CN106084264B - 一种碳纳米管定向排列的复合材料层合板制备工艺 - Google Patents

一种碳纳米管定向排列的复合材料层合板制备工艺 Download PDF

Info

Publication number
CN106084264B
CN106084264B CN201610437678.5A CN201610437678A CN106084264B CN 106084264 B CN106084264 B CN 106084264B CN 201610437678 A CN201610437678 A CN 201610437678A CN 106084264 B CN106084264 B CN 106084264B
Authority
CN
China
Prior art keywords
carbon
epoxy resin
laminated plate
prepreg
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610437678.5A
Other languages
English (en)
Other versions
CN106084264A (zh
Inventor
李长青
董怀斌
任攀
巴德玛
邱骥
张威威
熊玉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Armored Forces of PLA
Original Assignee
Academy of Armored Forces of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Armored Forces of PLA filed Critical Academy of Armored Forces of PLA
Priority to CN201610437678.5A priority Critical patent/CN106084264B/zh
Publication of CN106084264A publication Critical patent/CN106084264A/zh
Application granted granted Critical
Publication of CN106084264B publication Critical patent/CN106084264B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/24Organic non-macromolecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明提供了一种碳纳米管定向排列的复合材料层合板制备工艺,其特征在于,具体包括以下步骤:1)将质量比为100:1的丙酮和碳纳米管混合,使用高速剪切搅拌机搅拌5min,搅拌速率为20000r/min,烘干备用;……,5)将上下表面分别铺敷铜薄膜电极的预浸料置于复合材料热补仪进行热压成型,先升温至40~60℃温度,分别在预浸料上下两端铜薄膜电极通入高频脉冲交流电,通电时间为5~10min,通电完成后撤去电源,再升温至环氧树脂固化温度,保温2h后自然冷却脱模,制备得到填充碳纳米管的碳纤维/环氧树脂的复合材料层合板。本发明的工艺利用高频脉冲电场方法来实现碳纳米管沿层合板厚度方向(z向)定向排列,操作简单、生产的复合材料具有优异的性能。

Description

一种碳纳米管定向排列的复合材料层合板制备工艺
技术领域
本发明主要涉及碳纤维/环氧树脂复合材料技术领域,特指一种碳纳米管沿层合板厚度方向(z向)定向排列的复合材料层合板制备工艺。
背景技术
近年来,随着碳纤维复合材料广泛应用到各行各业,人们发现其极易受到冲击损伤,出现分层现象,这就需要寻求一种有效提升复合材料性能的方法。采用在碳纤维复合材料中填充碳纳米管来提高复合材料的力学性能和改善增韧的方法已有大量的研究,并且取得了一定的效果。这种填充碳纳米管的方法虽然能够提高复合材料的力学性能,但是在复合材料层间性能方面的提高不够明显,针对此问题,设想出使碳纳米管在复合材料中沿层合板厚度方向(z向)定向排列,这样可以充分利用碳纳米管性能,提高复合材料层合板的层间性能。
近几年来,LB膜排列、化学气相沉积、电场/磁场诱导、反复拉伸等定向排列碳纳米管的方法已经逐渐成熟;高分子诱导、原子显微镜(AFM)、液晶材料辅助诱导取向及碳纳米管纺织等新型碳纳米管定向排列方法也逐步取得突破性进展。
碳纳米管后排列方法是指利用物理方法将分散杂乱无序的碳纳米管重新定向排列,这种方法目前越来越得到重视,即将传统方法制得的碳纳米管,诸如激光蒸发法、气相沉积法、电弧放电法等制备出杂乱的碳纳米管,按照一定的方向有序的排列起来。几种现有技术中较为典型的方法有Langmuir-Blodgett(LB)法定向排列碳纳米管、高分子诱导自组装法、介电泳诱导定向排布法、电/磁场诱导法、机械反复拉伸法。
LB定向排列碳纳米管技术能够制得碳纳米管定向排列的超薄有序膜结构,是制备取向碳纳米管膜结构的主要方法,主要是在二维薄膜上进行碳纳米管排列。
机械拉伸是对半湿态或固态碳纳米管复合材料进行反复拉伸,可以诱导碳纳米管沿拉伸方向进行排列,而对碳纤维复合材料进行反复拉伸会影响复合材料的性能。
介电泳技术是粒子分散于介电液中,当在电极两端施加电场时,由于极化作用,介电液中的粒子在电场力作用下发生定向移动。介电泳是微纳粒子常用的操作方法,且外加电场为非均匀电场,使碳纳米管平行与电极板平行排列,不能使碳纳米管在竖直方向上排列。
磁场诱导,碳纳米管具有磁各向异性,在磁场条件下,半导体碳纳米管表面具有反磁性,而金属碳纳米管在轴向方向为顺磁性,在垂直于轴向方向为反磁性,这种磁各向异性可以促使碳纳米管在强磁场中沿磁力线方向排列。
电/磁场诱导是利用碳纳米管的物理性质,具有各向异性的电学和磁学,使碳纳米管在电/磁场中受电/磁力的诱导进行排列,但磁场对碳纳米管排列的效果不如电场明显,且磁场相对于电场较难形成。
综合分析几种方法、复合材料结构性能以及可操作性等,以上方法都存在不便于操作,仅限于试验室小批量试制,难以工业化大批量生产的缺陷。而采用高频脉冲电场对碳纳米管进行诱导排列方法具有以下优点:a.电场诱导能将碳纳米管沿电场方向进行定向排列,能够实现碳纳米管沿复合材料层合板厚度方向(z向)定向排列的要求;b.电场条件下诱导这种方法相对于其他方法操作方便、且容易实现大规模生产;c.高频脉冲电场具有频率高的优势,可大幅度提高碳纳米管的定向程度。
目前,在现有技术中还没有利用高频脉冲电场实现碳纳米管在复合材料层合板中定向排列这种方法,下列问题还需解决:a.碳纤维、碳纳米管均为导电材料,填充碳纳米管的碳纤维复合材料具有导电性能,不能实现设想中的平行电场,而是导通的电路;b.电场需要在复合材料固化时的哪一阶段加入,以及加电时间都需要分析探索;c.使碳纳米管在复合材料中定向排列所需的电压、频率范围均未确定。
发明内容
本发明的发明目的是提供一种碳纳米管沿层合板厚度方向定向排列的复合材料层合板制备工艺,利用高频脉冲电场方法来实现碳纳米管沿层合板厚度方向(z向)定向排列,操作简单、生产的复合材料具有优异的性能。
本发明的具体技术方案是一种碳纳米管定向排列的复合材料层合板制备工艺,其特征在于,具体包括以下步骤:
1)将质量比为100:1的丙酮和碳纳米管混合,使用高速剪切搅拌机搅拌5min,搅拌速率为20000r/min,烘干备用;
2)将环氧树脂及固化剂混合,加入占环氧树脂及固化剂混合后溶液质量百分数1~10%的经步骤1)处理的碳纳米管,先使用低速搅拌机搅拌5~15min,搅拌速率为80~120r/min,再使用高速剪切搅拌机搅拌2~5min,搅拌速率为15000r/min,得到分散均匀的碳纳米管/环氧树脂混合溶液;
3)将混合好的碳纳米管/环氧树脂混合溶液均匀涂抹于碳纤维布上,制成的碳纤维树脂预浸料中树脂质量为30~50%;
4)将上述浸渍好的2~20层碳纤维布预浸料重叠铺敷在一起后,上下表面分别铺敷铜薄膜电极,铺敷时需要保证将预浸料置于铜薄膜电极中间,铜薄膜电极与碳纤维布预浸料之间设置绝缘材料;
5)将上下表面分别铺敷铜薄膜电极的预浸料置于复合材料热补仪进行热压成型,先升温至40~60℃温度,分别在预浸料上下两端铜薄膜电极通入高频脉冲交流电,通电时间为5~10min,通电完成后撤去电源,再升温至环氧树脂固化温度,保温2h后自然冷却脱模,制备得到填充碳纳米管的碳纤维/环氧树脂的复合材料层合板。
更进一步地,所述的步骤4)中的绝缘材料为PET耐高温薄膜。
更进一步地,所述的步骤4)中的高频脉冲交流电的电压为0~300V,频率为1KHz~3MHz。
更进一步地,所述的步骤4)中,铜薄膜电极的厚度为1mm,其长、
宽均比预浸料尺寸大1cm。
更进一步地,制备得到的填充碳纳米管的碳纤维/环氧树脂的复合材料
层合板中碳纳米管排列方向为沿层合板厚度方向定向排列。
与现有技术相比,本发明的优点在于:
1)本发明的方法在铜电极和预浸料之间铺放一层绝缘材料(PET耐高温薄膜),这样便可使两端的铜电极之间可以形成稳定的平行电场;
2)在固化升温至环氧树脂黏度最低时的温度,在两端通入高频脉冲电场,且保温一定时间后撤去电场,此时树脂粘度低、流动性好,碳纳米管克服的阻力最小,这种工艺效果最好;
3)使碳纳米管在复合材料中定向排列所需的电压范围为0~300V,频率范围为0~3MHz,且随着电压、频率的升高碳纳米管定向排列效果逐渐增强。
本发明具有操作简单、快捷,可以实现碳纳米管沿层合板厚度方向(z向)定向排列,在碳纳米管无序型填充的复合材料层合板基础上进一步提高了复合材料层合板力学性能。
附图说明
图1为未采用本发明方法高频脉冲处理的环氧树脂透射显微形貌;
图2为采用本发明方法高频脉冲处理的环氧树脂透射显微形貌。
具体实施方式
以下将结合附图和具体实施方式对本发明的技术方案作进一步详细说明。
本发明方法采用的原材料碳纳米管尺寸为ID:3~5nm,OD:8~15nm,Length:0~50μm;环氧树脂和固化剂为5015;碳纤维型号为T300型3k碳纤维,密度为200g/m2
本发明方法采用的加工设备有高速剪切搅拌机、低速搅拌机,高频脉冲输出电源。
实施例1
在温条件下(10℃-30℃),制备通入电压5V、频率1KHz的脉冲交流电的复合材料层合板。
1)将质量比为100:1的丙酮和碳纳米管混合,在室温条件下,使用高速剪切搅拌机搅拌5min,搅拌速率为20000r/min,搅拌烘干;
2)将质量比为5:1的环氧树脂及固化剂混合,加入占环氧树脂及固化剂混合后溶液质量百分数为1%的碳纳米管,先使用低速搅拌机搅拌5min,搅拌速率为80r/min,再使用高速剪切搅拌机搅拌2min,搅拌速率为15000r/min,得到分散均匀的碳纳米管/环氧树脂混合溶液;
3)将混合好的碳纳米管/环氧树脂混合溶液均匀涂抹于碳纤维布上,制成树脂的质量为30%左右的碳纤维树脂预浸料;
4)将上述浸渍好的碳纤维布预浸料6层重叠铺敷在一起后,上下表面分别铺敷厚度约为1mm、尺寸稍大于预浸料的铜薄膜电极,铺敷时需要保证将预浸料置于铜膜中间;
5)将上下表面分别铺敷铜薄膜电极的预浸料置于复合材料热补仪热压成型;先升温至50℃,分别在两端通入电压5V、频率1KHz脉冲交流电,保温5min后撤去电压,将系统升温至70℃,保温2h后自然冷却至室温脱模,制备得到填充碳纳米管的碳纤维/环氧树脂的复合材料层合板。
实施例2
在室温条件下(10℃-30℃),制备通入电压50V、频率0.5MHz的脉冲交流电的复合材料层合板。
1)将质量比为100:1的丙酮和碳纳米管混合,在室温条件下,使用高速剪切搅拌机搅拌5min,搅拌速率为20000r/min,搅拌烘干;
2)将质量比为5:1的环氧树脂及固化剂混合,加入占环氧树脂及固化剂混合后溶液质量百分数为5%的碳纳米管,先使用低速搅拌机搅拌10min,搅拌速率为100r/min,再使用高速剪切搅拌机搅拌3min,搅拌速率为15000r/min,得到分散均匀的碳纳米管/环氧树脂混合溶液;
3)将混合好的碳纳米管/环氧树脂混合溶液均匀涂抹于碳纤维布上,制成树脂的质量为40%左右的碳纤维树脂预浸料;
4)将上述浸渍好的碳纤维布预浸料10层重叠铺敷在一起后,上下表面分别铺敷厚度约为1mm、尺寸稍大于预浸料的铜薄膜电极,铺敷时需要保证将预浸料至于铜膜中间;
5)将上下表面分别铺敷铜薄膜电极的预浸料置于复合材料热补仪热压成型;先升温至50℃,分别在两端通入电压50V、频率0.5MHz脉冲交流电,保温5min后撤去电压,将系统升温至70℃,保温2h后自然冷却至室温脱模,制备得到填充碳纳米管的碳纤维/环氧树脂的复合材料层合板。
实施例3
在室温条件下(10℃-30℃),制备通入电压100V、频率1MHz的脉冲交流电的复合材料层合板。
1)将质量比为100:1的丙酮和碳纳米管混合,在室温条件下,使用高速剪切搅拌机搅拌5min,搅拌速率为20000r/min,搅拌烘干;
2)将质量比为5:1的环氧树脂及固化剂混合,加入占环氧树脂及固化剂混合后溶液质量百分数为10%的碳纳米管,先使用低速搅拌机搅拌15min,搅拌速率为120r/min,再使用高速剪切搅拌机搅拌5min,搅拌速率为15000r/min,得到分散均匀的碳纳米管/环氧树脂混合溶液;
3)将混合好的碳纳米管/环氧树脂混合溶液均匀涂抹于碳纤维布上,制成树脂的质量为50%左右的碳纤维树脂预浸料;
4)将上述浸渍好的碳纤维布预浸料15层重叠铺敷在一起后,上下表面分别铺敷厚度约为1mm、尺寸稍大于预浸料的铜薄膜电极,铺敷时需要保证将预浸料至于铜膜中间;
5)将上下表面分别铺敷铜薄膜电极的预浸料置于复合材料热补仪热压成型;先升温至50℃,分别在两端通入电压100V、频率1MHz脉冲交流电,保温5min后撤去电压,将系统升温至70℃,保温2h后自然冷却脱模,制备得到填充碳纳米管的碳纤维/环氧树脂的复合材料层合板。
将制备的三个实施例的试样经过力学检测,层间剪切实验得出:频率为1KHz时,层间剪切强度为28Mpa;频率为0.5MHz时,层间剪切强度为31.5Mpa;频率为1MHz时,层间剪切强度为32Mpa。
压缩强度实验得出:频率为1KHz时,压缩强度为200Mpa;频率为0.5MHz时,压缩强度为250Mpa;频率为1MHz时,压缩强度为260Mpa。
由此可以得出,通过对材料的压缩、层间剪切等性能测试发现随着电场频率升高,复合材料的层间力学性能逐渐提升。经高频脉冲电场诱导碳纳米管定向排列的复合材料,其力学性能有较大程度的提升。图1和图2分别为通入高频脉冲电场试样和未处理试样的透射形貌图。从图中可以看出,未处理试样的碳纳米管在树脂内呈现无规则排列,相邻碳纳米管间距不确定,团聚现象较为明显,团聚后的碳纳米管结构和填充性能发生较大变化,材料尺寸从纳米级升高至微米级;通过电场诱导排列的碳纳米管,在图中可以清晰看到沿上下方向排列的碳纳米管。

Claims (5)

1.一种碳纳米管定向排列的复合材料层合板制备工艺,其特征在于,具体包括以下步骤:
1)将质量比为100:1的丙酮和碳纳米管混合,使用高速剪切搅拌机搅拌5min,搅拌速率为20000r/min,烘干备用;
2)将环氧树脂及固化剂混合,加入占环氧树脂及固化剂混合后溶液质量百分数1~10%的经步骤1)处理的碳纳米管,先使用低速搅拌机搅拌5~15min,搅拌速率为80~120r/min,再使用高速剪切搅拌机搅拌2~5min,搅拌速率为15000r/min,得到分散均匀的碳纳米管/环氧树脂混合溶液;
3)将混合好的碳纳米管/环氧树脂混合溶液均匀涂抹于碳纤维布上,制成的碳纤维树脂预浸料中树脂质量为30~50%;
4)将上述浸渍好的2~20层碳纤维布预浸料重叠铺敷在一起后,上下表面分别铺敷铜薄膜电极,铺敷时需要保证将预浸料置于铜薄膜电极中间,铜薄膜电极与碳纤维布预浸料之间设置绝缘材料;
5)将上下表面分别铺敷铜薄膜电极的预浸料置于复合材料热补仪进行热压成型,先升温至40~60℃温度,分别在预浸料上下两端铜薄膜电极通入高频脉冲交流电,通电时间为5~10min,通电完成后撤去电源,再升温至环氧树脂固化温度,保温2h后自然冷却脱模,制备得到填充碳纳米管的碳纤维/环氧树脂的复合材料层合板。
2.如权利要求1所述的一种碳纳米管定向排列的复合材料层合板制备工艺,其特征在于,所述的步骤4)中的绝缘材料为PET耐高温薄膜。
3.如权利要求1所述的一种碳纳米管定向排列的复合材料层合板制备工艺,其特征在于,所述的步骤4)中的高频脉冲交流电的电压为0~300V,频率为1KHz~3MHz。
4.如权利要求1所述的一种碳纳米管定向排列的复合材料层合板制备工艺,其特征在于,所述的步骤4)中,铜薄膜电极的厚度为1mm,其长、宽均比预浸料尺寸大1cm。
5.如权利要求1所述这种工艺制备的碳纳米管定向排列的复合材料层合板,其特征在于,制备得到的填充碳纳米管的碳纤维/环氧树脂的复合材料层合板中碳纳米管排列方向为沿层合板厚度方向定向排列。
CN201610437678.5A 2016-06-17 2016-06-17 一种碳纳米管定向排列的复合材料层合板制备工艺 Expired - Fee Related CN106084264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610437678.5A CN106084264B (zh) 2016-06-17 2016-06-17 一种碳纳米管定向排列的复合材料层合板制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610437678.5A CN106084264B (zh) 2016-06-17 2016-06-17 一种碳纳米管定向排列的复合材料层合板制备工艺

Publications (2)

Publication Number Publication Date
CN106084264A CN106084264A (zh) 2016-11-09
CN106084264B true CN106084264B (zh) 2020-04-21

Family

ID=57236292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610437678.5A Expired - Fee Related CN106084264B (zh) 2016-06-17 2016-06-17 一种碳纳米管定向排列的复合材料层合板制备工艺

Country Status (1)

Country Link
CN (1) CN106084264B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107662303B (zh) * 2017-10-16 2019-06-11 南京航空航天大学 一种碳纤维增强树脂基复合材料综合电损耗固化方法
CN109749093A (zh) * 2018-12-17 2019-05-14 长沙理工大学 一种提高环氧树脂材料表面耐磨性能的成型方法
CN109808196B (zh) * 2019-02-26 2021-01-08 中国人民解放军国防科技大学 一种层间含高取向度碳纳米管的纤维层合复合材料及其制备方法
CN109942854B (zh) * 2019-03-26 2022-03-01 中国人民解放军国防科技大学 一种含碳纳米管的弱浸渍预浸料及其制备方法
CN111172556B (zh) * 2020-01-02 2021-04-20 万华化学集团股份有限公司 膜电极组件及其在电化学反应制备乙醛酸中的应用
CN114230823B (zh) * 2022-01-24 2023-03-21 武汉大学 一种基于介电泳的层间性能增强的碳纤维复合材料及其制备方法
CN114801365A (zh) * 2022-05-27 2022-07-29 西南科技大学 高性能铝合金-碳纤维增强树脂基复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788516A (zh) * 2010-02-22 2010-07-28 中国科学院苏州纳米技术与纳米仿生研究所 交流电泳定向组装碳纳米管阵列传感器件的制作方法
CN102838958A (zh) * 2012-09-17 2012-12-26 北京宇极科技发展有限公司 一种高导热率led用银胶的制备方法
CN103013122A (zh) * 2012-12-11 2013-04-03 江苏大学 微纳米混合填料/液体硅橡胶导热复合材料的制备方法
CN103602041A (zh) * 2013-11-15 2014-02-26 哈尔滨工业大学 一种提高含孔复合材料孔边缘耐磨损性能的微结构有序含孔复合材料的制备方法
CN104513404A (zh) * 2013-10-01 2015-04-15 北京化工大学 环氧化合物包覆碳纳米管静电喷涂碳纤维预浸料的制备
CN104629069A (zh) * 2013-11-11 2015-05-20 北京化工大学 一种绝缘层包覆碳纳米管取向吸附碳纤维预浸料的制备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788516A (zh) * 2010-02-22 2010-07-28 中国科学院苏州纳米技术与纳米仿生研究所 交流电泳定向组装碳纳米管阵列传感器件的制作方法
CN102838958A (zh) * 2012-09-17 2012-12-26 北京宇极科技发展有限公司 一种高导热率led用银胶的制备方法
CN103013122A (zh) * 2012-12-11 2013-04-03 江苏大学 微纳米混合填料/液体硅橡胶导热复合材料的制备方法
CN104513404A (zh) * 2013-10-01 2015-04-15 北京化工大学 环氧化合物包覆碳纳米管静电喷涂碳纤维预浸料的制备
CN104629069A (zh) * 2013-11-11 2015-05-20 北京化工大学 一种绝缘层包覆碳纳米管取向吸附碳纤维预浸料的制备
CN103602041A (zh) * 2013-11-15 2014-02-26 哈尔滨工业大学 一种提高含孔复合材料孔边缘耐磨损性能的微结构有序含孔复合材料的制备方法

Also Published As

Publication number Publication date
CN106084264A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106084264B (zh) 一种碳纳米管定向排列的复合材料层合板制备工艺
Si et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality
US11820880B2 (en) Compositions and methods for carbon fiber-metal and other composites
Domingues et al. The use of an electric field in the preparation of glass fibre/epoxy composites containing carbon nanotubes
Jiménez-Suárez et al. Influence of the functionalization of carbon nanotubes on calendering dispersion effectiveness in a low viscosity resin for VARIM processes
EP3184288B1 (en) Composite component forming method and composite component
EP3626763B1 (en) Soluble nanoparticles for composite performance enhancement
Zheng et al. High strength conductive polyamide 6 nanocomposites reinforced by prebuilt three-dimensional carbon nanotube networks
CN107674385B (zh) 一种增韧降阻碳纤维复合材料的制备方法
CN106660068A (zh) 用于多孔介质中的纳米纤维的定向对齐的装置和方法
Yue et al. Realizing the curing of polymer composite materials by using electrical resistance heating: A review
CN109912887A (zh) 一种纳米剥离复合材料、制备方法及其应用
Li et al. Simultaneous enhancement of electrical conductivity and interlaminar shear strength of CF/EP composites through MWCNTs doped thermoplastic polyurethane film interleaves
Zhou et al. Highly effective electromagnetic interference shielding composites with solvent-dispersed uniformly aligned graphene nanosheets enabled by strong intrinsic diamagnetism under magnetic field
Ren et al. Lightweight, electrical insulating, and high thermally conductive all-polymer composites with reinforced interfaces
JP6695797B2 (ja) ナノ構造状に配列したマルチスケール複合材料の製造方法
Hong et al. Preparation and characterization of carbon fiber reinforced plastics (CFRPs) incorporating through-plane-stitched carbon fibers
WO2023155285A1 (zh) 一种长-短碳纳米管增强增韧纤维复合材料及其制备方法
Naik et al. Microwave processing of polymer matrix composites: review of the understanding and future opportunities
Pan et al. Enhanced dielectric properties of poly (vinylidene fluoride-co-hexafluoropropylene) composites using oriented ZnFe2O4@ BaTiO3 rod
KR101804944B1 (ko) 섬유 보강 복합재 및 그 제조방법
Jadhav Process Development and Characterization of Carbon Fiber Composites Cured Using Nanoengineered Graphene Sheets
Naseri et al. Rapid and facile preparation of nanocomposite film heaters for composite manufacturing
Zha et al. Fabrication and properties of high performance polyimide nanofibrous films by electrospinning
Pishvar Fabricating High-Quality Structural Composite Laminates and Tailoring Their Surface Microstructure by Applying Magnetic Pressure and Magnetic Field

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Li Changqing

Inventor after: Dong Huaibin

Inventor after: Ren Pan

Inventor after: Ba Dema

Inventor after: Qiu Ji

Inventor after: Zhang Weiwei

Inventor after: Xiong Yucheng

Inventor before: Li Changqing

Inventor before: Dong Huaibin

Inventor before: Ren Pan

Inventor before: Ba Dema

Inventor before: Zhang Weiwei

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200421

CF01 Termination of patent right due to non-payment of annual fee