CN106082307A - 一种氧化锌纳米软管的制备方法 - Google Patents

一种氧化锌纳米软管的制备方法 Download PDF

Info

Publication number
CN106082307A
CN106082307A CN201610433802.0A CN201610433802A CN106082307A CN 106082307 A CN106082307 A CN 106082307A CN 201610433802 A CN201610433802 A CN 201610433802A CN 106082307 A CN106082307 A CN 106082307A
Authority
CN
China
Prior art keywords
zinc
flexible pipe
oxide nano
preparation
nano flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610433802.0A
Other languages
English (en)
Other versions
CN106082307B (zh
Inventor
徐天林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University
Original Assignee
Hefei Songlei Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Songlei Information Technology Co Ltd filed Critical Hefei Songlei Information Technology Co Ltd
Priority to CN201610433802.0A priority Critical patent/CN106082307B/zh
Publication of CN106082307A publication Critical patent/CN106082307A/zh
Application granted granted Critical
Publication of CN106082307B publication Critical patent/CN106082307B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种氧化锌纳米软管的制备方法。其利用水热法可控合成氧化锌纳米软管。其制备的氧化锌纳米软管可作为光催化降解环境污染物的催化剂,在紫外光的照射下,实现了对甲基橙的快速、高效、彻底降解。

Description

一种氧化锌纳米软管的制备方法
技术领域
本发明属于纳米材料技术领域,具体涉及一种氧化锌纳米软管的制备方法。
背景技术
光催化氧化法是近几十年来发展起来的一种先进的氧化技术。它是将特定光源(如紫外光)与催化剂(ZnO、TiO2等)联合作用对有机废水进行降解处理的过程。光催化氧化法与传统水处理技术中以污染物的分离、浓缩以及相转移等为主的物理方法相比,具有明显的节能、快速、高效、污染物降解彻底等优点。
ZnO是典型的直接带隙宽禁带半导体材料,在室温下其禁带宽度约为3.37 eV。与普通的氧化锌相比,氧化锌纳米软管在太阳能电池、表面声波和压电材料、场发射、纳米激光等光电技术领域具有重要的潜在应用价值,其在光催化氧化法中的应用也引起了人们的重视。
目前,氧化锌纳米材料的制备方法多种多样,主要有:射频溅射法、双离子束溅射沉积法、化学气相沉积法、分子束蒸发沉积、脉冲激光沉积、喷雾热分解法以及溶胶一凝胶法等,但是,以上方法都比较繁琐,制备过程较为复杂、纳米形貌不好控制。
发明内容
针对现有技术的不足,本发明提供一种氧化锌纳米软管的制备方法,利用水热法可控合成氧化锌纳米软管,制备的氧化锌纳米软管可作为光催化降解环境污染物的催化剂,在紫外光的照射下,实现对甲基橙的快速、高效、彻底降解。
本发明采用的技术方案是:
一种氧化锌纳米软管的制备方法,包括以下步骤:
a、将锌片依次放入乙醇、水中进行超声清洗;超声清洗时间为10-20min,可以达到活化表面、在表面生成氧化锌纳米种子的目的;
b、将无水乙醇、油酸、盐酸混合均匀后加入反应釜中,将处理过的表面洁净的锌片浸入混合液中,将反应釜密闭,在40 oC-80 oC下反应2-8小时,冷却至室温,清洗,室温干燥,即制得氧化锌纳米软管。所述无水乙醇和盐酸的体积比为20-60: 1。;所述盐酸的浓度≥12mol/L。
本发明一种氧化锌纳米软管的制备方法,是在密闭的高温高压反应釜中,采用无水乙醇作为反应溶剂,加入油酸和盐酸混合均匀,通过加热反应体系,产生一个高压环境而进行材料制备的一种有效方法。本发明制备方法产物纯度高、分散性好、晶形好且可控制,生产成本低,重现性好。所制备出的氧化锌纳米软管可作为光催化降解环境污染物的催化剂,在紫外光的照射下,实现对污染物甲基橙的高效、快速、彻底降解。
附图说明
图1为实施例1制备的氧化锌纳米软管的扫描电子显微镜照片(SEM);
图2为实施例2制备的氧化锌纳米软管的扫描电子显微镜照片(SEM);
图3为实施例3制备的氧化锌纳米软管的扫描电子显微镜照片(SEM);
图4为实施例4制备的氧化锌纳米软管的扫描电子显微镜照片(SEM);
图5为实施例5制备的氧化锌纳米软管的扫描电子显微镜照片(SEM)。
具体实施方式
实施例1
一种氧化锌纳米软管的制备方法,包括以下步骤:
a、将锌片依次放入乙醇、水中进行超声清洗15min;
b、将20 mL无水乙醇、2 mL油酸和0. 6 mL 12 mol/L的盐酸混合均匀后加入60 mL反应釜中,将处理过的锌片浸入混合液中,拧紧釜盖,在70 oC下反应5小时,取出反应釜自然冷却至室温,依次用乙醇、二次蒸馏水冲洗干净,室温干燥,即制得氧化锌纳米软管。
制备的氧化锌纳米软管与锌制电极的质量面积比为0.0175g/cm2
将实施例1制备的氧化锌纳米软管,作为光催化降解环境污染物的催化剂,在紫外光的照射下实现了对污染物甲基橙的快速、高效、彻底降解。
配制浓度50 mg/L 100 mL的甲基橙溶液,加入0.05 g制备的氧化锌纳米软管,磁力搅拌1小时,实现吸附和脱附平衡,在300 W紫外灯的照射下进行反应,光源距离液面10cm,同时进行电磁搅拌。每隔5 min取一次样,先将样品按8000 r/min的转速离心旋转10min,分离出上清液,再将所得的上清液按10000 r/min的转速离心旋转15 min,分离出上清液。
在UV-754型紫外可见分光光度计上,在甲基橙最大吸收波长464nm处测量其在不同时间段的吸光度。通过不同时间段吸光度计算甲基橙的降解率为D=[(A0-As)/A0]×100%,其中:A0为光照分解前甲基橙的吸光度,As为光照分解后甲基橙的吸光度。通过In(C0/Ct)=kt得出一级反应的线性关系。其中:C0为甲基橙的原始浓度,Ct为反应一段时间后甲基橙的浓度。
实施例2
一种氧化锌纳米软管的制备方法,包括以下步骤:
a、将锌片依次放入乙醇、水中进行超声清洗15min;
b、将20 mL无水乙醇、2 mL油酸和0. 6 mL 12 mol/L的盐酸混合均匀后加入60 mL反应釜中,将处理过的锌片浸入混合液中,拧紧釜盖,在100 oC下反应5小时,取出反应釜自然冷却至室温,依次用乙醇、二次蒸馏水冲洗干净,室温干燥,即制得氧化锌纳米软管。
实施例3
一种氧化锌纳米软管的制备方法,包括以下步骤:
a、将锌片依次放入乙醇、水中进行超声清洗15min;
b、将20 mL无水乙醇、3 mL油酸和0. 8 mL 12 mol/L的盐酸混合均匀后加入60 mL反应釜中,将处理过的锌片浸入混合液中,拧紧釜盖,在80 oC下反应5小时,取出反应釜自然冷却至室温,依次用乙醇、二次蒸馏水冲洗干净,室温干燥,即制得氧化锌纳米软管。
实施例4
一种氧化锌纳米软管的制备方法,包括以下步骤:
a、将锌片依次放入乙醇、水中进行超声清洗15min;
b、将20 mL无水乙醇、1 mL油酸和1 mL 12 mol/L的盐酸混合均匀后加入60 mL反应釜中,将处理过的锌片浸入混合液中,拧紧釜盖,在60 oC下反应5小时,取出反应釜自然冷却至室温,依次用乙醇、二次蒸馏水冲洗干净,室温干燥,即制得氧化锌纳米软管。
实施例5
一种氧化锌纳米软管的制备方法,包括以下步骤:
a、将锌片依次放入乙醇、水中进行超声清洗15 min;
b、将20 mL无水乙醇、4 mL油酸和0. 6 mL 13 mol/L的盐酸混合均匀后加入60 mL反应釜中,将处理过的锌片浸入混合液中,拧紧釜盖,在40 oC下反应5小时,取出反应釜自然冷却至室温,依次用乙醇、二次蒸馏水冲洗干净,室温干燥,即制得氧化锌纳米软管。

Claims (4)

1.一种氧化锌纳米软管的制备方法,包括以下步骤:
a、将锌片依次放入乙醇、水中进行超声清洗;
b、将无水乙醇、油酸、盐酸混合均匀后加入反应釜中,将处理过的表面洁净的锌片浸入混合液中,将反应釜密闭,在40 oC-100 oC下反应2-8小时,冷却至室温,清洗,室温干燥,即制得氧化锌纳米软管。
2.如权利要求1所述氧化锌纳米软管的制备方法,其特征在于:所述步骤a中超声清洗时间为10-20 min。
3.如权利要求1所述氧化锌纳米软管的制备方法,其特征在于:所述步骤b中所述无水乙醇和盐酸的体积比为20-60: 1;无水乙醇和油酸的体积比为10-20: 1。
4.如权利要求1所述氧化锌纳米软管的制备方法,其特征在于:所述步骤b中盐酸的浓度≥12 mol/L。
CN201610433802.0A 2016-06-18 2016-06-18 一种氧化锌纳米软管的制备方法 Expired - Fee Related CN106082307B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610433802.0A CN106082307B (zh) 2016-06-18 2016-06-18 一种氧化锌纳米软管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610433802.0A CN106082307B (zh) 2016-06-18 2016-06-18 一种氧化锌纳米软管的制备方法

Publications (2)

Publication Number Publication Date
CN106082307A true CN106082307A (zh) 2016-11-09
CN106082307B CN106082307B (zh) 2018-01-19

Family

ID=57235749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610433802.0A Expired - Fee Related CN106082307B (zh) 2016-06-18 2016-06-18 一种氧化锌纳米软管的制备方法

Country Status (1)

Country Link
CN (1) CN106082307B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024556A (ja) * 2006-07-21 2008-02-07 Tokyo Univ Of Science 金属酸化物粉末の製造方法、及び当該製造方法により得られる金属酸化物粉末
CN101559973A (zh) * 2009-05-18 2009-10-21 清华大学 以工业硫酸锌为原料制备纳米氧化锌和晶须氧化锌的方法
CN102161499A (zh) * 2011-01-14 2011-08-24 北京化工大学 一种量子尺寸氧化锌及其制备方法和应用
CN104828855A (zh) * 2015-05-05 2015-08-12 上海交通大学 超长层级结构ZnO晶须及其基于水热离子诱导技术制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024556A (ja) * 2006-07-21 2008-02-07 Tokyo Univ Of Science 金属酸化物粉末の製造方法、及び当該製造方法により得られる金属酸化物粉末
CN101559973A (zh) * 2009-05-18 2009-10-21 清华大学 以工业硫酸锌为原料制备纳米氧化锌和晶须氧化锌的方法
CN102161499A (zh) * 2011-01-14 2011-08-24 北京化工大学 一种量子尺寸氧化锌及其制备方法和应用
CN104828855A (zh) * 2015-05-05 2015-08-12 上海交通大学 超长层级结构ZnO晶须及其基于水热离子诱导技术制备方法

Also Published As

Publication number Publication date
CN106082307B (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
Wang et al. Efficient hydrogen production by photocatalytic water splitting using N-doped TiO2 film
CN109569684B (zh) 等离子体改性金属氧化物和g-氮化碳共修饰二氧化钛纳米棒复合光催化剂及其制备和应用
WO2017219382A1 (zh) 一种双层ZnO空心球光催化材料及其制备方法
CN108927157B (zh) Cu2O/{001}TiO2复合催化剂的制备方法及其对氨气动态净化的应用
Chen et al. Enhanced visible-light photocatalytic activity of g-C3N4/nitrogen-doped graphene quantum dots/TiO2 ternary heterojunctions for ciprofloxacin degradation with narrow band gap and high charge carrier mobility
CN105401150A (zh) 一种TiO2纳米束/掺硼金刚石薄膜复合光电催化电极、制备方法及应用
Wang et al. Photocatalytic hydrogen generation with simultaneous organic degradation by a visible light-driven CdS/ZnS film catalyst
CN113387326B (zh) 二硫化锡纳米催化剂在压电催化分解水产氢中的应用
Kang et al. Preparation of Zn2GeO4 nanosheets with MIL-125 (Ti) hybrid photocatalyst for improved photodegradation of organic pollutants
CN113318787A (zh) 金属基底上原位生长mof的催化剂及其制备方法和应用
Tao et al. Influence of nitrogen sources on N-doped reduced TiO2 prepared using atmospheric plasma spraying for photocatalytic tetracycline and ciprofloxacin degradation
Chen et al. LED-driven photocatalysis of toluene, trichloroethylene and formaldehyde by cuprous oxide modified titanate nanotube arrays
CN108404937B (zh) 纳米复合材料MoS2/Ag/TiO2NTs制备方法
CN108435168B (zh) 一种具有可见光吸收及高效co2吸附和转化性能的复合光催化剂及其制备方法
Zhang et al. Bi (Ⅲ) and Ce (Ⅳ) functionalized carbon nitride photocatalyst for antibiotic degradation: Synthesis, toxicity, and mechanism investigations
CN103506104B (zh) 玻璃片载体上碳掺杂TiO2可见光响应催化膜及其制备方法
Singha et al. Ultrasonic spray pyrolysis deposited ZnO thin film for photocatalytic activity
CN104828865B (zh) 一种黑色单一板钛矿相二氧化钛的制备方法
CN114950494B (zh) 一种催化降解四环素的光催化材料及其制备方法
CN106082307B (zh) 一种氧化锌纳米软管的制备方法
CN112517004B (zh) 一种Cu/Cu2O复合薄膜及其制备方法和应用
CN113058630B (zh) 一种适用于室温条件下的高效除甲醛光催化剂的制备方法及应用
CN113648989B (zh) SrBi2Ta2O9在光催化降解抗生素方面的应用
Katal et al. Photocatalytic degradation of the acetaminophen by nanocrystal-engineered TiO 2 thin film in batch and continuous system
CN109046302B (zh) 一种多孔花瓣状的锐钛矿TiO2纳米晶薄膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170727

Address after: 510640 Guangdong City, Tianhe District Province, No. five, road, public education building, unit 371-1, unit 2401

Applicant after: Guangdong Gaohang Intellectual Property Operation Co., Ltd.

Address before: The peach blossom town of Feixi County of Hefei City, Anhui Province, 230000 Pine Road and Furong Road intersection of Yuzhou overseas Chinese town garden 12 building 405 room

Applicant before: Hefei Songlei Information Technology Co., Ltd.

CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Dai Bing

Inventor after: Zhang Hongquan

Inventor after: Bo Jingyuan

Inventor before: Xu Tianlin

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20171222

Address after: 150000 Zhongxing Road, Nangang District, Heilongjiang, China, No. 109, No.

Applicant after: HARBIN UNIVERSITY

Address before: 510640 Guangdong City, Tianhe District Province, No. five, road, public education building, unit 371-1, unit 2401

Applicant before: Guangdong Gaohang Intellectual Property Operation Co., Ltd.

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180119

Termination date: 20210618