CN106050419A - 燃气轮机压水堆蒸汽轮机联合循环系统 - Google Patents

燃气轮机压水堆蒸汽轮机联合循环系统 Download PDF

Info

Publication number
CN106050419A
CN106050419A CN201610458572.3A CN201610458572A CN106050419A CN 106050419 A CN106050419 A CN 106050419A CN 201610458572 A CN201610458572 A CN 201610458572A CN 106050419 A CN106050419 A CN 106050419A
Authority
CN
China
Prior art keywords
pressure
steam
gas
low
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610458572.3A
Other languages
English (en)
Other versions
CN106050419B (zh
Inventor
章礼道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610458572.3A priority Critical patent/CN106050419B/zh
Publication of CN106050419A publication Critical patent/CN106050419A/zh
Priority to PCT/CN2017/000395 priority patent/WO2017219656A1/zh
Application granted granted Critical
Publication of CN106050419B publication Critical patent/CN106050419B/zh
Priority to US16/231,496 priority patent/US10378389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/223Inter-stage moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • F22B1/162Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour in combination with a nuclear installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • F22D1/325Schematic arrangements or control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • F22D1/34Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines and returning condensate to boiler with main feed supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/40Combinations of exhaust-steam and smoke-gas preheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/16Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/006Details of nuclear power plant primary side of steam generators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/02Arrangements of auxiliary equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明燃气轮机压水堆蒸汽轮机联合循环系统涉及一种新型大容量的节能、低碳、清洁能源系统;用重型燃气轮机与压水堆蒸汽轮机组成联合循环系统,利用燃气轮机尾气的热量将二回路主蒸汽温度由272.8℃向上提升,随压水堆产汽量的不同和重型燃气轮机投入的台数及负荷的不同,二回路主蒸汽温度在272.8℃至630℃之间滑温运行;燃气轮机压水堆蒸汽轮机联合循环系统的热效率明显高于现有技术压水堆蒸汽轮机的热效率;就燃气增发的电量而言,燃气轮机压水堆蒸汽轮机联合循环系统的热效率也明显高于现有技术的燃气‑蒸汽联合循环。

Description

燃气轮机压水堆蒸汽轮机联合循环系统
(一)技术领域:
本发明燃气轮机压水堆蒸汽轮机联合循环系统涉及一种新型大容量的节能、低碳、清洁能源系统。燃气轮机压水堆蒸汽轮机联合循环系统的热效率明显高于现有技术压水堆蒸汽轮机的热效率;就燃气增发的电量而言,燃气轮机压水堆蒸汽轮机联合循环系统的热效率也明显高于现有技术的燃气-蒸汽联合循环。
(二)背景技术:
压水堆(Pressurized Water Reactor)使用加压轻水作冷却剂和慢化剂,且水在堆内不沸腾的核反应堆。核燃料为低浓铀。是世界公认的大型化技术成熟,运行安全、经济实用的核反应堆型。AP1000可以作为第三代压水堆核电站的代表性产品。
AP1000第三代核电站蒸汽发生器(Steam Generator)的主要参数:
AP1000第三代核电站汽轮发电机的主要参数:
两台蒸汽发生器产生的饱和蒸汽由二回路主蒸汽系统送入汽轮机高压缸,在汽轮机高压缸膨胀做功后排汽进入2台外置式汽水分离再热器;在额定负荷条件下,外置式汽水分离再热器把汽轮机高压缸排汽中所含的10%-13%的湿度减小到大约0.17%或更小;外置式汽水分离再热器设有2级再热器,第1级采用高压缸抽汽为热源,第2级采用主蒸汽为热源,将进入再热器的蒸汽加热到过热状态;蒸汽被加热后通过6根管道进入3台双流的汽轮机低压缸;部分蒸汽从高压缸和低压缸抽出用于对给水和凝结水进行回热。主凝汽器对凝结水进行除氧并将废热传到循环水系统;给水由二回路主给水泵注入蒸汽发生器;汽轮机为6级给水回热提供抽汽;高压缸的抽汽点为1号高压加热器提供抽汽,高压缸排汽向除氧器提供抽汽,低压缸的第3、4、5、6级抽汽点分别向第3、4、5、6号低压加热器提供抽汽,5号低压加热器和6号低压加热器通常布置在凝汽器的喉部。
我国(包括台湾地区)已投入商业运营的核电机组全部为压水堆;从技术、安全、经济、环保和产业特点看,压水堆核电机组不宜参加电网调峰,特别是频繁地进行大幅度负荷调整。
根据工作时燃烧温度的高低和机组功率大小,电站用重型燃气轮机共分为A-B-C-D-E-F-G-H八个级别。燃气轮机的进气温度越高,机组功率越大,级别越高,热效率越高,通常燃气轮机的排气温度也越高。
现有技术燃气轮机通常与现有技术的余热锅炉、蒸汽轮机组成燃气-蒸汽联合循环系统;该蒸汽轮机再热或不再热、无回热抽汽口,具有中、低压补汽进口;该蒸汽轮机配有必要的辅机,如凝结水泵、循环水泵、凝汽器、真空泵、冷却塔、润滑油系统、控制油系统、旁路系统等;该余热锅炉通常设计成双压或者三压,分别提供不同压力的过热蒸汽,每一压力均有自己的省煤器、蒸发器、汽包、过热器;通常燃气轮机驱动的发电机所发电量约占燃气-蒸汽联合循环机组的2/3强;蒸汽轮机驱动的发电机所发电量约占燃气-蒸汽联合循环机组的1/3弱。
(三)发明内容:
所要解决的技术问题:
压水堆的蒸汽发生器只能生产二回路使用的饱和蒸汽,没有蒸汽过热能力;外置式汽水分离再热器的主要功能是把高压汽轮机排汽中所含的10%-13%的湿度减小到大约0.17%或更小,为了取得低压缸入口不到90K的过热度,甚至动用了二回路主蒸汽作为外置式汽水分离再热器的热源;压水堆蒸汽轮机的高压缸基本上是一台湿蒸汽汽轮机,各透平级的动叶片在湿蒸汽条件下工作,不利于动叶片长周期安全运行;低压缸排汽湿度也颇高于燃煤超超临界机组;高压缸、低压缸内效率仅80%左右,其热耗高达10405.7kJ/kWh(扣除电动泵功率),热效率仅34.6%(扣除电动泵功率)。
解决其技术问题采用的技术方案:
本发明燃气轮机压水堆蒸汽轮机联合循环系统采取与现有技术完全不同的技术路线,用重型燃气轮机与压水堆蒸汽轮机组成联合循环系统,利用燃气轮机尾气的热量将二回路主蒸汽温度由272.8℃向上提升,随压水堆产汽量的不同和重型燃气轮机投入的台数及负荷的不同,二回路主蒸汽温度在272.8℃至630℃之间滑温运行;燃气轮机压水堆蒸汽轮机联合循环系统的热效率明显高于现有技术压水堆蒸汽轮机的热效率;就燃气增发的电量而言,燃气轮机压水堆蒸汽轮机联合循环系统的热效率也明显高于现有技术的燃气-蒸汽联合循环。
本发明燃气轮机压水堆蒸汽轮机联合循环系统包括蒸汽轮机高压缸(1)、汽水分离再热器(2)、蒸汽轮机低压缸(3)、主汽再热关断阀(4)、凝汽器(5)、1号高压加热器(6)、二回路主给水泵(7)、除氧器(8)、3号低压加热器(9)、4号低压加热器(10)、5号低压加热器(11)、6号低压加热器(12)、凝结水泵(13)、余热锅炉过热器(14)、余热锅炉高压省煤器(15)、余热锅炉低压省煤器(16)、蒸汽发生器(17)、压水堆(18)、一回路主给水泵(19)、燃气轮机(20)、汽水分离再热器旁路阀(21)、1段抽汽再热关断阀(22)、DCS分布式控制系统;压水堆(18)中核燃料棒产生的热量经循环的一回路压力水在蒸汽发生器(17)中产生二回路饱和蒸汽;蒸汽发生器(17)的饱和蒸汽出口与余热锅炉过热器(14)的蒸汽进口相连接;余热锅炉过热器(14)的蒸汽出口经主汽门、调速汽门与蒸汽轮机高压缸(1)的进口相连接;余热锅炉过热器(14)的蒸汽出口经主汽再热关断阀(4)与汽水分离再热器(2)的主蒸汽进口相连接;高压缸的1段抽汽出口经1段抽汽再热关断阀(22)与汽水分离再热器(2)的1段抽汽进口相连接;余热锅炉高压省煤器(15)的水侧与1号高压加热器(6)的水侧并联,以分流的方式加热二回路主给水泵(7)出口的高压给水;余热锅炉低压省煤器(16)的水侧与由3号低压加热器(9)、4号低压加热器(10)、5号低压加热器(11)、6号低压加热器(12)串联组成的低压加热器组的水侧并联,以分流的方式加热凝结水泵(13)出口的凝结水;燃气轮机(20)的透平压气机进口经空气滤网组吸入空气,压缩后的空气在燃气轮机(20)的低氮燃烧系统内与天然气混合并充分燃烧,高温高压燃气在燃气轮机(20)的燃气涡轮组中做功驱动燃气轮机侧的发电机;燃气轮机(20)的燃气涡轮组出口的燃机尾气,经烟道进入包括余热锅炉过热器(14)、余热锅炉高压省煤器(15)、余热锅炉低压省煤器(16)的燃机余热锅炉的烟侧入口;燃机余热锅炉的烟侧出口与烟囱连接或者以烟塔合一的方式由冷却塔排烟;重型燃气轮机与压水堆蒸汽轮机组成联合循环系统,利用燃气轮机尾气的热量将二回路主蒸汽温度由272.8℃向上提升,随压水堆产汽量的不同和重型燃气轮机投入的台数、负荷的不同,二回路主蒸汽温度在272.8℃至630℃之间滑温运行;DCS分布式控制系统协调控制压水堆(18)、燃气轮机(20)、汽水分离再热器(2)、主汽再热关断阀(4)、1段抽汽再热关断阀(22)、汽水分离再热器旁路阀(21)、蒸汽轮机高压缸(1)、蒸汽轮机低压缸(3);随压水堆产汽量的不同和重型燃气轮机投入的台数及负荷的不同,二回路主蒸汽温度在272.8℃至630℃之间滑温运行。
发明的有益效果:
●压水堆蒸汽轮机由湿蒸汽汽轮机转变为主蒸汽温度在272.8℃至630℃之间滑温运行的蒸汽轮机,在高主汽温度工况,大幅度提高了压水堆蒸汽轮机主蒸汽的进口焓值,各透平级的内效率也显著提高,在相同进口质量流量的条件下,大幅度提高了压水堆蒸汽轮机的有效焓降,输出轴功率大幅度增加;
●在高主汽温度工况,蒸汽轮机高压缸各透平级消除水蚀风险,安全性明显提高;
●在高主汽温度工况,蒸汽轮机低压缸大部分透平级消除水蚀风险,安全性明显提高,末级叶片和末前级叶片湿度显著减小,安全性、经济性明显提高;
●由于末级叶片和末前级叶片湿度显著减小,安全性可控,提供了进一步降低低压缸排汽背压,提高燃气轮机压水堆蒸汽轮机联合循环系统的热效率的空间;
●余热锅炉高压省煤器(15)和余热锅炉低压省煤器(16)的设置使余热锅炉过热器(14)出口的烟气余热得到充分的利用,排烟温度可以降到45℃或者更低,排挤出来的1段抽汽、3段抽汽、4段抽汽、5段抽汽、6段抽汽可以在蒸汽轮机低压缸(3)内继续做功,转换为有用的轴功率;
●依托本发明燃气轮机压水堆蒸汽轮机联合循环系统可以设计、制造单轴出力2000MW或更高出力的半转速(1800rpm或者1500rpm)巨型蒸汽轮机;
●依托本发明燃气轮机压水堆蒸汽轮机联合循环系统可以设计、制造单台容量2200MVA或更高容量的半转速(1800rpm或者1500rpm)巨型汽轮发电机;
●依托本发明燃气轮机压水堆蒸汽轮机联合循环系统可以设计、制造大、中型空冷发电机组,适用于内陆缺水地区;
●小功率燃气轮机压水堆蒸汽轮机联合循环系统适用于全电推进的大型舰艇和民用船舶;
●本发明燃气轮机压水堆蒸汽轮机联合循环系统的建造成本明显低于同容量的独立的压水堆核电机组加独立的燃气-蒸汽联合循环机组;
●本发明燃气轮机压水堆蒸汽轮机联合循环系统的占地面积明显少于同容量的独立的压水堆核电机组加独立的燃气-蒸汽联合循环机组;
●本发明燃气轮机压水堆蒸汽轮机联合循环系统的碳排放量明显少于同容量的独立的压水堆核电机组加独立的燃气-蒸汽联合循环机组;
●本发明燃气轮机压水堆蒸汽轮机联合循环系统的单位装机容量耗水量明显少于同容量的独立的压水堆核电机组加独立的燃气-蒸汽联合循环机组;
●本发明燃气轮机压水堆蒸汽轮机联合循环系统的供电量明显大于相同核燃料耗量的独立压水堆核电机组加相同天然气耗量的独立燃气-蒸汽联合循环机组;
●保留汽水分离再热器(2),在系统低谷时,调停全部燃气轮机(20),打开主汽再热关断阀(4)、1段抽汽再热关断阀(22),关闭汽水分离再热器旁路阀(21),压水堆蒸汽轮机带基本负荷运行,燃气轮机(20)仍然具有完全、完整的日调峰能力;
●如将压水堆蒸汽轮机由于大幅度提高主蒸汽的进口焓值和各透平级的内效率显著提高而增发的电量全部归算到燃气-蒸汽联合循环,这种没有独立汽轮机系统的燃气-蒸汽联合循环的净热效率可高达创记录的65%或更高;
●如将余热锅炉过热器(14)、余热锅炉高压省煤器(15)、余热锅炉低压省煤器(16)吸收的热量全部归算为余热锅炉的有效吸热量,这种没有蒸发器和汽包的余热锅炉的热效率(按低位发热量计算)可高达创记录的100%或更高;
●每台燃气轮机(20)都有自带的发电机,数量众多的燃气轮机群是最可靠的多重保安电源,足以保证在灾难情况下一回路主给水泵(19)和二回路主给水泵(7)的连续运行,有效避免堆芯融化恶性事故。
(四)附图说明:
图1为燃气轮机压水堆蒸汽轮机联合循环系统图。
在图1中:
1 蒸汽轮机高压缸、 2 汽水分离再热器、
3 蒸汽轮机低压缸、 4 主汽再热关断阀、
5 凝汽器、 6 1号高压加热器、
7 二回路主给水泵、 8 除氧器、
9 3号低压加热器、 10 4号低压加热器、
11 5号低压加热器、 12 6号低压加热器、
13 凝结水泵、 14 余热锅炉过热器、
15 余热锅炉高压省煤器、 16 余热锅炉低压省煤器、
17 蒸汽发生器、 18 压水堆、
19 一回路主给水泵、 20 燃气轮机、
21 汽水分离再热器旁路阀、 22 1段抽汽再热关断阀。
(五)具体实施方式:
实施例1:
现结合图1以一台AP1000的压水堆、蒸汽发生器,重新设计的蒸汽轮机发电机组与3台H级燃气轮机和配套的余热锅炉为例说明实现本发明的优选方式。
本发明燃气轮机压水堆蒸汽轮机联合循环系统包括蒸汽轮机高压缸(1)、汽水分离再热器(2)、蒸汽轮机低压缸(3)、主汽再热关断阀(4)、凝汽器(5)、1号高压加热器(6)、二回路主给水泵(7)、除氧器(8)、3号低压加热器(9)、4号低压加热器(10)、5号低压加热器(11)、6号低压加热器(12)、凝结水泵(13)、余热锅炉过热器(14)、余热锅炉高压省煤器(15)、余热锅炉低压省煤器(16)、蒸汽发生器(17)、压水堆(18)、一回路主给水泵(19)、燃气轮机(20)、汽水分离再热器旁路阀(21)、1段抽汽再热关断阀(22)、DCS分布式控制系统;压水堆(18)中核燃料棒产生的热量经循环的一回路压力水在蒸汽发生器(17)中产生二回路饱和蒸汽;蒸汽发生器(17)的饱和蒸汽出口与余热锅炉过热器(14)的蒸汽进口相连接;余热锅炉过热器(14)的蒸汽出口经主汽门、调速汽门与蒸汽轮机高压缸(1)的进口相连接;余热锅炉过热器(14)的蒸汽出口经主汽再热关断阀(4)与汽水分离再热器(2)的主蒸汽进口相连接;高压缸的1段抽汽出口经1段抽汽再热关断阀(22)与汽水分离再热器(2)的1段抽汽进口相连接;余热锅炉高压省煤器(15)的水侧与1号高压加热器(6)的水侧并联,以分流的方式加热二回路主给水泵(7)出口的高压给水;余热锅炉低压省煤器(16)的水侧与由3号低压加热器(9)、4号低压加热器(10)、5号低压加热器(11)、6号低压加热器(12)串联组成的低压加热器组的水侧并联,以分流的方式加热凝结水泵(13)出口的凝结水;燃气轮机(20)的透平压气机进口经空气滤网组吸入空气,压缩后的空气在燃气轮机(20)的低氮燃烧系统内与天然气混合并充分燃烧,高温高压燃气在燃气轮机(20)的燃气涡轮组中做功驱动燃气轮机侧的发电机;燃气轮机(20)的燃气涡轮组出口的燃机尾气,经烟道进入包括余热锅炉过热器(14)、余热锅炉高压省煤器(15)、余热锅炉低压省煤器(16)的燃机余热锅炉的烟侧入口;燃机余热锅炉的烟侧出口与烟囱连接或者以烟塔合一的方式由冷却塔排烟;重型燃气轮机与压水堆蒸汽轮机组成联合循环系统,利用燃气轮机尾气的热量将二回路主蒸汽温度由272.8℃向上提升,随压水堆产汽量的不同和重型燃气轮机投入的台数、负荷的不同,二回路主蒸汽温度在272.8℃至630℃之间滑温运行;DCS分布式控制系统协调控制压水堆(18)、燃气轮机(20)、汽水分离再热器(2)、主汽再热关断阀(4)、1段抽汽再热关断阀(22)、汽水分离再热器旁路阀(21)、蒸汽轮机高压缸(1)、蒸汽轮机低压缸(3);随压水堆产汽量的不同和重型燃气轮机投入的台数及负荷的不同,二回路主蒸汽温度在272.8℃至630℃之间滑温运行。
蒸汽轮机高压缸(1)双流、切向进汽,1500rpm或者1800rpm,其通流能力按最高进汽温度和最高质量流量同时达到进行设计;蒸汽轮机高压缸(1)的转子、高温进汽室、喷嘴、动叶使用的材料满足最高进汽温度下连续运行的要求;蒸汽轮机高压缸(1)的转子、喷嘴、动叶的强度满足最高进汽温度和最高质量流量同时达到时对材料的要求,并有足够的安全裕量。
蒸汽轮机低压缸(3)按工作背压不同由3台或者4台同轴的双流、切向进汽的低压缸组成;1500rpm或者1800rpm;蒸汽轮机低压缸(3)的进汽温度在343.5℃至253.6℃区间内滑温运行;蒸汽轮机低压缸(3)的最大通流能力按进汽温度343.5℃设计;当燃气轮机(20)的负荷降低,蒸汽轮机低压缸(3)的进汽温度降低到接近253.6℃时,打开主汽再热关断阀(4),关闭汽水分离再热器旁路阀(21),使蒸汽轮机低压缸(3)的进汽温度不低于253.6℃;当燃气轮机(20)负荷到0,打开1段抽汽再热关断阀(22)。
燃气轮机(20)由3台H级燃气轮机组成;3台H级燃气轮机别驱动各自的发电机;3台H级燃气轮机的燃气涡轮组出口的燃机尾气排入同一台余热锅炉;燃气轮机(20)另一优选方式由6台F级燃气轮机组成;燃气轮机(20)另一优选方式由4台G级燃气轮机组成。
汽水分离再热器(2)由6台/8台汽水分离再热器组成,即每一根低压缸进汽导汽管配置一台汽水分离再热器。
每一台汽水分离再热器配置有相应的主汽再热关断阀、1段抽汽再热关断阀和汽水分离再热器旁路阀;当汽水分离再热器旁路阀打开时汽水分离再热器的进、出口压差不超过15kPa。
燃机余热锅炉包括余热锅炉过热器(14)、余热锅炉高压省煤器(15)、余热锅炉低压省煤器(16);卧式布置;余热锅炉过热器(14)由高温、中温、低温3段过热器受热面组成,与烟气流程呈逆流布置;余热锅炉高压省煤器系统配置有相应的调节阀门组,用于调节余热锅炉高压省煤器(15)的水侧与1号高压加热器(6)的水侧的流量分配;余热锅炉低压省煤器系统配置有相应的调节阀门组,用于调节余热锅炉低压省煤器(16)的水侧与由3号低压加热器(9)、4号低压加热器(10)、5号低压加热器(11)、6号低压加热器(12)串联组成的低压加热器组的水侧的流量分配。

Claims (7)

1.一种燃气轮机压水堆蒸汽轮机联合循环系统,其特征在于:包括蒸汽轮机高压缸(1)、汽水分离再热器(2)、蒸汽轮机低压缸(3)、主汽再热关断阀(4)、凝汽器(5)、1号高压加热器(6)、二回路主给水泵(7)、除氧器(8)、3号低压加热器(9)、4号低压加热器(10)、5号低压加热器(11)、6号低压加热器(12)、凝结水泵(13)、余热锅炉过热器(14)、余热锅炉高压省煤器(15)、余热锅炉低压省煤器(16)、蒸汽发生器(17)、压水堆(18)、一回路主给水泵(19)、燃气轮机(20)、汽水分离再热器旁路阀(21)、1段抽汽再热关断阀(22)、DCS分布式控制系统;压水堆(18)中核燃料棒产生的热量经循环的一回路压力水在蒸汽发生器(17)中产生二回路饱和蒸汽;蒸汽发生器(17)的饱和蒸汽出口与余热锅炉过热器(14)的蒸汽进口相连接;余热锅炉过热器(14)的蒸汽出口经主汽门、调速汽门与蒸汽轮机高压缸(1)的进口相连接;余热锅炉过热器(14)的蒸汽出口经主汽再热关断阀(4)与汽水分离再热器(2)的主蒸汽进口相连接;高压缸的1段抽汽出口经1段抽汽再热关断阀(22)与汽水分离再热器(2)的1段抽汽进口相连接;余热锅炉高压省煤器(15)的水侧与1号高压加热器(6)的水侧并联,以分流的方式加热二回路主给水泵(7)出口的高压给水;余热锅炉低压省煤器(16)的水侧与由3号低压加热器(9)、4号低压加热器(10)、5号低压加热器(11)、6号低压加热器(12)串联组成的低压加热器组的水侧并联,以分流的方式加热凝结水泵(13)出口的凝结水;燃气轮机(20)的透平压气机进口经空气滤网组吸入空气,压缩后的空气在燃气轮机(20)的低氮燃烧系统内与天然气混合并充分燃烧,高温高压燃气在燃气轮机(20)的燃气涡轮组中做功驱动燃气轮机侧的发电机;燃气轮机(20)的燃气涡轮组出口的燃机尾气,经烟道进入包括余热锅炉过热器(14)、余热锅炉高压省煤器(15)、余热锅炉低压省煤器(16)的燃机余热锅炉的烟侧入口;燃机余热锅炉的烟侧出口与烟囱连接或者以烟塔合一的方式由冷却塔排烟;重型燃气轮机与压水堆蒸汽轮机组成联合循环系统,利用燃气轮机尾气的热量将二回路主蒸汽温度由272.8℃向上提升,随压水堆产汽量的不同和重型燃气轮机投入的台数、负荷的不同,二回路主蒸汽温度在272.8℃至630℃之间滑温运行;DCS分布式控制系统协调控制压水堆(18)、燃气轮机(20)、汽水分离再热器(2)、主汽再热关断阀(4)、1段抽汽再热关断阀(22)、汽水分离再热器旁路阀(21)、蒸汽轮机高压缸(1)、蒸汽轮机低压缸(3);随压水堆产汽量的不同和重型燃气轮机投入的台数及负荷的不同,二回路主蒸汽温度在272.8℃至630℃之间滑温运行。
2.根据权利要求1所述的燃气轮机压水堆蒸汽轮机联合循环系统,其特征是所述的蒸汽轮机高压缸(1)为双流、切向进汽,1500rpm或者1800rpm,其通流能力按最高进汽温度和最高质量流量同时达到进行设计;蒸汽轮机高压缸(1)的转子、高温进汽室、喷嘴、动叶使用的材料满足最高进汽温度下连续运行的要求;蒸汽轮机高压缸(1)的转子、喷嘴、动叶的强度满足最高进汽温度和最高质量流量同时达到时对材料的要求,并有足够的安全裕量。
3.根据权利要求1所述的燃气轮机压水堆蒸汽轮机联合循环系统,其特征是所述的蒸汽轮机低压缸(3)按工作背压不同由3台或者4台同轴的双流、切向进汽的低压缸组成;1500rpm或者1800rpm;蒸汽轮机低压缸(3)的进汽温度在343.5℃至253.6℃区间内滑温运行;蒸汽轮机低压缸(3)的最大通流能力按进汽温度343.5℃设计;当燃气轮机(20)的负荷降低,蒸汽轮机低压缸(3)的进汽温度降低到接近253.6℃时,打开主汽再热关断阀(4),关闭汽水分离再热器旁路阀(21),使蒸汽轮机低压缸(3)的进汽温度不低于253.6℃;当燃气轮机(20)负荷到0,打开1段抽汽再热关断阀(22)。
4.根据权利要求1所述的燃气轮机压水堆蒸汽轮机联合循环系统,其特征是所述的燃气轮机(20)由3台H级燃气轮机组成;3台H级燃气轮机别驱动各自的发电机;3台H级燃气轮机的燃气涡轮组出口的燃机尾气排入同一台余热锅炉;燃气轮机(20)另一优选方式由6台F级燃气轮机组成;燃气轮机(20)另一优选方式由4台G级燃气轮机组成。
5.根据权利要求1所述的燃气轮机压水堆蒸汽轮机联合循环系统,其特征是所述的汽水分离再热器(2)由6台/8台汽水分离再热器组成,即每一根低压缸进汽导汽管配置一台汽水分离再热器。
6.根据权利要求1所述的燃气轮机压水堆蒸汽轮机联合循环系统,其特征是所述的每一台汽水分离再热器配置有相应的主汽再热关断阀、1段抽汽再热关断阀和汽水分离再热器旁路阀;当汽水分离再热器旁路阀打开时汽水分离再热器的进、出口压差不超过15kPa。
7.根据权利要求1所述的燃气轮机压水堆蒸汽轮机联合循环系统,其特征是所述的燃机余热锅炉包括余热锅炉过热器(14)、余热锅炉高压省煤器(15)、余热锅炉低压省煤器(16);卧式布置;余热锅炉过热器(14)由高温、中温、低温3段过热器受热面组成,与烟气流程呈逆流布置;余热锅炉高压省煤器系统配置有相应的调节阀门组,用于调节余热锅炉高压省煤器(15)的水侧与1号高压加热器(6)的水侧的流量分配;余热锅炉低压省煤器系统配置有相应的调节阀门组,用于调节余热锅炉低压省煤器(16)的水侧与由3号低压加热器(9)、4号低压加热器(10)、5号低压加热器(11)、6号低压加热器(12)串联组成的低压加热器组的水侧的流量分配。
CN201610458572.3A 2016-06-23 2016-06-23 燃气轮机压水堆蒸汽轮机联合循环系统 Active CN106050419B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610458572.3A CN106050419B (zh) 2016-06-23 2016-06-23 燃气轮机压水堆蒸汽轮机联合循环系统
PCT/CN2017/000395 WO2017219656A1 (zh) 2016-06-23 2017-06-22 燃气轮机压水堆蒸汽轮机联合循环系统
US16/231,496 US10378389B2 (en) 2016-06-23 2018-12-22 Gas turbine and pressurized water reactor steam turbine combined circulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610458572.3A CN106050419B (zh) 2016-06-23 2016-06-23 燃气轮机压水堆蒸汽轮机联合循环系统

Publications (2)

Publication Number Publication Date
CN106050419A true CN106050419A (zh) 2016-10-26
CN106050419B CN106050419B (zh) 2018-08-14

Family

ID=57169345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610458572.3A Active CN106050419B (zh) 2016-06-23 2016-06-23 燃气轮机压水堆蒸汽轮机联合循环系统

Country Status (3)

Country Link
US (1) US10378389B2 (zh)
CN (1) CN106050419B (zh)
WO (1) WO2017219656A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017219656A1 (zh) * 2016-06-23 2017-12-28 章礼道 燃气轮机压水堆蒸汽轮机联合循环系统
CN109386325A (zh) * 2017-08-10 2019-02-26 中广核工程有限公司 核电站热力联合循环系统和方法
CN109653875A (zh) * 2017-09-28 2019-04-19 通用电气公司 用于燃烧涡轮发动机的燃料预热系统
CN109767852A (zh) * 2019-02-22 2019-05-17 西安热工研究院有限公司 一种用于反应堆紧急停堆的二回路安全系统及其工作方法
CN112177695A (zh) * 2020-09-29 2021-01-05 西安热工研究院有限公司 一种采用微过热蒸汽的小型压水堆发电系统
CN113066595A (zh) * 2021-03-24 2021-07-02 中广核工程有限公司 多能互补供汽系统
CN113063136A (zh) * 2021-03-24 2021-07-02 中广核工程有限公司 核气联合供汽系统
CN113464226A (zh) * 2021-08-10 2021-10-01 山东英电环保科技有限公司 一种快速响应机组调频的系统及方法
WO2024077655A1 (zh) * 2022-10-13 2024-04-18 华能秦煤瑞金发电有限责任公司 变频发电及回热一体化给水泵汽轮机系统
CN109767852B (zh) * 2019-02-22 2024-06-04 西安热工研究院有限公司 一种用于反应堆紧急停堆的二回路安全系统及其工作方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT3585985T (pt) * 2017-04-11 2021-07-28 Siemens Energy Global Gmbh & Co Kg Método de conservação
CN108643980B (zh) * 2018-04-17 2022-09-13 章礼道 超高压缸和高中压缸均带有附加回热级的二次再热机组
CN109441570B (zh) * 2018-11-05 2023-09-05 华电电力科学研究院有限公司 一种用于两机组联合的凝抽背供热系统及运行方法
CN110131003B (zh) * 2019-06-10 2023-06-27 西安热工研究院有限公司 一种高温气冷堆核电机组二回路启停的系统和方法
CN110388239B (zh) * 2019-07-23 2022-01-04 岭澳核电有限公司 核电站汽水分离再热器系统
CN110455460B (zh) * 2019-08-21 2020-12-11 辽宁科技大学 燃气轮机空气冷却系统冷却器快速查漏的方法
CN110529207B (zh) * 2019-09-30 2023-09-05 大唐郓城发电有限公司 630℃二次再热机组热力系统及其优化方法
CN110864343A (zh) * 2019-12-13 2020-03-06 华能国际电力股份有限公司 一种循环流化床机组的低压缸零出力供热系统
CN111951985B (zh) * 2020-07-15 2022-10-18 四川大学 一种模块化空间核反应堆发电单元
CN112065519A (zh) * 2020-09-11 2020-12-11 上海康恒环境股份有限公司 一种带有除湿的高参数垃圾焚烧发电系统
CN112282872A (zh) * 2020-11-18 2021-01-29 哈尔滨汽轮机厂有限责任公司 一种超超临界汽轮机可调整回热系统
CN112435768B (zh) * 2020-11-20 2021-09-03 西安热工研究院有限公司 带有增量式调节功能的核电机组给水流量控制方法及系统
CN112343675A (zh) * 2020-11-25 2021-02-09 哈尔滨汽轮机厂有限责任公司 一种25mw等级高转速抽汽凝汽式汽轮机
CN112483198A (zh) * 2020-12-10 2021-03-12 哈尔滨汽轮机厂有限责任公司 一种亚临界135mw等级一次中间再热反动式汽轮机
CN112502794A (zh) * 2020-12-18 2021-03-16 哈尔滨汽轮机厂有限责任公司 一种25mw一次再热抽汽背压式汽轮机
CN112523817A (zh) * 2020-12-18 2021-03-19 哈尔滨汽轮机厂有限责任公司 一种新型40mw等级反动式抽凝式联合循环汽轮机
CN112627916A (zh) * 2020-12-30 2021-04-09 哈尔滨汽轮机厂有限责任公司 一种50mw单缸空冷光热汽轮机
CN113006891A (zh) * 2021-02-26 2021-06-22 西安热工研究院有限公司 一种供热与低压抽汽耦合的综合调频系统及方法
CN113153466A (zh) * 2021-03-15 2021-07-23 中广核工程有限公司 核电供暖热源系统
CN113175367B (zh) * 2021-04-25 2022-08-02 西安热工研究院有限公司 一种提升机组调峰能力和灵活性的母管制系统及运行方法
CN113324238A (zh) * 2021-05-27 2021-08-31 北京巴布科克·威尔科克斯有限公司 超临界电站锅炉全负荷脱硝的复合热水再循环系统及方法
CN113404563B (zh) * 2021-06-18 2022-08-02 东方电气集团东方汽轮机有限公司 一种低压缸切缸供热机组低加回热系统
CN113375211B (zh) * 2021-06-28 2022-10-11 大唐环境产业集团股份有限公司 燃煤机组供热系统、及运行方法
CN113431648B (zh) * 2021-06-29 2023-03-14 西安热工研究院有限公司 一种母管制再热系统的再热器结构
CN113309586B (zh) * 2021-07-09 2023-03-21 山东电力工程咨询院有限公司 一种耦合功率平衡发电驱动的背压机系统及设备
CN113756898B (zh) * 2021-09-06 2023-12-15 贵州电网有限责任公司 一种火电厂停炉的汽机定速备用运行方法
CN113899006B (zh) * 2021-11-09 2023-03-21 东北电力大学 一种利用低加疏水驱动热泵回收循环水余热的供热系统
CN114483235B (zh) * 2021-12-28 2023-09-15 杭州华电能源工程有限公司 一种由抽凝切换为低压缸零出力的供热系统及其工作方法
CN114607476B (zh) * 2022-03-04 2023-05-09 暨南大学 一种全负荷工况高效汽轮机组、设计方法及运行方法
CN114738065B (zh) * 2022-03-17 2023-09-12 西安热工研究院有限公司 一种快中子反应堆热电水三联供系统
CN114607477B (zh) * 2022-04-01 2023-08-01 邹平滨能能源科技有限公司 一种单元制机组汽轮机快速冷却方法
CN114753899A (zh) * 2022-04-12 2022-07-15 西安交通大学 一种高温气冷堆蒸汽发生器运行控制系统及方法
CN114890384B (zh) * 2022-05-07 2023-09-26 深圳市沃尔奔达新能源股份有限公司 一种分布式能源供给系统
CN114876601A (zh) * 2022-05-25 2022-08-09 西安热工研究院有限公司 一种双效汽轮机发电系统
CN114776394A (zh) * 2022-05-25 2022-07-22 西安热工研究院有限公司 一种双循环汽轮发电系统
CN115750014A (zh) * 2022-11-22 2023-03-07 东方电气集团东方汽轮机有限公司 一种汽轮机组深度调峰系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089016A (ja) * 1996-09-18 1998-04-07 Toshiba Corp 原子力発電とガスタービン発電との複合発電プラント
CA2481522A1 (en) * 2004-10-06 2006-04-06 Iryna Ponomaryova Nuclear power plant
CN104314628A (zh) * 2014-10-14 2015-01-28 华电电力科学研究院 一种燃煤机组与燃气轮机联合发电系统
RU2547828C1 (ru) * 2014-01-31 2015-04-10 Рашид Зарифович Аминов Парогазовая установка двухконтурной аэс
CN104599730A (zh) * 2014-12-25 2015-05-06 张敬敏 一种压水堆核电发电机构
CN105439233A (zh) * 2015-12-07 2016-03-30 集美大学 核电站结合燃气轮机的电水联产系统及其方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357746A (en) * 1993-12-22 1994-10-25 Westinghouse Electric Corporation System for recovering waste heat
DE19512466C1 (de) * 1995-04-03 1996-08-22 Siemens Ag Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger
JPH09209714A (ja) * 1996-01-31 1997-08-12 Mitsubishi Heavy Ind Ltd 原子炉冷却材加熱蒸気発生器を備えた複合発電装置
DE59711190D1 (de) * 1997-11-19 2004-02-12 Alstom Switzerland Ltd Verfahren und Vorrichtung zur Brennstoffvorwärmung einer Feuerungsanlage
US6230480B1 (en) * 1998-08-31 2001-05-15 Rollins, Iii William Scott High power density combined cycle power plant
US6145295A (en) * 1998-11-23 2000-11-14 Siemens Westinghouse Power Corporation Combined cycle power plant having improved cooling and method of operation thereof
JP3652962B2 (ja) * 1999-11-25 2005-05-25 三菱重工業株式会社 ガスタービンコンバインドサイクル
DE19962403A1 (de) * 1999-12-23 2001-06-28 Alstom Power Schweiz Ag Baden Verfahren zum Umrüsten eines Sattdampf erzeugenden Systems mit mindestens einer Dampfturbogruppe sowie nach dem Verfahren umgerüstetes Kraftwerk
JP3780884B2 (ja) * 2001-08-31 2006-05-31 株式会社日立製作所 蒸気タービン発電プラント
FR2838555B1 (fr) * 2002-04-12 2006-01-06 Framatome Anp Procede et dispositif de production d'electricite a partir de la chaleur produite dans le coeur d'au moins un reacteur nucleaire a haute temperature
US6820428B2 (en) * 2003-01-30 2004-11-23 Wylie Inventions Company, Inc. Supercritical combined cycle for generating electric power
US7770376B1 (en) * 2006-01-21 2010-08-10 Florida Turbine Technologies, Inc. Dual heat exchanger power cycle
US20100232561A1 (en) * 2007-01-09 2010-09-16 Michael Joseph Boss Nuclear power generation method and system
US7874162B2 (en) * 2007-10-04 2011-01-25 General Electric Company Supercritical steam combined cycle and method
US8572975B2 (en) * 2009-06-08 2013-11-05 General Electric Company Systems relating to turbine engine control and operation
US8141367B2 (en) * 2010-05-19 2012-03-27 General Electric Company System and methods for pre-heating fuel in a power plant
US9019108B2 (en) * 2010-08-05 2015-04-28 General Electric Company Thermal measurement system for fault detection within a power generation system
ES2422955B1 (es) * 2012-03-09 2014-09-19 Sener Grupo De Ingeniería, S.A. Procedimiento para mejorar el rendimiento del ciclo térmico en las centrales nucleares.
US9470145B2 (en) * 2012-10-15 2016-10-18 General Electric Company System and method for heating fuel in a combined cycle gas turbine
US20140260186A1 (en) * 2013-03-15 2014-09-18 Patrick R.E. Bahn Rocket engine systems with an independently regulated cooling system
JP6116306B2 (ja) * 2013-03-25 2017-04-19 三菱日立パワーシステムズ株式会社 ガスタービン用燃料の予熱装置、これを備えているガスタービンプラント、及びガスタービン用燃料の予熱方法
CN106050419B (zh) * 2016-06-23 2018-08-14 章礼道 燃气轮机压水堆蒸汽轮机联合循环系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089016A (ja) * 1996-09-18 1998-04-07 Toshiba Corp 原子力発電とガスタービン発電との複合発電プラント
CA2481522A1 (en) * 2004-10-06 2006-04-06 Iryna Ponomaryova Nuclear power plant
RU2547828C1 (ru) * 2014-01-31 2015-04-10 Рашид Зарифович Аминов Парогазовая установка двухконтурной аэс
CN104314628A (zh) * 2014-10-14 2015-01-28 华电电力科学研究院 一种燃煤机组与燃气轮机联合发电系统
CN104599730A (zh) * 2014-12-25 2015-05-06 张敬敏 一种压水堆核电发电机构
CN105439233A (zh) * 2015-12-07 2016-03-30 集美大学 核电站结合燃气轮机的电水联产系统及其方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378389B2 (en) 2016-06-23 2019-08-13 Lidao ZHANG Gas turbine and pressurized water reactor steam turbine combined circulation system
WO2017219656A1 (zh) * 2016-06-23 2017-12-28 章礼道 燃气轮机压水堆蒸汽轮机联合循环系统
CN109386325A (zh) * 2017-08-10 2019-02-26 中广核工程有限公司 核电站热力联合循环系统和方法
CN109653875B (zh) * 2017-09-28 2024-02-13 通用电气技术有限公司 用于燃烧涡轮发动机的燃料预热系统
CN109653875A (zh) * 2017-09-28 2019-04-19 通用电气公司 用于燃烧涡轮发动机的燃料预热系统
CN109767852A (zh) * 2019-02-22 2019-05-17 西安热工研究院有限公司 一种用于反应堆紧急停堆的二回路安全系统及其工作方法
CN109767852B (zh) * 2019-02-22 2024-06-04 西安热工研究院有限公司 一种用于反应堆紧急停堆的二回路安全系统及其工作方法
CN112177695A (zh) * 2020-09-29 2021-01-05 西安热工研究院有限公司 一种采用微过热蒸汽的小型压水堆发电系统
CN113066595A (zh) * 2021-03-24 2021-07-02 中广核工程有限公司 多能互补供汽系统
CN113063136B (zh) * 2021-03-24 2022-11-18 中广核工程有限公司 核气联合供汽系统
CN113066595B (zh) * 2021-03-24 2024-04-02 中广核工程有限公司 多能互补供汽系统
CN113063136A (zh) * 2021-03-24 2021-07-02 中广核工程有限公司 核气联合供汽系统
CN113464226A (zh) * 2021-08-10 2021-10-01 山东英电环保科技有限公司 一种快速响应机组调频的系统及方法
WO2024077655A1 (zh) * 2022-10-13 2024-04-18 华能秦煤瑞金发电有限责任公司 变频发电及回热一体化给水泵汽轮机系统

Also Published As

Publication number Publication date
WO2017219656A1 (zh) 2017-12-28
US10378389B2 (en) 2019-08-13
CN106050419B (zh) 2018-08-14
US20190170020A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
CN106050419B (zh) 燃气轮机压水堆蒸汽轮机联合循环系统
CN103452611B (zh) 一种联合循环的热电联供系统
CA2771839C (en) Hybrid power plant
CN103644004B (zh) 一种双透平、联合循环的热电联供系统
CN203685319U (zh) 一种双透平、联合循环的热电联供系统
CN206035553U (zh) 联合循环的热电联供系统
CN206539375U (zh) 一种功率平衡发电汽机同轴双驱给水泵系统
CN109184812B (zh) 基于两回路锅炉的核能耦合化学能发电的系统和方法
CN103089439B (zh) 布列顿-蒸汽朗肯-有机朗肯联合循环热电联产装置
Wołowicz et al. Feedwater repowering of 800 MW supercritical steam power plant.
CN108119200A (zh) 一种新型底置式背压供热汽轮机及其运行方法
CN104976671B (zh) 背压式小汽机驱动给水泵的宽负荷供热节能系统
CN104963735B (zh) 利用凝汽器冷却水回水废热加热气体燃料的方法及装置
CN108049922A (zh) 一种宽工况二次再热双机回热系统
CN106194431B (zh) 无汽水分离再热器的燃气轮机压水堆蒸汽轮机联合循环系统
CN106437875A (zh) 火电机组工质分流循环调峰系统
CN203499735U (zh) 一种联合循环的热电联供系统
CN108843414B (zh) 核能与常规能源耦合和解耦带再热发电系统的工作方法
CN114183742A (zh) 再热蒸汽抽汽储热联合脱硝降负荷系统
CN106352313B (zh) 燃气轮机压水堆蒸汽轮机联合循环使用的余热锅炉
CN105756732B (zh) 一种lng/液氧直燃混合工质动力循环发电装置
CN203223294U (zh) 布列顿-蒸汽朗肯-有机朗肯联合循环热电联产装置
CN105042666B (zh) 背压式小汽机驱动引风机的宽负荷供热节能系统
CN111485961A (zh) 一种带抽汽回热的燃气-蒸汽联合循环热力系统
CN207740053U (zh) 一种宽工况二次再热双机回热系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant