CN106059675A - 圆阵列旋转分形嵌套高阶涡旋电磁波生成分离方法与装置 - Google Patents

圆阵列旋转分形嵌套高阶涡旋电磁波生成分离方法与装置 Download PDF

Info

Publication number
CN106059675A
CN106059675A CN201610365223.7A CN201610365223A CN106059675A CN 106059675 A CN106059675 A CN 106059675A CN 201610365223 A CN201610365223 A CN 201610365223A CN 106059675 A CN106059675 A CN 106059675A
Authority
CN
China
Prior art keywords
uca
electromagnetic wave
vortex electromagnetic
signal
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610365223.7A
Other languages
English (en)
Other versions
CN106059675B (zh
Inventor
赵林军
张海林
梁芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Shaanxi University of Technology
Original Assignee
Xidian University
Shaanxi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University, Shaanxi University of Technology filed Critical Xidian University
Priority to CN201610365223.7A priority Critical patent/CN106059675B/zh
Publication of CN106059675A publication Critical patent/CN106059675A/zh
Priority to US16/085,501 priority patent/US10498045B2/en
Priority to PCT/CN2017/091679 priority patent/WO2017202393A1/zh
Application granted granted Critical
Publication of CN106059675B publication Critical patent/CN106059675B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/90Non-optical transmission systems, e.g. transmission systems employing non-photonic corpuscular radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/084Equal gain combining, only phase adjustments

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了基于均匀圆阵列(UCA,Uniform Circle Array)旋转分形嵌套高阶涡旋电磁波天线阵元布局结构,即由阵元数为M的UCAn(n=0,1,…,N‑1)依次同向旋转后等间隔分布在半径为r2的圆周上形成的UCAn互不相交旋转嵌套结构,且相邻UCAn的阵元间距最小值不大于λ/2;公开了高阶涡旋电磁波信号生成方法是将UCAn的独立多模态信号调制到以UCAn为阵元的UCA生成某一模态涡旋波上;公开了高阶涡旋电磁波信号分离方法是依据本发明所述天线阵元布局结构,对来自各UCAn相同序号阵元响应进行N点空间正交变换,解调出UCAn独立涡旋信号,再对UCAn独立涡旋信号做M点空间正交变换分离出调制信息;公开了UCA旋转分形嵌套高阶涡旋电磁波信号生成方法实现装置与接收分离方法的实现装置。

Description

圆阵列旋转分形嵌套高阶涡旋电磁波生成分离方法与装置
技术领域
本发明涉及一种高阶涡旋电磁波生成与接收分离方法与装置,属于通信信号处理技术与雷达信号处理技术领域。
背景技术
对于通信科技工作者来说,在带宽不增的前提下寻找新方法提升系统的信道容量是一个永恒的主题。目前,常规无线通信系统的信道容量提升技术已经相当成熟,为此人们就将目光转移到了非传统电磁波领域,以求寻找到技术突破。按照经典电动力学理论,同频不同模态的涡旋电磁波可以同时共享信道,2011年Bo Thidé和意大利同事小组在威尼斯泻湖上展示了涡旋电磁波与平面电磁波同时同频独立信息传输的实验,验证了涡旋电磁波提升无线系统信道容量的能力,为人们进一步提升现有各种通信系统的信道容量提供了一条新途径。
为了涡旋电波技术应用到射频无线电频段,科学家进行了不懈努力,在该领域目前文献报道的主要研究成果有:2010年S.M.Mohammadi和Bo Thidé等人提出了基于圆环阵列天线的涡旋电磁波生成方法,2011年F.Tamburini等人通过实验验证了具有8阶旋转梯状反射面面天线产生涡旋电磁波方法,2012年Alan Tennant等人仿真验证了使用TSA(TimeSwitched Array)圆环阵列在多个频率上同时产生独立模态涡旋电磁波的方法,2013年Qiang Bai与TennantA等人仿真了8阵元相控微带均匀圆阵列涡旋电磁波生成方法,2014年Qiang Bai等人对8阵元相控微带均匀圆阵列天线产生涡旋电磁波的实验验证,2014年Palacin B等人研究了8×8Butler矩阵在8阵元均匀圆阵列天线中应用,并同时在相同载频上产生8个独立模态的涡旋电磁波,2015年Wei Wen-long等人针对4阵元相控微带均匀圆阵列涡旋电磁天线完成了载频2.5GHz圆环移相器设计,2015年华中科技大学桂良启等仿真了开槽圆阵列天线涡旋电磁波的方法。
据现文献报道:通信系统中涡旋电磁波的可用模态数量越多,系统的增容效果较愈加明显,与之相应则要求系统收/发天线的物理尺寸越大,不利于通信系统移动与维护,为此研究较小物理尺寸天线产生高阶涡旋电磁波技术具有理论意义与现实意义,目前在无线通信领域关于高阶多模态涡旋电磁波的产生与接收分离方法尚报道的极少。
发明内容
本发明旨在解决射频频段的高阶涡旋电磁波生成与接收分离问题。
下面的具体实施方式中描述了本发明的进一步特征和方面。
附图说明
图1为本发明所述圆阵列旋转分形嵌套高阶涡旋电磁波信号生成与分离方法总体概况图。
图2为本发明所述均匀圆阵列旋转分形嵌套结构高阶涡旋电磁波收/发天线阵元布局结构示意图。
图3为本发明所述高阶涡旋电磁波天线阵元激励加载方法与对应阵元激励产生方法示意图,图3中,1为圆阵列旋转分形嵌套高阶涡旋电磁波发天线,2为N×M相移器组,3为M×N相移器组,4为参数控制器组。
图4为本发明所述高阶涡旋电磁波接收与高阶涡旋电磁波多模态分离方法示意图,图4中,5为圆阵列旋转分形嵌套高阶涡旋电磁波接收天线,6为模态控制器,7-1为N模态分离器组,7-2为M模态分离器组。
具体实施方式
本发明所述为一种面向均匀圆阵列(UCA,Uniform Circle Array)旋转分形嵌套高阶涡旋电磁波收、发天线布局结构,并论述了采用UCA旋转分形嵌套高阶涡旋电磁波天线实现高阶多模态涡旋电磁波的产生与接收分离方法及其实现装置。
无线通信系统中,UCA收发多模态涡旋电磁波是可行的(均匀圆阵列天线收发涡旋电磁波见“B.Thidé,H.Then,J.et al,“Utlilization of photon orbitalangular momentum in the low-frequency radio domain,”Phys.Rev.Lett.,vol.99,no.8,p.087701,Aug.22,2007,以引用的方式将其公开在此),本发明人(组)结合UCA阵元布局结构与分形嵌套理论,提出了UCA旋转分形嵌套的高阶涡旋电磁波天线阵元布局结构,如图2所示。
在图2中,本发明所述天线的是由半径为r1、阵元间距d≤λ/2(λ为载波波长)、阵元数为M的均匀圆阵列(UCA,Uniform Circle Array)天线的N个副本依次同向旋转后等间隔分布在半径为r2圆周上形成的两两互不相交的UCA嵌套结构,且半径为r2圆周上相邻的两个半径为r1的UCA的不同阵元间距最小值不大于λ/2,高阶涡旋电磁波收、发天线结构具有UCA旋转分形嵌套特点。
面向均匀圆阵列旋转分形嵌套高阶涡旋电磁波接收端多模态高阶涡旋信号的生成方法是:利用UCA旋转分形嵌套天线产生高阶涡旋电磁波信号,根据UCA旋转分形嵌套天线阵元布局结构,可知半径为r1阵元数为M的UCA可自生成M个不同模态涡旋信号,将半径为r1 阵元数为M的UCA作为一个阵元,则半径为r2的UCA又可生成N个不同模态涡旋信号,将半径为r1的UCA生成的多模态涡旋电磁波调制到半径为r2的UCA生成的多模态涡旋信号的一个模态上,即可产生本发明所述的高阶涡旋信号。
面向UCA旋转分形嵌套高阶涡旋电磁波接收端多模态高阶涡旋信号的分离方法是:利用UCA旋转分形嵌套天线接收空间高阶涡旋电磁波信号,根据UCA旋转分形嵌套高阶涡旋电磁波天线阵元布局结构,首先在半径r2上的N个半径为r1阵元数为M的UCA中依次取相同阵元序号的响应,并对所取响应做N点空间正交变换,可分离出对应阵元的降阶涡旋电磁波信息,并按照其与N个半径为r1阵元数为M的UCA的对应阵元关系进行分组,之后再按组对降阶涡旋电磁波信息分别做M点空间正交变换,可分离出高阶涡旋电磁波上携带的调制信息。
本发明同时公开了如图3所示基于UCA旋转分形嵌套天线生成高阶涡旋电磁波信号方法的实现装置与如图4所示高阶涡旋电磁波信号分离方法的实现装置,图3中,高阶涡旋电磁波UCA旋转分形嵌套结构天线1阵元所需的激励在参数控制器组4的协同下由N×M相移器组2与M×N相移器组3产生,图4中高阶涡旋电磁波携带的调制信息的提取是在模态控制器6协同下由N模态分离器组7-1与M模态分离器组7-2共同完成对高阶涡旋电磁波UCA旋转分形嵌套结构天线5阵元响应分离。
下面将描述高阶涡旋电磁波信号生成与分离方法的详细执行过程。
通信双方采用本发明所述如图2所示UCA旋转分形嵌套高阶涡旋电磁波天线,不妨将该天线中半径为r1的UCA记为UCAn(n=0,1,…,N-1),以天线的几何中心建立参考系,则UCAn(n=0,1,…,N-1)在半径为r2圆周上,且依次旋转(n=0,1,…,N-1),则UCAn(n=0,1,…,N-1)的0号阵元位于半径为r1+r2的圆周上,UCAn(n=0,1,…,N-1)的1号阵元也是同圆的,以此类推,UCAn(n=0,1,…,N-1)的M-1号阵元是同圆的。
高阶涡旋电磁波多模态信号生成方法是各UCAn生成M个模态涡旋信号,以UCAn(n=0,1,…,N-1)为阵元的UCA又生成N个模态涡旋信号,将UCAn(n=0,1,…,N-1)生成的多模态涡旋信号分别调制到以UCAn(n=0,1,…,N-1)为阵元UCA生成多模态涡旋信号的一个模态上即可实现本发明所述高阶涡旋信号。
所述高阶涡旋电磁波信号生成方法包括如下步骤:
(a)以本发明所述天线的几何中心建立参考系,记为XOY,以UCAn(n=0,1,…,N-1)各自圆心建立参考系记为XOYn(n=0,1,…,N-1),且XOYn是XOY的平移旋转(旋转角为n=0,1,…,N-1),如图3所示,在参考系XOY下,UCAn生成的高阶多模态涡旋电磁波(UCA生成多模态涡旋电磁波的方法见“B.Thidé,H.Then,et al,“Utlilization of photon orbital angular momentum in the low-frequency radiodomain,”Phys.Rev.Lett.,vol.99,no.8,p.087701,Aug.22,2007”,以引用的方式将其公开在此)信号为:
y l ( t , β , α ) = Σ k = 0 N - 1 Σ p = 0 M - 1 A · n p , k ( t ) e j ( p · β + ( ( k + p ) ) N · α ) - - - ( 1 )
式(1)中(k=0,1,…,N-1,p=0,1,…,M-1)为UCAn的p模态涡旋信号加载到了以UCAn为阵元的UCA的k模态涡旋信号时产生的二阶涡旋电磁波携带的调制信息,p为UCAn(n=0,1,…,N-1)生成的涡旋电磁波模态(UCAn的阵元数目为M,故p=0,1,…,M-1),k为以UCAn(n=0,1,…,N-1)为阵元构成UCA生成的涡旋电磁波模态,α为以UCAn(n=0,1,…,N-1)为阵元的UCA生成的涡旋电磁波沿传播方向的方位角,β为UCAn(n=0,1,…,N-1)生成的涡旋电磁波沿传播方向的方位角,((k+p))N为k+p关于N取模;
(b)高阶涡旋电磁波UCA旋转分形嵌套天线中阵元(n=0,1,…,N-1,m=0,1,…,M-1)对应的激励为,
y n ( m ) ( t ) = Σ k = 0 N - 1 Σ p = 0 M - 1 A · n p , k ( t ) e j ( p 2 π M m + ( ( k + p ) ) N · 2 π N · n ) - - - ( 3 )
图3中以作为阵元(n=0,1,…,N-1,m=0,1,…,M-1)的激励即可生成本发明所述高阶涡旋电磁波信号,采用本发明所述天线可生成的涡旋电磁波是二阶的,其产生的信号模态最大值为NM。
高阶涡旋电磁波多模态信号分离方法是通信双方采用本发明所述天线且均工作在高阶涡旋电磁波收发状态,同时收发天线平行对齐,如图4所示在接收天线阵元所在平面,以天线的几何中心建立参考系记为XOY′,以UCAn(n=0,1,…,N-1)各自圆心建立独立参考系分别记为XOYn′(n=0,1,…,N-1),且XOYn′是XOY′的平移且旋转(n=0,1,…,N-1), 各阵元响应为(i=0,1,…,M-1,n=0,1,…,N-1),对进行N点空间正交分离(见本发明人(组)申请的国家发明专利“基于空间正交变换的涡旋电磁波信号模态并行分离方法与装置”(申请号:201610077471.1),以引用的方式将其公开在此)得 同理对进行N点空间正交分离得依次类推,直到完成的N点空间正交分离得再对进行M点空间正交分离可获得UCAn的M个模态涡旋波信号携带的调制信息,遍历n=0,1,…,N-1,可从中分离出高阶涡旋电磁波携带的所有调制信息。
所述高阶涡旋电磁波信号分离方法包括如下步骤:
(a)接收信号记为y(t),有,
y ~ ( t ) = H · Σ k = 0 N - 1 Σ p = 0 M - 1 A · n p , k ( t ) e j ( p · β + ( ( k + p ) ) N · α ) - - - ( 4 )
式(4)中k=0,1,…,N-1,p=0,1,…,M-1,H为信道函数;
(b)接收天线阵元(n=0,1,…,N-1,m=0,1,…,M-1)接收的高阶涡旋电磁信号为,
y ~ n ( m ) ( t ) = H · Σ k = 0 N - 1 Σ p = 0 M - 1 A · n p , k ( t ) e j ( p · 2 π M m + ( ( k + p ) ) N · 2 π N · n ) - - - ( 5 )
式(5)中,n=0,1,…,N-1,m=0,1,…,M-1;
(c)对进行N模态分离,有,
s ~ n ( m ) ( t ) = Σ n = 0 N - 1 y ~ n ( m ) ( t ) · e - j · n · 2 π N · k - - - ( 6 )
式(6)中m=0,1,…,M-1,k=0,1,…,N-1;
(d)对进行M模态分离,有,
A · n p ( t ) = 1 H Σ m = 0 M - 1 s ~ n ( m ) ( t ) · e - j · p 2 π M · m - - - ( 7 )
式(7)中p=0,1,…,M-1,从UCAn(n=0,1,…,N-1)的p模态涡旋信号上获取的信息(含有振幅与相位),遍历n=0,1,…,N-1,即可获得本发明所述高阶涡旋电磁波承载的所 有调制信息。
对于本领域的技术人员来说,可以根据以上的技术方案和构思,做各种相应改变和变形,而所有的这些改变和变形都应该包括在本发明权利要求的保护范围之内。

Claims (8)

1.面向高阶涡旋电磁波天线结构,其特征在于,高阶涡旋电磁波收、发天线由半径为r1、阵元间距d≤λ/2(λ为载波波长)、阵元数为M的均匀圆阵列(UCA,Uniform Circle Array)天线的N个副本依次同向旋转(n=0,1,…,N-1)后等间隔分布在半径为r2的圆周上形成的两两互不相交的UCA旋转嵌套结构,且半径为r2的圆周上相邻的两个半径为r1的UCA不同阵元间距最小值不大于λ/2,高阶涡旋电磁波收、发天线结构具有UCA旋转分形嵌套几何结构。
2.根据权利要求1所述高阶涡旋电磁波收、发天线UCA旋转分形嵌套结构,不失一般性,按逆时针方向标记半径为r2圆周上的各半径为r1的UCA为UCAn(n=0,1,…,N-1),同时UCAn的阵元也按逆时针方向标记为(m=0,1,…,M-1),于是给定m,则有(n=0,1,…,N-1)共圆,且(n=0,1,…,N-1)共圆半径为r1+r2
3.面向高阶涡旋电磁波信号产生方法,其特征在于,利用UCA旋转分形嵌套天线阵元布局特点,各UCAn可分别产生M个不同模态涡旋电磁波信号,同时以UCAn(n=0,1,…,N-1)为阵元的UCA又可以生成N个不同模态涡旋电磁波信号,于是可将各UCAn产生多模态涡旋波信号分别调制到以UCAn(n=0,1,…,N-1)为阵元的UCA生成的多模态涡旋波信号的一个模态上,即可产生本发明所述的高阶多模态涡旋电磁波信号;同时本发明公开了基于UCA旋转分形嵌套高阶涡旋电磁波信号生成方法的实现装置。
所述高阶涡旋电磁波信号多模态生成方法包括如下步骤:
(a)以本发明所述天线的几何中心建立参考系,记为XOY,以UCAn(n=0,1,…,N-1)各自圆心建立参考系记为XOYn(n=0,1,…,N-1),且XOYn是XOY的平移旋转(旋转角为 n=0,1,…,N-1),在参考系XOY下,UCAn生成的高阶多模态涡旋电磁波(UCA生成多模态涡旋电磁波的方法见“B.Thidé,H.Then,et al,“Utlilization of photon orbitalangular momentum in the low-frequency radio domain,”Phys.Rev.Lett.,vol.99,no.8,p.087701,Aug.22,2007”,以引用的方式将其公开在此)信号为:
式(1)中(k=0,1,…,N-1,p=0,1,…,M-1)为UCAn的p模态涡旋信号加载到了以UCAn为阵元的UCA的k模态涡旋信号时产生的高阶涡旋电磁波携带的调制信息,p为UCAn(n=0,1,…,N-1)生成的涡旋电磁波模态(UCAn的阵元数目为M,故p=0,1,…,M-1),k为以UCAn(n=0,1,…,N-1)为阵元构成UCA生成的涡旋电磁波模态,α为以UCAn(n=0,1,…,N-1)为阵元的UCA生成的涡旋电磁波沿传播方向的方位角,β为UCAn(n=0,1,…,N-1)生成的涡旋电磁波沿传播方向的方位角,((k+p))N为k+p关于N取模;
(b)高阶涡旋电磁波UCA旋转分形嵌套天线中阵元(n=0,1,…,N-1,m=0,1,…,M-1)对应的激励为,
式(3)中作为阵元(n=0,1,…,N-1,m=0,1,…,M-1)的激励即可生成本发明所述高阶涡旋电磁波信号,采用本发明所述天线可生成的涡旋电磁波是二阶的,其产生的信号模态最大值为NM。
4.面向高阶涡旋电磁波信号分离方法,其特征在于,通信双方采用本发明所述天线,且工作在高阶涡旋电磁波收发状态,同时收发天线平行对齐,在接收天线阵元所在平面,以天线的几何中心建立参考系记为XOY′,以UCAn(n=0,1,…,N-1)各自圆心建立独立参考系分别记为XOYn′(n=0,1,…,N-1),且XOYn′是XOY′的平移且旋转(n=0,1,…,N-1),接收天线各阵元响应为(i=0,1,…,M-1,n=0,1,…,N-1),对进行N点空间正交分离(见本发明人(组)申请的国家发明专利“基于空间正交变换的涡旋电磁波信号模态并行分离方法与装置”(申请号:201610077471.1),以引用的方式将其公开在此),得同理对进行N点空间正交分离,得依次类推,直到完成对进行N点空间正交分离,得再对进行M点空间正交分离可获得UCAn的M个模态涡旋波信号携带的调制信息,遍历n=0,1,…,N-1,可从中分离出高阶涡旋电磁波信号携带的所有调制信息。
所述高阶涡旋电磁波信号分离方法包括如下步骤:
(a)接收信号记为有,
式(4)中k=0,1,…,N-1,p=0,1,…,M-1,H为本发明所述高阶涡旋电磁波信号空间传输信道函数;
(b)接收天线阵元(n=0,1,…,N-1,m=0,1,…,M-1)接收的高阶涡旋电磁信号为,
式(5)中,n=0,1,…,N-1,m=0,1,…,M-1;
(c)对进行N模态分离,有,
式(6)中m=0,1,…,M-1,k=0,1,…,N-1;
(d)对进行M模态分离,有,
式(7)中p=0,1,…,M-1,从UCAn(n=0,1,…,N-1)的p模态涡旋信号上获取的信息(含有振幅与相位),遍历所有UCAn,即可获得本发明所述高阶涡旋电磁波承载的所有调制信息。
5.用于面向高阶涡旋电磁波信号生成方法的实现装置,其特征在于:高阶涡旋电磁波信号生成采用UCA旋转分形嵌套结构天线;调制信息通过多路并行相位旋转生成天线阵元所需激励,并按照对应关系将激励加载到UCA旋转分形嵌套天线的对应阵元上。
6.用于面向高阶涡旋电磁波信号分离方法的实现装置,其特征在于:高阶涡旋电磁波信号接收端采用UCA旋转分形嵌套结构天线;阵元(m=0,1,…,M-1)做N模态分离,得的降阶多模态信号,对降阶多模态信号按照所属UCAn(n=0,1,…,N-1)关系进行分组,并对分组后的信号按组分别做M模态分离, 得到高阶涡旋电磁波信号携带的调制信息。
7.根据权利要求4所述的系统,还包括:高阶涡旋电磁波UCA旋转分形嵌套结构天线1,N×M相移器组2,M×N相移器组3,参数控制器组4;N×M相移器2按模态控制器3的控制对输入信号移相,并将移相后信号分组输出给M×N相移器组3,再由M×N相移器组3对输入信号移相,并将相移结果提供给UCA旋转分形嵌套结构天线1的对应阵元作为其激励,UCA旋转分形嵌套结构天线1即可产生本发明所述高阶涡旋电磁波信号,N×M相移器组2与M×N相移器组3在参数控制器组4的协同下。
8.根据权利要求5所述的系统,还包括:高阶涡旋电磁波UCA旋转分形嵌套结构天线5,模态控制器6,N模态分离器组7-1,M模态分离器组7-2;均匀圆阵列嵌套分形结构天线5接收空间高阶涡旋电磁波信号,并将其阵元的响应并行提供给N模态分离器组7-1,N模态分离器组7-1对输入信号进行N模态分离并将分离后信号按一定顺序输出给M模态分离器组7-2,M模态分离器组7-2对输入信号进行M模态分离并将分离后信号输出,N模态分离器组7-1与M模态分离器组7-2器7-2在模态控制器6协同下工作。
CN201610365223.7A 2016-05-24 2016-05-24 圆阵列旋转分形嵌套高阶涡旋电磁波生成分离方法与装置 Active CN106059675B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610365223.7A CN106059675B (zh) 2016-05-24 2016-05-24 圆阵列旋转分形嵌套高阶涡旋电磁波生成分离方法与装置
US16/085,501 US10498045B2 (en) 2016-05-24 2017-07-04 High order vortex wave antenna and device and method for generating and receiving high order vortex wave
PCT/CN2017/091679 WO2017202393A1 (zh) 2016-05-24 2017-07-04 高阶涡旋电磁波天线及高阶涡旋电磁波生成、接收装置与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610365223.7A CN106059675B (zh) 2016-05-24 2016-05-24 圆阵列旋转分形嵌套高阶涡旋电磁波生成分离方法与装置

Publications (2)

Publication Number Publication Date
CN106059675A true CN106059675A (zh) 2016-10-26
CN106059675B CN106059675B (zh) 2018-08-24

Family

ID=57175660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610365223.7A Active CN106059675B (zh) 2016-05-24 2016-05-24 圆阵列旋转分形嵌套高阶涡旋电磁波生成分离方法与装置

Country Status (3)

Country Link
US (1) US10498045B2 (zh)
CN (1) CN106059675B (zh)
WO (1) WO2017202393A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017202393A1 (zh) * 2016-05-24 2017-11-30 西安电子科技大学 高阶涡旋电磁波天线及高阶涡旋电磁波生成、接收装置与方法
CN110830095A (zh) * 2019-09-09 2020-02-21 西安电子科技大学 一种可用于圆阵列产生涡旋电磁波的相移复数序列的产生方法
CN110988868A (zh) * 2019-11-19 2020-04-10 南京理工大学 一种等效分数阶模式涡旋电磁波产生及成像方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108833072B (zh) * 2018-06-05 2021-06-04 西安电子科技大学 基于涡旋电磁波的信号调制解调方法及系统
CN112751167B (zh) * 2019-10-30 2022-03-22 同济大学 一种天线面板、涡旋波束天线及其工作方法
EP4167536A4 (en) * 2020-06-15 2024-03-20 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR DETERMINING PHASE SHIFT OF VORTEX WAVE, AND RECORDING MEDIUM
CN111740223B (zh) * 2020-07-06 2021-05-28 中国科学院成都生物研究所 一种合成高轨道角动量模式数的涡旋电磁场的方法
CN113328252B (zh) * 2021-05-31 2023-05-16 贵州大学 在柱面阵列和锥面阵列上产生轨道角动量涡旋波束的方法
CN113991327B (zh) * 2021-09-30 2024-05-14 中国人民解放军海军工程大学 一种提高涡旋波模式纯度的天线阵列
CN114614250B (zh) * 2022-05-10 2022-07-29 电子科技大学 一种基于法布里-珀罗谐振腔的涡旋电磁波天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789546A (zh) * 2009-04-21 2010-07-28 天津中启创科技有限公司 一种小型分形智能天线
US8274937B2 (en) * 2008-08-26 2012-09-25 Samsung Electronics Co., Ltd. Method and apparatus for beamforming in OFDM wireless system
CN104282995A (zh) * 2014-05-29 2015-01-14 云南大学 一种基于抛物面反射器和圆环形阵列馈源的oam发生器
CN104518275A (zh) * 2013-09-27 2015-04-15 电子科技大学 一种x波段由梯形子阵组成的大间距新型环栅阵
CN105071034A (zh) * 2015-08-27 2015-11-18 宁夏大学 一种多模态oam涡旋电磁波微带阵列天线
CN105098335A (zh) * 2015-09-07 2015-11-25 华中科技大学 一种产生涡旋电波的介质谐振器天线阵列

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097921A1 (en) * 2001-05-15 2002-12-05 Nokia Corporation Data transmission method and arrangement
GB2410130A (en) * 2004-01-19 2005-07-20 Roke Manor Research Planar phased array radio antenna for orbital angular momentum (OAM) vortex modes
GB2539736A (en) * 2015-06-25 2016-12-28 Airspan Networks Inc Wireless network configuration using path loss determination between nodes
CN106059675B (zh) * 2016-05-24 2018-08-24 西安电子科技大学 圆阵列旋转分形嵌套高阶涡旋电磁波生成分离方法与装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274937B2 (en) * 2008-08-26 2012-09-25 Samsung Electronics Co., Ltd. Method and apparatus for beamforming in OFDM wireless system
CN101789546A (zh) * 2009-04-21 2010-07-28 天津中启创科技有限公司 一种小型分形智能天线
CN104518275A (zh) * 2013-09-27 2015-04-15 电子科技大学 一种x波段由梯形子阵组成的大间距新型环栅阵
CN104282995A (zh) * 2014-05-29 2015-01-14 云南大学 一种基于抛物面反射器和圆环形阵列馈源的oam发生器
CN105071034A (zh) * 2015-08-27 2015-11-18 宁夏大学 一种多模态oam涡旋电磁波微带阵列天线
CN105098335A (zh) * 2015-09-07 2015-11-25 华中科技大学 一种产生涡旋电波的介质谐振器天线阵列

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAYANG WU ET AL: "UCA-based Orbital Angular Momentum Radio Beam Generation and Reception Under Different Array Configurations", 《WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2014 SIXTH INTERNATIONAL CONFERENCE ON》 *
QIANG BAI ET AL: "Generation of Orbital Angular Momentum (OAM) Radio Beams with Phased Patch Array", 《2013 LOUGHBOROUGH ANTENNAS & PROPAGATION CONFERENCE》 *
屠振 等: "分形天线的特性分析及其在MIMO 天线中的应用", 《电子工程师》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017202393A1 (zh) * 2016-05-24 2017-11-30 西安电子科技大学 高阶涡旋电磁波天线及高阶涡旋电磁波生成、接收装置与方法
US10498045B2 (en) 2016-05-24 2019-12-03 Xidian University High order vortex wave antenna and device and method for generating and receiving high order vortex wave
CN110830095A (zh) * 2019-09-09 2020-02-21 西安电子科技大学 一种可用于圆阵列产生涡旋电磁波的相移复数序列的产生方法
CN110830095B (zh) * 2019-09-09 2023-06-13 西安电子科技大学 基于修正zc序列的非线性涡旋电磁波的产生方法
CN110988868A (zh) * 2019-11-19 2020-04-10 南京理工大学 一种等效分数阶模式涡旋电磁波产生及成像方法
CN110988868B (zh) * 2019-11-19 2023-09-26 南京理工大学 一种等效分数阶模式涡旋电磁波产生及成像方法

Also Published As

Publication number Publication date
US20190296450A1 (en) 2019-09-26
CN106059675B (zh) 2018-08-24
US10498045B2 (en) 2019-12-03
WO2017202393A1 (zh) 2017-11-30

Similar Documents

Publication Publication Date Title
CN106059675A (zh) 圆阵列旋转分形嵌套高阶涡旋电磁波生成分离方法与装置
CN106130655B (zh) 一种多模态轨道角动量复用通信系统及方法
Zheng et al. Realization of beam steering based on plane spiral orbital angular momentum wave
Chang et al. A reconfigurable graphene reflectarray for generation of vortex THz waves
CN105932428B (zh) 基于圆阵列嵌套电磁涡旋波mimo系统收发天线布局及涡旋信号分离方法与装置
Fan et al. Homeostatic neuro-metasurfaces for dynamic wireless channel management
CN105785323B (zh) 基于空间正交变换的涡旋电磁波信号模态并行分离方法与装置
Bai et al. Experimental circular phased array for generating OAM radio beams
Martens et al. Systematic design method of a mobile multiple antenna system using the theory of characteristic modes
Wei et al. Generation of OAM waves with circular phase shifter and array of patch antennas
CN106233659A (zh) 用于具有带轨道角动量的电磁模式的信号的发射和/或接收的系统、及其设备和方法
CN109714091B (zh) 一种在毫米波mimo系统中基于分层设计的迭代混合预编码方法
CN106329153A (zh) 一种用于大型异构四维天线阵综合的联合优化方法
CN106130654A (zh) 一种涡旋电磁波产生装置及方法
CN106209183A (zh) 面向同心圆(或同轴圆台)涡旋电磁波mimo系统天线阵元布局及涡旋波分离方法与装置
CN107240783A (zh) 一种双模式复用的涡旋电磁波天线
CN109301505A (zh) 一种超宽带oam涡旋电磁波天线
CN106058490A (zh) 一种产生涡旋电磁波的方法
CN103218487A (zh) 旋转对称天线罩和抛物面天线一体化电磁散射仿真方法
An et al. A tutorial on holographic MIMO communications—Part III: Open opportunities and challenges
Zhang et al. Multi‐carrier based phased antenna array design for directional modulation
Chang et al. Generation of THz wave with orbital angular momentum by graphene patch reflectarray
Ranjan et al. BWDO algorithm and its application in antenna array and pixelated metasurface synthesis
CN114339791A (zh) 智能反射面辅助的noma系统中最大吞吐量优化方法
CN209001147U (zh) 一种超宽带oam涡旋电磁波天线

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20161114

Address after: 710071 box 2, 115 Taibai South Road, Shaanxi, Xi'an

Applicant after: Xidian University

Applicant after: Shaanxi Science and Engineering College

Address before: 723000 Chaoyang Road, Shaanxi University of Technology, Shaanxi, Hanzhoung

Applicant before: Shaanxi Science and Engineering College

Applicant before: Xidian University

CB02 Change of applicant information
CB02 Change of applicant information

Address after: 710071 box 2, 115 Taibai South Road, Shaanxi, Xi'an

Applicant after: Xidian University

Applicant after: Shaanxi University of Technology

Address before: 710071 box 2, 115 Taibai South Road, Shaanxi, Xi'an

Applicant before: Xidian University

Applicant before: Shaanxi Science and Engineering College

GR01 Patent grant
GR01 Patent grant