CN106083203B - 一种三元层状陶瓷的表面氮化方法 - Google Patents

一种三元层状陶瓷的表面氮化方法 Download PDF

Info

Publication number
CN106083203B
CN106083203B CN201610389166.6A CN201610389166A CN106083203B CN 106083203 B CN106083203 B CN 106083203B CN 201610389166 A CN201610389166 A CN 201610389166A CN 106083203 B CN106083203 B CN 106083203B
Authority
CN
China
Prior art keywords
furnace
nitriding
alc
nitride layer
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610389166.6A
Other languages
English (en)
Other versions
CN106083203A (zh
Inventor
孙振淋
辛玉武
段小明
刘慧�
许建武
徐奉鑫
吴彦芬
曲延龙
王忠明
齐智超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Harbin Dongan Engine Group Co Ltd
Original Assignee
AVIC Harbin Dongan Engine Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Harbin Dongan Engine Group Co Ltd filed Critical AVIC Harbin Dongan Engine Group Co Ltd
Priority to CN201610389166.6A priority Critical patent/CN106083203B/zh
Publication of CN106083203A publication Critical patent/CN106083203A/zh
Application granted granted Critical
Publication of CN106083203B publication Critical patent/CN106083203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明涉及一种三元层状陶瓷的表面氮化方法,通过将零件在高温下进行氮化,并通过氮源气体输入、升温、保温、降温等工艺,在零件表面生成一层TiN膜层;生成的TiN膜层具有高模量、高硬度,耐磨性良好,有效的提高了零件表面耐磨性和耐蚀性。

