CN106048608A - 太阳能选择吸收复合涂层 - Google Patents

太阳能选择吸收复合涂层 Download PDF

Info

Publication number
CN106048608A
CN106048608A CN201610552889.3A CN201610552889A CN106048608A CN 106048608 A CN106048608 A CN 106048608A CN 201610552889 A CN201610552889 A CN 201610552889A CN 106048608 A CN106048608 A CN 106048608A
Authority
CN
China
Prior art keywords
layer
aln
composite coating
nanometer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610552889.3A
Other languages
English (en)
Inventor
宗亚娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Zhongxing Multielement Composite Steel Tube Co Ltd
Original Assignee
Nantong Zhongxing Multielement Composite Steel Tube Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Zhongxing Multielement Composite Steel Tube Co Ltd filed Critical Nantong Zhongxing Multielement Composite Steel Tube Co Ltd
Priority to CN201610552889.3A priority Critical patent/CN106048608A/zh
Publication of CN106048608A publication Critical patent/CN106048608A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/25Coatings made of metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/30Auxiliary coatings, e.g. anti-reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

本发明公开了太阳能选择吸收复合涂层,依次包括底层金属片、热扩散阻挡层、吸收层和减反射层,其中热扩散阻挡层为Ta纳米层,吸收层为AlN‑Ag纳米层,减反射层为AlN纳米层。本发明将高熔点金属Ta引入吸收涂层作为扩散阻挡层,显著提高了涂层的热稳性以及界面结合力。本发明操作简单方便,可控性好,清洁无污染,适合大规模产业化。

Description

太阳能选择吸收复合涂层
技术领域
本发明涉及太阳光谱选择吸收涂层,本发明还涉及这种太阳光谱选择吸收涂层的制备方法,属于真空镀膜技术领域。
背景技术
太阳能利用是当前能源材料利用领域的前言课题。太阳能具有可再生能源,清洁无污染、安全且取之不尽的优点,把低品位的太阳能转换成高品位的热能,是太阳能热利用中的关键技术。太阳能集热器是可将太阳能转化为热能的设备,其最核心部分是表面选择性吸收涂层,这种涂层吸收太阳能紫外到近红外范围内的大部分光波,而在红外波段则是强反射,自身红外辐射率很低,是太阳能集热装置的核心材料。欲得到高效的吸收涂层需解决两个主要矛盾问题:一是太阳光谱内有尽可能高的吸收率α;二是辐射波长范围内有尽可能低的辐射损失,即低发射率ε。
目前,在我国广泛应用的选择性涂层中,当温度较高时,发射率随温度急剧升高,而且膜层中金属成分容易在高温中扩散,造成膜层的老化和脱落,导致了涂层吸收效率的损耗和使用寿命的缩短。如何提高吸收涂层的吸收率,降低发射率,提高其热稳定性成为亟需解决的重要问题。
发明内容
本发明的目的是提供太阳能选择吸收复合涂层。
本发明采用的技术方案为:太阳能选择吸收复合涂层,依次包括 底层金属片、热扩散阻挡层、吸收层和减反射层,其特征在于:所述热扩散阻挡层为Ta纳米层,吸收层为AlN-Ag纳米层,减反射层为AlN纳米层。
进一步的,所述热扩散阻挡层Ta纳米层的厚度为18~30nm,吸收层AlN-Ag纳米层的总厚度为105nm,减反射层AlN纳米层的厚度为50nm。
进一步的,所述吸收层为单层吸收层或多层梯度吸收层;所述单层吸收层为AlN-Ag单层纳米膜;所述多层梯度吸收层包含有7~16个周期膜层,以AlN-Ag为一个周期膜层,AlN层和Ag层为每一个周期膜层中的两个亚层。
进一步的,所述多个梯度周期层的梯度为AlN层厚度由底层向表面方向逐渐增加,Ag层厚度不变。
进一步的,所述底层金属片为Cu片。
本发明方法具有较好的重复性和可控性,操作简单方便,可控性好,清洁无污染,适合大规模产业化,热稳定高,综合性能优。
附图说明
下面结合附图和具体实施方式对本发明做进一步详细说明。
图1为AlN/Ag三层梯度薄膜的XRD图谱。
图2为AlN/Ag三层梯度薄膜的EDX和SEM图。
图3为吸收涂层的吸收光谱图。
图4为吸收涂层的反射光谱图。
具体实施方式
下面的实施列可以使本专业技术人员更全面的理解本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
仪器准备
一台型号为JGP500A的磁控溅射仪,该设备安装三支Φ75mm永磁磁控靶,最大溅射功率为500W;一台四工位具有公转功能的样品转盘,可实现三靶共溅射实验;样品既可加热也可水冷,最高温度可到达700℃,加热速率可调范围在10℃/min-50℃/min,适用于制备多种不同材料薄膜;真空系统中配有一台2XZ-8(8L/S)型机械泵和FF-200/1200涡沦分子泵,最高真空度可达到7.0×10-6Pa。
材料准备
溅射靶材分别为纯度99.9wt%的Al、99.99wt%的Ag和99.9wt%的Ta,直径均为75mm;衬底为抛光后的金属Cu片。
制备涂层:采用直流磁控反应溅射法制备两组相同的纳米多层梯度太阳光谱选择吸收涂层
先用乙醇和丙酮将Cu衬底依次进行30min超声清洗,以除去其表面灰尘和油渍,表面的污渍除了会影响薄膜与衬底的黏附性之外,还会直接影响到薄膜的结晶性,故衬底材料的清洗工作也是相当关键的一步。
镀膜前,对Al,Ag和Ta靶进行20min的预溅射,以除去表面的氧化物等杂质。
首先沉积一层厚度为8nm的非晶Ta膜作为扩散阻挡层,设置沉 积功率为150W;
接着沉积单层吸收层:通入反应气体N2气,设置流量为10sccm,N与Al进行反应溅射沉积AlN,沉积功率为200W,同时沉积金属Ag,沉积功率为15W,控制单层厚度为105nm;
然后沉积一层厚度为60nm的纯AlN减反射层,沉积功率设置为200W。
最后将一组样品进行普通热退火处理。
将另一组样品进行电退火处理:设置电场强度为3kV/cm,电场温度为250℃,将样品放置电场中保温1h。
实施例2
按照实施例1所述的方法进行制备纳米多层梯度太阳光谱选择吸收涂层,其中沉积吸收层时选择沉积三层梯度吸收层:以AlN-Ag为一个沉积周期,设置周期值为3,选定亚层比例,按照单层吸收层沉积方法依次沉积AlN层和Ag层,沉积出来的三层梯度膜吸收层分别为AlN20nm-Ag5nm/AlN30nm-Ag5nm/AlN40nm-Ag5nm。
对于实施例2的吸收涂层进行结构表征与光谱吸收性能测试:
(1)吸收涂层的微观结构与成分采用XRD,EDX和SEM进行了表征
如图1所示:XRD图谱中出现了AlN(3)(1)和Ag(2)(4)(5)层的特征峰,,但是峰宽较大,表明沉积态涂层中AlN和Ag的晶粒较小。
如图2所示:EDX图中可以看到Al(2),Ag(2)(3)和N(1)的峰,其中Al含量较高;SEM图看出薄膜表面光滑,无颗粒,均匀性较好。
(2)利用紫外-可见光光度计测量和红外光谱仪测量吸收涂层的光谱吸收与反射性能
如图3所示,曲线4为镀膜后AlN-Ag单层薄膜,曲线2为镀膜后AlN-Ag三层薄膜,曲线3为电场退火后的AlN-Ag单层薄膜,曲线1为电场退火后的AlN-Ag三层薄膜。由此可见,在紫外-可见光(0.3-2.0μm)区间,涂层具有较高的吸收性能,其中电场退火处理的多层梯度膜的吸收率最高;
如图4所示,是涂层反射光谱图,曲线e为镀膜后AlN-Ag单层薄膜,曲线d为镀膜后AlN-Ag三层薄膜,曲线c为热退火后的AlN-Ag单层薄膜,曲线b为热退火后的AlN-Ag三层薄膜,曲线a为电场退火后的AlN-Ag三层薄膜,曲线1为热退火后的AlN-Ag三层薄膜,曲线2为电场退火后的AlN-Ag三层薄膜。可以看出,在紫外-可见光区间涂层具有较低的反射率,而在红外光谱区间,反射率急剧升高,并且随着退火的处理,反射率也增加,其中电场退火处理的多层梯度膜具有最高的反射率,由此表明,电场处理的多层梯度膜具有最高的吸收率与最低的发射率,综合性能最佳。

Claims (5)

1.太阳能选择吸收复合涂层,依次包括底层金属片、热扩散阻挡层、吸收层和减反射层,其特征在于:所述热扩散阻挡层为Ta纳米层,吸收层为AlN-Ag纳米层,减反射层为AlN纳米层。
2.根据权利要求1所述的太阳能选择吸收复合涂层,其特征在于:所述热扩散阻挡层Ta纳米层的厚度为18~30nm,吸收层AlN-Ag纳米层的总厚度为105nm,减反射层AlN纳米层的厚度为50nm。
3.根据权利要求1或2所述的太阳能选择吸收复合涂层,其特征在于:所述吸收层为单层吸收层或多层梯度吸收层;所述单层吸收层为AlN-Ag单层纳米膜;所述多层梯度吸收层包含有7~16个周期膜层,以AlN-Ag为一个周期膜层,AlN层和Ag层为每一个周期膜层中的两个亚层。
4.根据权利要求3所述的太阳能选择吸收复合涂层,其特征在于:所述多个梯度吸收层的梯度为AlN层厚度由底层向表面方向逐渐增加,Ag层厚度不变。
5.根据权利要求1所述的太阳能选择吸收复合涂层,其特征在于:所述底层金属片为Cu片。
CN201610552889.3A 2016-07-13 2016-07-13 太阳能选择吸收复合涂层 Pending CN106048608A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610552889.3A CN106048608A (zh) 2016-07-13 2016-07-13 太阳能选择吸收复合涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610552889.3A CN106048608A (zh) 2016-07-13 2016-07-13 太阳能选择吸收复合涂层

Publications (1)

Publication Number Publication Date
CN106048608A true CN106048608A (zh) 2016-10-26

Family

ID=57186376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610552889.3A Pending CN106048608A (zh) 2016-07-13 2016-07-13 太阳能选择吸收复合涂层

Country Status (1)

Country Link
CN (1) CN106048608A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954059A (zh) * 2014-06-11 2014-07-30 江苏奥蓝工程玻璃有限公司 一种太阳能选择吸收复合涂层及其制备方法
CN104930735A (zh) * 2015-03-24 2015-09-23 江苏奥蓝工程玻璃有限公司 一种太阳能吸收膜及其制备方法
CN105241100A (zh) * 2015-09-08 2016-01-13 赵新华 太阳能选择吸收复合涂层及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954059A (zh) * 2014-06-11 2014-07-30 江苏奥蓝工程玻璃有限公司 一种太阳能选择吸收复合涂层及其制备方法
CN104930735A (zh) * 2015-03-24 2015-09-23 江苏奥蓝工程玻璃有限公司 一种太阳能吸收膜及其制备方法
CN105241100A (zh) * 2015-09-08 2016-01-13 赵新华 太阳能选择吸收复合涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN201218622Y (zh) 一种太阳能选择性吸收涂层
CN106288462B (zh) 一种太阳能选择性吸收涂层及其制备方法
CN103032978B (zh) 一种菲涅尔式太阳能热发电用选择性吸收涂层及其制备方法
CN105299935B (zh) 一种太阳光谱选择性吸收涂层及其制备方法和集热器
CN105222381B (zh) 一种双吸收层太阳光谱选择性吸收涂层及其制备方法
CN106884145B (zh) 一种太阳光谱选择性吸收涂层及其制备方法
CN102501459B (zh) 一种中高温太阳能选择性吸收涂层的制备方法
CN102620456A (zh) 一种中低温太阳能选择吸收薄膜及其制备方法
CN105970175B (zh) 一种碳化钛-碳化锆高温太阳能选择性吸收涂层及其制备方法
CN103029374A (zh) 一种中高温太阳能光热选择性吸收涂层
CN103302917B (zh) 一种双吸收层TiON耐候性光热涂层及其制备方法
CN102605335A (zh) 一种离子束磁控溅射两步法制备微晶硅薄膜的方法和一种离子束磁控溅射复合镀膜的装置
CN108917210A (zh) 一种自掺杂纳米复合光热转换涂层及其制备方法
CN106500374B (zh) 一种双相纳米复合太阳能吸收涂层及制造方法
CN109338297B (zh) 一种二硼化铪-二硼化锆基高温太阳能吸收涂层及其制备方法
CN204478557U (zh) 一种双吸收层太阳光谱选择性吸收涂层
CN103255377A (zh) 一种纳米复合Cr-Al-O太阳光谱选择吸收涂层及其制备方法
CN103032977A (zh) 一种中温太阳能选择性吸收涂层及其制备方法
CN105970177A (zh) 一种碳化钛基高温太阳能选择性吸收涂层及其制备方法
CN206222719U (zh) 一种太阳能选择性吸收涂层
CN105241100A (zh) 太阳能选择吸收复合涂层及其制备方法
CN105274474B (zh) 一种耐高温多层太阳能选择性吸收涂层及其制备方法
CN109457219B (zh) 一种中低温太阳光谱选择性吸收涂层及其制备方法
CN109338295B (zh) 一种二硼化铪-二氧化铪基高温太阳能吸收涂层及其制备方法
CN106403329A (zh) 高温太阳能选择性吸收涂层及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161026

WD01 Invention patent application deemed withdrawn after publication