寸拉伸试样优化方法
CN106769439A (zh) 一种管线钢热轧卷板屈服强度的测试方法
Huang et al. Fracture prediction and correlation of alsi hot stamped steels with different models in LS DYNA
Zhang et al. A macro-pillar compression technique for determining true stress-strain curves of steels
Luo et al. Numerical Analysis of AHSS Fracture in a Stretch‐bending Test
Partheepan et al. Design and usage of a simple miniature specimen test setup for the evaluation of mechanical properties
CN110018046B (zh) 一种节约型双相不锈钢中trip效应致塑性增量的表征方法
CN106289376A (zh) 一种工业锅炉用智能检测装置
JP2007108095A (ja) 中性子照射部材診断方法および中性子照射部材診断装置
Urbánek et al. Sheet thickness reduction influence on fracture strain determination
CN108918298B (zh) 三维裂尖约束效应及三维裂尖等效应力场的表征方法
CN113466020B (zh) 基于单边裂纹中心孔楔入式试样的测定方法
Wang et al. Investigation on the effect of test parameters on small punch creep tests by finite element method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant