CN106048566A - 一种led用铝基板的制备方法及制备该铝基板时所使用的浆料 - Google Patents

一种led用铝基板的制备方法及制备该铝基板时所使用的浆料 Download PDF

Info

Publication number
CN106048566A
CN106048566A CN201610349112.7A CN201610349112A CN106048566A CN 106048566 A CN106048566 A CN 106048566A CN 201610349112 A CN201610349112 A CN 201610349112A CN 106048566 A CN106048566 A CN 106048566A
Authority
CN
China
Prior art keywords
slurry
aluminium base
preparation
aluminum substrate
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610349112.7A
Other languages
English (en)
Inventor
陈智栋
许超
王文昌
王钰蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201610349112.7A priority Critical patent/CN106048566A/zh
Publication of CN106048566A publication Critical patent/CN106048566A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • H01L33/48

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本发明属于LED用铝基板制备技术领域,特别涉及一种LED用铝基板的制备方法及制备该铝基板时所使用的浆料。铝基板的制作方法是将浆料涂刷于铝板上,经高温烧结后在铝基板上形成绝缘导热涂层,在该涂层上进行化学镀铜或化学镀镍,即可形成导热性良好的LED用铝基板;而该浆料由玻璃粉、有机载体和无机添加剂构成。

Description

一种LED用铝基板的制备方法及制备该铝基板时所使用的 浆料
技术领域
本发明属于LED用铝基板制备技术领域,特别涉及一种LED用铝基板的制备方法及制备该铝基板时所使用的浆料。
背景技术
LED(light emitting diode,发光二极管的简称)运用领域涉及到手机、台灯等日常家电和机械方面。相对于传统照明灯,LED照明产品具有环保、节能、寿命长等优点。可用于安全照明、特种照明、景观照明和普通照明领域,市场应用潜力巨大。
为了解决LED光源散热问题,目前多采用铝基板,铝基板的制备方法为氧化后的铝板通过粘结剂与铜箔压合而成,为了得到良好的散热基板,通常在粘结剂中添加氧化铝、氮化铝等导热材料,随着LED光源的功率不断增大,对铝基板散热的要求不断地提高,开发高散热性铝基板迫在眉睫。
目前,LED用铝基板的制备方法是,经阳极氧化的铝板通过掺有氧化铝粉体的环氧树脂粘合剂与铜箔压合而制成,虽然环氧树脂中掺有氧化铝粉体,导热性能得到了一定的改善,但是粘合剂层中由于环氧树脂胶的存在会导致导热性明显下降。随着使用LED光源功率的不断提升,对铝基板的散热提出了更高的要求。
发明内容
本发明所要解决的技术问题在于:提高铝基板的散热能力,为解决这一技术问题,本发明采用的技术方案为:
提供一种LED用铝基板的制备方法,将浆料印刷或涂覆于铝板上,经高温烧结后形成绝缘散热涂层,在该涂层上进行化学镀铜或化学镀镍,形成LED用铝基板,
其中,制备绝缘散热涂层的浆料按重量份数计算包括,玻璃粉50~75份,有机载体25~50份,无机添加剂0.01~10份,
玻璃粉粒径小于100μm,制备浆料时,对所用玻璃粉的成分无特殊要求,所使用的玻璃粉粒径大小对铝基板的品质有着重要影响,玻璃粉的粒径是越小越好,当粒径大于100μm时,经印刷烧结后制得的涂层表面不平整,对后续的化学镀铜或镍带来不良影响,
有机载体由有机溶剂和乙基纤维素组成,其中,有机溶剂选择可溶解乙基纤维素的即可,如乙醇、异丙醇、丁醚、正丁酸乙酯等醇、醚、醛、酮或脂类溶剂,乙基纤维素在其中的浓度为10~200g/L,添加乙基纤维素可以相应地增加浆料的粘度,防止浆料涂敷在铝基板上后产生流动从而导致浆料在铝基板上不能形成理想的厚度,
乙基纤维素的量过小,少于10g/L时,所制得的浆料粘度过低,浆料涂覆时会发生塌陷或流浆;乙基纤维素的量过大,大于200g/L时,所制得的浆料粘度过大,导致浆料涂覆困难,乙基纤维素的最佳浓度为50~100g/L,
无机添加剂为碳酸盐,主要是碱金属或碱土金属的碳酸盐,如碳酸钙、碳酸镁等,添加碳酸盐无机添加剂可以有效防止浆料在高温烧结过程中产生龟裂,确保浆料在铝基板上高温烧结后形成均匀地导热层,以重量份数计,无机添加剂的使用量为0.01~10份,无机添加剂的量过少,烧结后的膜会塌陷;无机添加剂的量过多,烧结后的膜中多孔,无机添加剂的最佳使用量为0.1~1份,
在配制上述浆料时,首先制备有机载体,将无机添加剂加入到有机载体混合均匀后,再加入玻璃粉进行搅拌,为了防止团聚物的出现,也可将调好的浆料进一步过滤;
涂覆浆料的铝板为具有或不具有氧化膜的铝板;
将上述浆料涂覆于铝板上后,经80~120℃,5~15分钟烘干后,再经过300~600℃,10~30分钟的烧结处理,烧结处理过程中,玻璃粉与基板的铝之间形成了化合物,从而实现了玻璃粉导热层与铝基板之间良好的结合强度,即可得到附着无机导热膜的铝板;该铝板进行化学镀铜或化学镀镍即可得到LED用铝基板,为了得到较厚的导电层,在化学镀之后也可进行电镀铜或电镀镍,
对于化学镀铜(镍)而言,可以采用通常的化学镀铜(镍)处理,如镀液中含有硫酸铜(镍)10~20g/L、EDTA·4Na30~40g/L、甲醛2~4ml/L,用氢氧化钠调pH为12,化学镀时间可设定为30分钟,温度为40℃;对于化学镀铜(镍)后的电镀铜(镍),可以采用通常的电镀铜(镍)处理,如镀液中含有硫酸铜(镍)50~80g/L、硫酸150~200g/L、氯离子浓度为30~70ppm及少量添加剂,电流密度可设置为0.5~3A/dm2,温度10~35℃,时间1小时。
本发明的有益效果在于:本发明通过玻璃粉在高温烧结过程中熔融而紧密结合形成了致密的涂层,避免了胶粘剂材料(如环氧树脂胶)的使用;高温烧结后,固定于铝基板上的主要是氧化硅成分,无高分子存在,因此大大提高的导热性能。同时在本发明所制备的导热涂层上成功实现了化学镀铜(镀镍),节约了后续成本和工序。
具体实施方式
实施例1
首先制备有机载体,以丁醚为溶剂,加入的乙基纤维素浓度为10g/L;取该有机载体25g,加入无机添加剂碳酸钙0.01g,搅拌均匀后,再加入玻璃粉74.99g进一步充分搅拌,即得到玻璃粉浆料;将该浆料涂刷在10cm×10cm(厚1.5mm)的铝板上,经80℃、3分钟烘干后,再经过600℃、30分钟的烧结处理,即可得到附着有无机膜的铝板;将该铝板进行化学镀铜,化学镀铜的操作为,采用含有硫酸铜15g/L、EDTA·4Na35g/L、甲醛2ml/L的镀液,并用氢氧化钠调pH为12,化学镀铜时间为30分钟,温度为40℃;
为了评价镀层的附着强度,在化学镀铜后进行电镀铜,电镀铜采用含有硫酸铜65g/L、硫酸150g/L、氯离子40ppm及少量添加剂的镀液,电流密度为2.5A/dm2,温度25℃,时间1小时。所得镀铜层总厚度为20μm。
采用划痕实验确定镀铜层的附着强度,在镀铜层表面用刀划刻边长为3mm的正方形格子25个,用胶带充分粘贴在这些正方形的格子上,快速撕下胶带时,以正方形的格子上的铜层掉落的多少来评价铜镀层的附着强度,正方形格子无脱落的表述为“良好”,即便有一个格子脱落的表述为“差”(下同)。
本实施例中通过划痕实验确定镀铜层的附着强度为“良好”。将本实施例中制备完成的LED用铝基板在500℃的电炉加热板上放置5分钟(铝基板与电炉加热板相接触),玻璃粉导热层和镀铜层均无脱落现象。
作为对比,将现有技术中通过“经阳极氧化的铝板(铝板材质、厚度同实施例1)通过掺有氧化铝粉体的环氧树脂粘合剂与铜箔压合”的工艺制备而成的LED用铝基板也在500℃的电炉加热板上放置(铝基板与电炉加热板相接触),放置4分30秒时,掺有氧化铝粉体的环氧树脂导热层与铝基板之间产生了脱落。
实施例2
首先制备有机载体,以异丙醇为溶剂,加入的乙基纤维素浓度为50g/L;取该有机载体35g,加入无机添加剂碳酸钙0.1g,搅拌均匀后,再加入玻璃粉64.9g进一步充分搅拌,即得到玻璃粉浆料;将该浆料涂刷在10cm×10cm(厚1.5mm)的铝板上,经80℃、3分钟烘干后,再经过600℃、30分钟的烧结处理,即可得到附着有无机膜的铝板;将该铝板进行化学镀铜,并进行电镀铜,工艺如实施例1。
本实施例中通过划痕实验确定镀铜层的附着强度为“良好”。将本实施例中制备完成的LED用铝基板在500℃的电炉加热板上放置5分钟(铝基板与电炉加热板相接触),玻璃粉导热层和镀铜层均无脱落现象。
实施例3
首先制备有机载体,以异丙醇为溶剂,加入的乙基纤维素浓度为100g/L;取该有机载体45g,加入无机添加剂碳酸钙1g,搅拌均匀后,再加入玻璃粉54g进一步充分搅拌,即得到玻璃粉浆料;将该浆料涂刷在10cm×10cm(厚1.5mm)的铝板上,经80℃、3分钟烘干后,再经过600℃、30分钟的烧结处理,即可得到附着有无机膜的铝板;将该铝板进行化学镀铜,并进行电镀铜,工艺如实施例1。
本实施例中通过划痕实验确定镀铜层的附着强度为“良好”。将本实施例中制备完成的LED用铝基板在500℃的电炉加热板上放置5分钟(铝基板与电炉加热板相接触),玻璃粉导热层和镀铜层均无脱落现象。
实施例4
首先制备有机载体,以异丙醇为溶剂,加入的乙基纤维素浓度为200g/L;取该有机载体50g,加入无机添加剂碳酸钙10g,搅拌均匀后,再加入玻璃粉40g进一步充分搅拌,即得到玻璃粉浆料;将该浆料涂刷在10cm×10cm(厚1.5mm)的铝板上,经80℃、3分钟烘干后,再经过600℃、30分钟的烧结处理,即可得到附着有无机膜的铝板;将该铝板进行化学镀铜,并进行电镀铜,工艺如实施例1。
本实施例中通过划痕实验确定镀铜层的附着强度为“良好”。将本实施例中制备完成的LED用铝基板在500℃的电炉加热板上放置5分钟(铝基板与电炉加热板相接触),玻璃粉导热层和镀铜层均无脱落现象。

Claims (9)

1.一种LED用铝基板的制备方法,其特征在于:所述的制备方法为,将浆料印刷或涂覆于铝板上,经高温烧结后形成绝缘散热涂层,在所述涂层上进行化学镀铜或化学镀镍,形成LED用铝基板。
2.如权利要求1所述的LED用铝基板的制备方法,其特征在于:浆料涂覆于铝板上后,经80~120℃,5~15分钟烘干后,再经过300~600℃,10~30分钟的烧结处理即形成绝缘散热涂层。
3.如权利要求1所述的LED用铝基板的制备方法,其特征在于:化学镀铜的操作为,采用含有硫酸铜10~20g/L、EDTA·4Na30~40g/L、甲醛2~4ml/L的镀液,并用氢氧化钠调pH为12,化学镀铜时间为30分钟,温度为40℃。
4.如权利要求1所述的LED用铝基板的制备方法,其特征在于:化学镀铜后再进行电镀铜处理,电镀铜采用含有硫酸铜50~80g/L、硫酸150~200g/L、氯离子30~70ppm及少量添加剂的镀液,电流密度为0.5~3A/dm2,温度10~35℃,时间1小时。
5.一种制备LED用铝基板所使用的浆料,其特征在于:所述的浆料按重量份数计算包括,玻璃粉50~75份,有机载体25~50份,无机添加剂0.01~10份。
6.如权利要求5所述的制备LED用铝基板所使用的浆料,其特征在于:所述的玻璃粉粒径小于100μm。
7.如权利要求5所述的制备LED用铝基板所使用的浆料,其特征在于:所述的有机载体由有机溶剂和乙基纤维素组成,其中,有机溶剂为可溶解乙基纤维素的即可,乙基纤维素在其中的浓度为10~200g/L。
8.如权利要求7所述的制备LED用铝基板所使用的浆料,其特征在于:所述的有机溶剂为乙醇、异丙醇、丁醚或正丁酸乙酯。
9.如权利要求5所述的制备LED用铝基板所使用的浆料,其特征在于:所述的无机添加剂为碳酸盐。
CN201610349112.7A 2016-05-24 2016-05-24 一种led用铝基板的制备方法及制备该铝基板时所使用的浆料 Pending CN106048566A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610349112.7A CN106048566A (zh) 2016-05-24 2016-05-24 一种led用铝基板的制备方法及制备该铝基板时所使用的浆料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610349112.7A CN106048566A (zh) 2016-05-24 2016-05-24 一种led用铝基板的制备方法及制备该铝基板时所使用的浆料

Publications (1)

Publication Number Publication Date
CN106048566A true CN106048566A (zh) 2016-10-26

Family

ID=57174232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610349112.7A Pending CN106048566A (zh) 2016-05-24 2016-05-24 一种led用铝基板的制备方法及制备该铝基板时所使用的浆料

Country Status (1)

Country Link
CN (1) CN106048566A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521988A (zh) * 2009-03-27 2009-09-02 浙江大学 金属基覆铜板、覆铜型材的制备方法
CN101894762A (zh) * 2010-06-12 2010-11-24 深圳大学 一种金属导热基板及其制作方法
CN103313509A (zh) * 2013-04-24 2013-09-18 上舜电子科技(中国)有限公司 一种金属基导电线路板及其制作方法
CN104185365A (zh) * 2013-05-23 2014-12-03 比亚迪股份有限公司 一种线路板及其制备方法
TW201523646A (zh) * 2013-10-28 2015-06-16 Ferro Corp 鋁基板用之介電糊
US20150348672A1 (en) * 2014-06-03 2015-12-03 Heraeus Precious Metals North America Conshohocken Llc Dielectric glass composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521988A (zh) * 2009-03-27 2009-09-02 浙江大学 金属基覆铜板、覆铜型材的制备方法
CN101894762A (zh) * 2010-06-12 2010-11-24 深圳大学 一种金属导热基板及其制作方法
CN103313509A (zh) * 2013-04-24 2013-09-18 上舜电子科技(中国)有限公司 一种金属基导电线路板及其制作方法
CN104185365A (zh) * 2013-05-23 2014-12-03 比亚迪股份有限公司 一种线路板及其制备方法
TW201523646A (zh) * 2013-10-28 2015-06-16 Ferro Corp 鋁基板用之介電糊
US20150348672A1 (en) * 2014-06-03 2015-12-03 Heraeus Precious Metals North America Conshohocken Llc Dielectric glass composition

Similar Documents

Publication Publication Date Title
Xu et al. Highly efficient planar perovskite solar cells with a TiO 2/ZnO electron transport bilayer
CN103672771B (zh) 发光装置及其制造方法
TWI566947B (zh) 放熱構件、電子元件及電池
CN103155168B (zh) 太阳能电池以及其背电极的膏组分
TWI306679B (en) Dye for dye sensitized photovoltaic cell and dye sensitized photovoltaic cell prepared using the same
CN107338426B (zh) 一种在聚酰亚胺薄膜表面生长高粘结性银金属图案的方法
CN106498467A (zh) 一种可稳定剥离的超薄载体铜箔的制备方法
CN105932159B (zh) 一种钙钛矿太阳电池空穴传输层复合镀膜液及制备方法
CN102569603B (zh) 一种led陶瓷基板及其制作方法
CN102795841A (zh) 一种氧化铝基陶瓷和一种陶瓷散热基板及其制备方法
CN106252338A (zh) 一种高导热mcob的封装方法
Yang et al. Visible-light-driven selective alcohol dehydrogenation and hydrogenolysis via the Mott Schottky effect
JP6509770B2 (ja) 導電性金属粉ペースト
CN104952627A (zh) 量子点敏化太阳电池及其制备方法
JP2016191085A (ja) 銅微粒子ペースト及びその製造方法
US20120286218A1 (en) Low cost alternatives to conductive silver-based inks
CN104992747A (zh) 环保低串阻晶硅太阳能电池背电极银浆
CN106048566A (zh) 一种led用铝基板的制备方法及制备该铝基板时所使用的浆料
CN202495478U (zh) 一种led线路基板及应用该结构的led发光体热沉结构
CN108330517B (zh) 一种载体铜箔剥离层的镀液及剥离层的制备方法
JP2016113699A (ja) 複合銅粉及びそれを含む導電性組成物
CN104329597A (zh) 一种无基板led灯及其制备方法
CN109037421A (zh) 一种大功率led用陶瓷覆铜板的低温制备方法
CN103044855A (zh) 一种大功率led封装用高导热绝缘层材料的制备方法
CN109994655A (zh) 复合量子点、量子点固态膜及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161026