Description

一种三元层状陶瓷的表面氮化方法
技术领域
本发明涉及一种氮化方法,尤其是一种三元层状陶瓷的表面氮化方法。
背景技术
以Ti3AlC2为代表的Mn+1AXn相,包括Ti2AlC、Ti3AlC2、Cr2AlC、Ta2AlC、Ti3SiC2、Ti4AlN3等三元层状陶瓷材料,兼具有金属与陶瓷的双重属性,可以进行机械加工,耐高温、抗氧化性能优异,在高温氧化性气氛下,可以呈现出自愈合特性,是结构陶瓷在工程化应用领域中非常有前景的陶瓷材料。然而这种三元层状陶瓷材料在应用过程中面临的最大缺陷就是表面硬度低,为克服该缺陷,目前人们所尝试的强化手段有诸如:立方氮化硼颗粒增强、TiB2颗粒增强、SiC颗粒增强等第二相粒子增强方法。但这类方法并不能在由其制作的结构件表面生成一层连续分布的质地坚硬有效保护层,整体抵御外力的作用。同时,这些三元层状陶瓷材料由于其自身结构的原因,耐酸碱腐蚀性能较差,这极大限制了其作为结构材料的应用范围。
发明内容
本发明的目的是提供一种以Ti3AlC2为代表的Mn+1AXn相三元层状陶瓷的表面氮化方法,实现在材料表面生成一层连续分布的质地坚硬有效保护层,并且提高其表面耐磨性和耐蚀性。
本发明的具体技术方案是:
1、将与材料为三元层状陶瓷的零件同材质、同热处理制度的随炉氮化试片置于钛合金离子氮化炉的阴极上,将氮化炉抽真空至30Pa以下后,开始升温,所述的三元层状陶瓷材料包括Ti3AlC2、Ti3SiC2、Ti2AlC、Cr2AlC、Ti3SiC2、Ti4AlN3、Ta2AlC、V2AlC、Zr2AlC、Nb2AlC;
2、升温过程中,氮化炉的升温速率为0.5~5℃/min,升温至350~600℃时保温1~2h;
3、保温结束后,通入氮源气体,所述的氮源气体包括氨气、氮气、氮气和氩气的混合气或氮气和氢气的混合气中的一种,氮源气体裂解产生的活性氮原子向零件内部扩散、渗入;氮源气体的混合比见下表所示:
Figure GDA0002978770330000011
4、继续以0.5~3℃/min的升温速率升温至700~950℃范围内进行保温、氮化,氮化时间为10小时,氮化工艺参数见下表所示:
Figure GDA0002978770330000021
保温结束后,以30~150℃/h的冷却速度,炉冷至350~600℃;
5、关闭电源,随炉冷至200℃以下打开炉门,取出炉氮化试片并检测试片的有效氮化层深度x10h
6、根据有效氮化层深度x10h计算后续补充氮化所需时间,所需补充氮化的时间为:
Figure GDA0002978770330000022
其中x为想要取得的有效氮化层深度;
7、将三元层状陶瓷零件与同材质、同热处理制度的随炉氮化试片继续置于钛合金离子氮化炉的阴极上,重复1-4步骤,其中氮化时间为第6步骤计算的时间;
8、关闭电源,随炉冷至200℃以下打开炉门,取出零件和试片,氮化完毕;
9、对随炉试片的氮化层进行检测,当氮化层深度符合规定值时,零件合格,当氮化层深度未达到规定的氮化层深度时,视两者差异程度,按6、7和8步骤进行补充氮化,直至氮化层深度符合规定值。
本发明在高温下进行氮化,并通过氮源气体输入、升温、保温、降温等工艺,在零件表面生成一层TiN膜层;生成的TiN膜层具有高模量、高硬度,耐磨性良好,同时,TiN陶瓷膜层耐蚀性良好,耐酸、耐碱性能大幅提高。
具体实施方式
一种三元层状陶瓷的表面氮化方法包括以下步骤:
1、将与材料为三元层状陶瓷的零件同材质、同热处理制度的随炉氮化试片置于钛合金离子氮化炉的阴极上,将氮化炉抽真空至30Pa以下后,开始升温,所述的三元层状陶瓷材料包括Ti3AlC2、Ti3SiC2、Ti2AlC、Cr2AlC、Ti3SiC2、Ti4AlN3、Ta2AlC、V2AlC、Zr2AlC、Nb2AlC;
2、升温过程中,氮化炉的升温速率为0.5~5℃/min,升温至350~600℃时保温1~2h;
3、保温结束后,通入氮源气体,所述的氮源气体包括氨气、氮气、氮气和氩气的混合气或氮气和氢气的混合气中的一种,氮源气体裂解产生的活性氮原子向零件内部扩散、渗入;氮源气体的混合比见下表所示:
Figure GDA0002978770330000031
4、继续以0.5~3℃/min的升温速率升温至700~950℃范围内进行保温、氮化,氮化时间为10小时,氮化工艺参数见下表所示:
Figure GDA0002978770330000032
保温结束后,以30~150℃/h的冷却速度,炉冷至350~600℃;
5、关闭电源,随炉冷至200℃以下打开炉门,取出炉氮化试片并检测试片的有效氮化层深度x10h
6、根据有效氮化层深度x10h计算后续补充氮化所需时间,所需补充氮化的时间为:
Figure GDA0002978770330000033
其中x为想要取得的有效氮化层深度;
7、将三元层状陶瓷零件与同材质、同热处理制度的随炉氮化试片继续置于钛合金离子氮化炉的阴极上,重复1-4步骤,,其中氮化时间为第6步骤计算的时间;
8、关闭电源,随炉冷至200℃以下打开炉门,取出零件和试片,氮化完毕;
9、对随炉试片的氮化层进行检测,当氮化层深度符合规定值时,零件合格,当氮化层深度未达到规定的氮化层深度时,视两者差异程度,按7和8步骤进行补充氮化,直至氮化层深度符合规定值。
实施例
某重载航空发动机传统系统中的齿轮轴零件,根据服役条件要求,该零件需要耐温400℃以上,且需要具有良好的抗氧化特性,在400~600℃工作温度区间,要求零件表面硬度维持在HV800以上,该零件由Ti3AlC2材料加工后,再进行离子氮化,有效氮化层深度要求0.15mm以上,具体步骤如下:
1、将材料为Ti3AlC2并与零件同热处理制度的随炉氮化试片置于钛合金离子氮化炉的阴极上,将氮化炉抽真空至10Pa后,开始升温;
2、升温过程中,氮化炉的升温速率为2℃/min,升温至400℃时保温1h;
3、保温结束后,通入氮源气体,所述的氮源气体为氨气,氮源气体裂解产生的活性氮原子向零件内部扩散、渗入;
4、继续以1℃/min的升温速率升温至750℃范围内进行保温、氮化,氮化工艺参数为:气体流量10L/min,炉内真空度控制350Pa,辉光电压750V,辉光占空比0.30,氮化时间为10小时;
保温结束后,以90℃/h的冷却速度,炉冷至400℃;
5、关闭电源,随炉冷至130℃后打开炉门,取出随炉试片并检测试片的有效氮化层深度x10h=0.12mm;,
6、计算该钛合金零件氮化至0.15mm时所需的补充氮化时间为:
Figure GDA0002978770330000041
其中x为想要取得的氮化层深度,为0.15mm;
7、将材料为Ti3AlC2的三元层状陶瓷的零件与同材质、同热处理制度的随炉氮化试片继续置于钛合金离子氮化炉的阴极上,重复1-4步骤,根据该计算的氮化时间,继续补充氮化8h;
8、关闭电源,随炉冷至130℃后打开炉门,取出零件和试片,氮化完毕;
9、对随炉试片的氮化层进行检测,结果如下:
试片的表面三点硬度平均值为HV1137,有效氮化层深度为0.16mm,大于0.15mm,表明零件有效氮化层深度满足工艺要求。

Claims (1)

1.一种三元层状陶瓷的表面氮化方法,其特征在于,所述的方法包括以下步骤:
1)将与材料为三元层状陶瓷的零件同材质、同热处理制度的随炉氮化试片置于钛合金离子氮化炉的阴极上,将氮化炉抽真空至30Pa以下后,开始升温,所述的三元层状陶瓷材料包括Ti3AlC2、Ti3SiC2、Ti2AlC、Cr2AlC、Ti3SiC2、Ti4AlN3、Ta2AlC、V2AlC、Zr2AlC、Nb2AlC;
2)升温过程中,氮化炉的升温速率为0.5~5℃/min,升温至350~600℃时保温1~2h;
3)保温结束后,通入氮源气体,所述的氮源气体包括氨气、氮气、体积比为1:3~10的氮气和氩气的混合气或体积比为1:2~8的氮气和氢气的混合气中的一种,氮源气体裂解产生的活性氮原子向零件内部扩散、渗入;
4)继续以0.5~3℃/min的升温速率升温至700~950℃范围内进行保温、氮化,氮化时间为10小时,氮化工艺参数为:真空度50~400Pa,气体流量5~50L/min,辉光电压400~800V,占空比0.1~0.5,保温结束后,以30~150℃/h的冷却速度,炉冷至350~600℃;
5)关闭电源,随炉冷至200℃以下打开炉门,取出炉氮化试片并检测试片的有效氮化层深度x10h
6)根据有效氮化层深度x10h计算后续补充氮化所需时间,所需补充氮化的时间为:
Figure FDA0003084746310000011
其中x为想要取得的有效氮化层深度,时间的单位为小时;
7)将三元层状陶瓷零件与同材质、同热处理制度的随炉氮化试片继续置于钛合金离子氮化炉的阴极上,重复1)—4)步骤,其中氮化时间为第6)步骤计算的时间;
8)关闭电源,随炉冷至200℃以下打开炉门,取出零件和试片,氮化完毕;
9)对随炉试片的氮化层进行检测,当氮化层深度符合规定值时,零件合格,当氮化层深度未达到规定的氮化层深度时,视两者差异程度,按6)、7)和8)步骤进行补充氮化,直至氮化层深度符合规定值。
CN201610389166.6A 2016-06-03 2016-06-03 一种三元层状陶瓷的表面氮化方法 Active CN106083203B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610389166.6A CN106083203B (zh) 2016-06-03 2016-06-03 一种三元层状陶瓷的表面氮化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610389166.6A CN106083203B (zh) 2016-06-03 2016-06-03 一种三元层状陶瓷的表面氮化方法

Publications (2)

Publication Number Publication Date
CN106083203A CN106083203A (zh) 2016-11-09
CN106083203B true CN106083203B (zh) 2021-09-10

Family

ID=57447250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610389166.6A Active CN106083203B (zh) 2016-06-03 2016-06-03 一种三元层状陶瓷的表面氮化方法

Country Status (1)

Country Link
CN (1) CN106083203B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106399916B (zh) * 2016-11-09 2021-06-08 哈尔滨东安发动机(集团)有限公司 一种钛合金刀具的表面改性方法
CN106555156A (zh) * 2016-12-02 2017-04-05 哈尔滨东安发动机(集团)有限公司 一种铌合金的氮化方法
CN106756766A (zh) * 2016-12-02 2017-05-31 哈尔滨东安发动机(集团)有限公司 一种锆合金零件的表面氮化方法
CN109524251B (zh) * 2018-12-28 2019-10-11 西安交通大学 一种钛元素改性Ti3AlC2增强铜基电触头的制备方法及其应用
CN110240491B (zh) * 2019-07-09 2021-11-23 成都贝施美生物科技有限公司 一种高韧性的氧化锆瓷块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1698713A1 (de) * 2005-03-01 2006-09-06 Ceco Ltd Kratzfester Werkstoff und Verfahren zu seiner Herstellung
CN101403116A (zh) * 2008-11-17 2009-04-08 华中科技大学 一种Ti-Si-N纳米涂层的制备方法
WO2009082178A2 (en) * 2007-12-26 2009-07-02 Seoul National University Industry Foundation Solid-solution carbide/carbonitride powder and method for preparing thereof under high temperature
CN103710603A (zh) * 2013-12-27 2014-04-09 华中科技大学 无磁梯度结构Ti(C,N)基金属陶瓷及其制备方法
CN104060143A (zh) * 2014-04-25 2014-09-24 厦门钨业股份有限公司 一种低压渗氮法制备富氮功能梯度金属陶瓷的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1698713A1 (de) * 2005-03-01 2006-09-06 Ceco Ltd Kratzfester Werkstoff und Verfahren zu seiner Herstellung
WO2009082178A2 (en) * 2007-12-26 2009-07-02 Seoul National University Industry Foundation Solid-solution carbide/carbonitride powder and method for preparing thereof under high temperature
CN101403116A (zh) * 2008-11-17 2009-04-08 华中科技大学 一种Ti-Si-N纳米涂层的制备方法
CN103710603A (zh) * 2013-12-27 2014-04-09 华中科技大学 无磁梯度结构Ti(C,N)基金属陶瓷及其制备方法
CN104060143A (zh) * 2014-04-25 2014-09-24 厦门钨业股份有限公司 一种低压渗氮法制备富氮功能梯度金属陶瓷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"渗氮处理对金属陶瓷耐腐蚀性的影响";孙亚丽 等;《稀有金属与硬质合金》;20110930;第39卷(第3期);58-61、74 *

Also Published As

Publication number Publication date
CN106083203A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106083203B (zh) 一种三元层状陶瓷的表面氮化方法
CN106011738A (zh) 一种模具用表面渗镀复合涂层工艺
CN106747536B (zh) 一种纤维增强三元层状陶瓷零件的表面氮化方法
CN109487141B (zh) 一种板状碳化物固溶体增韧混晶Ti(C,N)基金属陶瓷的制备方法
CN106565244B (zh) 一种颗粒增强三元层状陶瓷零件的表面氮化方法
CN106835054B (zh) 金刚石单晶表面金属化处理的方法
CN104911381B (zh) 一种Ti2AlC/TiAl基复合材料及其制备方法
CN1305023A (zh) 钛合金等离子表面合金化技术
CN111321381B (zh) 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法
CN106893947A (zh) 一种可耐400度高温的轴承钢的制备方法
CN106637071A (zh) 一种多段式包埋渗铝结合微弧氧化制备复合涂层的方法
CN101851736A (zh) 一种环保型富氮层快速渗氮方法
CN103602946B (zh) 一种提高钛合金轴承座表面耐磨性的方法
CN101177774A (zh) 一种钛及钛合金表面氧碳共渗的设备及方法
CN109385566B (zh) Pvd用高强高耐磨多主元合金涂层材料及其制备方法
CN106399916B (zh) 一种钛合金刀具的表面改性方法
KR101397340B1 (ko) 금속 표면처리 방법 및 이에 따른 금속 처리물
CN105970151B (zh) 表面处理方法、金属碳化物覆层、合金工件
CN105568211B (zh) 一种铝合金表面等离子体扩渗强化的方法
CN103789721A (zh) 中、低碳合金结构钢循环变压快速气体氮化方法
CN103147037B (zh) 一种表面具有硼铁合金渗层的钛合金齿轮及其共渗方法
CN1329181A (zh) TiAl基合金的快速高温气体渗氮工艺
JPH03232957A (ja) 耐摩耗部材の製造方法
CN113046683B (zh) 一种基于TiB晶须的钛或钛合金的梯度渗层及其制备方法
CN113667931B (zh) 一种镧系稀土氧化物复合TiSiN涂层

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant