CN106040204B - 一种磁性微孔有机纳米管杂化材料及其制备和应用 - Google Patents

一种磁性微孔有机纳米管杂化材料及其制备和应用 Download PDF

Info

Publication number
CN106040204B
CN106040204B CN201610430690.3A CN201610430690A CN106040204B CN 106040204 B CN106040204 B CN 106040204B CN 201610430690 A CN201610430690 A CN 201610430690A CN 106040204 B CN106040204 B CN 106040204B
Authority
CN
China
Prior art keywords
magnetic
hybrid material
polystyrene
organic nanotube
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610430690.3A
Other languages
English (en)
Other versions
CN106040204A (zh
Inventor
黄琨
周铭洪
俞纬
施卜银
徐洋
王天琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN201610430690.3A priority Critical patent/CN106040204B/zh
Publication of CN106040204A publication Critical patent/CN106040204A/zh
Application granted granted Critical
Publication of CN106040204B publication Critical patent/CN106040204B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • B01J32/00
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于纳米杂化材料领域,公开了一种磁性微孔有机纳米管杂化材料及其制备方法。首先,通过配体交换将聚苯乙烯修饰在磁性纳米粒子表面;其次,合成具有核壳结构的分子刷聚合物前驱体;最后,将聚苯乙烯修饰的磁性纳米粒子与分子刷聚合物前驱体通过傅克烷基化反应进行超交联,选择性水解去除分子刷的聚乳酸“内核”,得到所述磁性微孔有机纳米管杂化材料。所述磁性微孔有机纳米管杂化材料具有稳定的多级孔结构、中空管状结构、较高的比表面积和较强的磁响应性,在生物分离、吸附及多相催化等方面具有广阔的应用前景。本发明还公开了所述磁性微孔有机纳米管杂化材料在水溶性染料选择性吸附和分离及其可重复吸附解吸附染料中的应用。

Description

一种磁性微孔有机纳米管杂化材料及其制备和应用
技术领域
本发明属于纳米杂化材料技术领域,具体为一种磁性无机纳米粒子/有机超交联多级孔纳米管杂化材料、制备方法及应用。
背景技术
近年来,磁性多孔材料由于其独特的性质在催化、环境工程以及生物医药等领域取得了广泛的应用。一方面,由于磁性粒子具有超顺磁性,当在有外加磁场下表现出较好的磁性,而在去除外加磁场后,磁性颗粒的剩磁为零,因而其可在外加磁场的作用下方便地控制和分离。另一方面,由于多孔材料具有较高的比表面积及孔体积,因而可用在催化、分离和负载等领域。正是由于磁性多孔材料兼具了两者的特性,发达的孔结构有利于降低传质阻力,独特的磁响应性有利于简化分离处理过程,使得其在核磁共振、药物负载、靶向给药、生物大分子分离、多相催化、油污废水处理、微波吸收、锂离子电池等方面具有广阔的应用前景。
磁性复合材料都具有磁性的核和非磁性的表面包覆物,包括高分子、碳和二氧化硅等,可提供高的吸附比表面积和化学稳定性。由于介孔二氧化硅材料具有孔径可调、较窄的孔径分布、较高的比表面积和孔体积等特点,成为近年来磁性多孔材料的研究重点,但是,由于得到具有磁性的介孔二氧化硅材料一般采用十六烷基三甲基溴化铵为模板,制备得到壳层为多孔二氧化硅结构的材料。然而,模板剂十六烷基三甲基溴化铵十分昂贵,且其使用量与孔结构成正比,制备成本太高,而且大量使用十六烷基三甲基溴化铵会对环境造成十分巨大的污染。现有技术中合成磁性介孔二氧化硅的方法都有一个共同的缺陷就是生产工艺复杂、不易控制、成本较高,大规模合成难度大。因此,在较低成本和较温和条件下合成具有高比表面积、磁响应性强的磁性多孔杂化材料的方法亟待研究。
相比传统的多孔材料,有机多孔材料显示出高的比表面积,高的化学和物理稳定性,低的骨架密度和可修饰性强等优点。而其中的超交联聚合物材料具有高比表面积、合成条件温和、单体来源广泛等优点而成为研究的热点。由于交联网络的高度刚性,超交联微孔聚合物材料一般具有稳定的孔结构,较高的比表面积和较大的微孔体积。超交联聚合物在气体储存、分离、多相催化、储能等应用领域引起了人们的广泛关注。
具有核壳结构的分子刷聚合物通过交联壳层水解内核可以得到中空柱状的有机纳米管。此类有机纳米管孔径及长度均一、可调,而且纳米管内外的亲疏水性能够通过改变分子刷聚合物的结构单元组成而得到,并且管内外都可以带有丰富的官能基团,为以后的修饰改性提供了便利。因而在光化学、生物模拟、催化、分离以及功能材料等领域已经体现出重要的应用价值。
但是到目前为止,以磁性粒子与有机纳米管相结合制备得到具有多级孔结构的磁性超交联有机杂化材料还未有报道。虽然具有多级孔结构的有机聚合物磁性微球已有报导,但是该方法需首先聚合苯乙烯及磁性纳米粒子得到磁性聚苯乙烯微球,再通过种子溶胀聚合得到含有氯甲基的磁性聚苯乙烯微球,之后再在溶剂中进行超交联反应,最终获得多级孔结构的聚苯乙烯磁性微球。此方法在制备过程中需要三步,即,聚合-溶胀聚合-超交联,工艺复杂,能源消耗大。
发明内容
本发明所提出的磁性微孔有机纳米管杂化材料为具有多级孔结构的磁性超交联有机纳米管杂化材料,磁响应性高、微孔存在于介孔纳米管的管壁上,纳米管呈三维发散状且有利于物质传输扩散,而且管内带负电性,对带电荷分子具有选择性的特性。本发明所报道的合成方法中充分利用了磁性纳米材料的特性,采用磁铁分离,具有原料易得、方法简单迅速。由于其所具有的高比表面积、微/介孔的特性,并且具有特定的官能基团,在吸附分离领域以及催化领域具有重要的应用前景。
本发明目的在于提出一种磁性微孔有机纳米管杂化材料(磁性无机纳米粒子/有机超交联多级孔杂化材料),属于首次提出的新结构,(1)所述磁性微孔有机纳米管杂化材料的形貌为磁性无机纳米粒子固载于超交联网络结构中;(2)超交联网络由许多圆柱状中空管状构成,具有不同的3D立体取向;(3)所述磁性微孔有机纳米管杂化材料的比表面积为500~1200m2/g,孔容为0.5~1.2cm3/g,微孔孔径尺寸为0.5~1.5nm,介孔孔径尺寸为2~12nm;优选地,所述磁性微孔有机纳米管杂化材料的比表面积为648.67m2/g,孔容为0.642cm3/g,微孔孔径尺寸为0.6和1.4nm,介孔孔径尺寸为4.0nm。所述磁性多级孔杂化材料具有较稳定的多级孔结构、中空管状结构、较高的比表面积和较强的磁响应性,在生物分离、吸附以及多相催化等方面具有广阔的应用前景。其结构如图19所示。
本发明还提出了所述磁性微孔有机纳米管杂化材料的合成方法,其反应过程如图1所示,步骤包括:
(1)聚苯乙烯修饰的磁性纳米粒子的制备
首先合成具有多巴胺改性的链转移剂,然后通过RAFT(可逆加成-断裂链转移聚合)反应得到窄分子量分布的一端含有多巴胺结构的聚苯乙烯,最后通过与磁性无机纳米粒子进行配体交换得到表面由聚苯乙烯修饰的磁性无机纳米粒子。
(2)核壳结构的分子刷聚合物前驱体⑤的制备
首先以甲基丙烯酸缩水甘油酯(GM)①为单体,通过RAFT(可逆加成-断裂链转移聚合)反应得到PGM主链②,随后水解主链上的环氧基成羟基③;然后通过开环聚合将丙交酯(PLA)④接枝到主链上,继而末端安装上RAFT链转移剂,最后将苯乙烯通过RAFT聚合接枝到分子支链上,得到具有核壳结构的分子刷聚合物前驱体⑤,反应过程如式(III)所示
(3)磁性微孔有机纳米管杂化材料的制备
将含有聚苯乙烯修饰的磁性纳米粒子和核壳结构的分子刷聚合物前驱体的原料混合液加入有机溶剂中,然后加入交联剂和催化剂,发生傅克烷基化反应进行傅克超交联反应;最后,通过选择性水解分子刷的聚乳酸“内核”,即得到具有微孔/介孔结构的磁性微孔有机纳米管杂化材料。
本发明合成方法中,所述步骤(1)中,
所用磁性无机纳米粒子中,粒子尺寸为5~250nm;所述磁性无机纳米粒子Fe3O4、γ-Fe2O3、NiFe2O4、CoFe2O4其中的一种;
所合成的多巴胺改性的链转移剂,其结构如下式(II)所示。
所述窄分子量分布的一端含有多巴胺结构的聚苯乙烯中,窄分子量分布是指大于1,小于1.25,优选地,为小于1.10;聚苯乙烯的聚合度为n=20~100之间,优选地,为30;
所述RAFT反应的反应条件为以1,4-二氧六环为溶剂,偶氮二异丁腈为引发剂,70℃下反应8h。
所述的配体交换是指Dopa-PS聚合物配体与磁性纳米粒子表面稳定剂如柠檬酸、油酸、丙烯酸等配体进行置换反应。其反应条件为对于水溶性磁性纳米粒子则在DMF中,50℃反应16h;对于油溶性纳米粒子则在CHCl3中进行配体交换,反应温度亦为50℃。
本发明合成方法中,所述步骤(2)中,所述核壳结构的分子刷聚合物前驱体的制备过程如下式(III)所示;
其中,所述核壳结构的分子刷聚合物前驱体的主链PGM的聚合度为n=200~600,侧链PLA的聚合度n=20~60,而壳层聚苯乙烯的聚合度为n=80~160;优选地,所述核壳结构的分子刷聚合物前驱体的主链PGM的聚合度为n=333,侧链PLA的聚合度n=53,而壳层聚苯乙烯的聚合度为n=100;
所述RAFT反应的反应条件为以苯为溶剂,AIBN为引发剂,CPD为链转移剂,GM为单体,60℃反应12.5小时。所得聚合物通过二氯甲烷溶解甲醇沉淀三次。
所述水解的反应条件为以冰醋酸/THF为溶剂,于60℃下缓慢滴加蒸馏水,反应24小时后,THF溶解乙醚中沉淀三次。
所述开环聚合的反应条件为以无水DMF为溶剂,DBU为催化剂,室温反应2小时。所得聚合物溶液用THF溶解,甲醇/蒸馏水(1:1)沉淀3次。
所述安装上RAFT链转移剂的条件为将接有聚乳酸的分子刷聚合物二氯甲烷溶液加入草酰氯改性的链转移剂溶液中,常温反应24小时,二氯甲烷溶解甲醇沉淀三遍。
所述将苯乙烯通过RAFT聚合接枝到分子支链上的条件为改性的PGM-g-PLA-CTA分子刷聚合物溶于1,4-二氧六环后,以苯乙烯为单体,偶氮二异丁腈为引发剂,50℃反应24小时,二氯甲烷溶解甲醇沉淀三次。
本发明合成方法中,所述步骤(3)中,
所述傅克烷基化反应的催化剂为路易斯酸;所述路易斯酸催化剂为无水SnCl4、无水FeCl3、无水BF3或无水AlCl3
所述催化剂和原料中苯环的摩尔数的比例在1.5:1~4:1之间,优选地,为3:1。
所述原料混合液中原料浓度在1mg/ml至20mg/ml之间,所述原料为聚苯乙烯修饰的磁性纳米粒子和核壳结构的分子刷聚合物前驱体;所述原料混合液中聚苯乙烯修饰的磁性纳米粒子和核壳结构的分子刷聚合物前驱体的质量比为0.5:1-2:1,优选地,为1:1。
所述傅克反应过程中,待原料充分溶解分散后,加入交联剂和催化剂,常温搅拌30min,之后,温度升至80~120℃后恒温反应2~48小时;优选地,所述温度为80℃,所述恒温反应的时间为24小时。
所述交联剂为四氯化碳、三氯甲烷、二氯甲烷、二甲醇缩甲醛、1,4-对二氯苄、三(氯甲基)苯、4,4’-二氯甲基联苯其中的一种。
所述的有机溶剂为1,2-二氯乙烷、氯仿、四氯化碳、氯苯、邻二氯苯中的一种。
所述选择性水解分子刷的内核的试剂为氢氧化钠溶液:甲醇=1:1(体积比),氢氧化钠溶液的浓度为0.5-2M。
本发明还提供了所述磁性微孔有机纳米管杂化材料在选择性分离带不同电荷水溶性染料中的应用。将所述磁性微孔有机纳米管杂化材料加入一定浓度的染料中,常温浸泡24小时,通过紫外可见分光光度计进行测定,算出其最大吸附量,最后通过外加磁场达到磁性分离的目的。结果显示,本发明所述磁性微孔有机纳米管杂化材料对带正电荷的水溶性染料具有很高的吸附量,而对带负电荷的水溶性染料吸附很少。
其中,所述一定浓度的染料是指质量浓度为0.5mg/mL。
其中,所述计算最大吸附量的方法根下式:
其中,Qeq(mg/g)代表染料的平衡吸附量;C0(mg/mL)和Ceq(mg/mL)为吸附初始和平衡时染料的质量浓度;V(mL)为溶液体积;m(g)为吸附剂的质量。
其中,所述外加磁场为通过使用钕铁硼磁铁(体积为2.0×1.0×0.3cm);所述外加磁场的时间为10秒。
本发明的有益效果在于,本发明的磁性多级孔杂化材料具有较稳定的多级孔结构、中空管状结构、较高的比表面积和较强的磁响应性,在生物分离、吸附以及多相催化等方面具有广阔的应用前景。本发明制备所述磁性多级孔杂化材料的方法具有制备方法简单,适合大规模生产;具有很好的磁响应性能,易于实现磁性分离;兼具很高的比表面积和孔容,具有微孔和介孔等相连通的多级永久孔结构,利于提高溶质的传输;分子刷聚合物前驱体易于功能化,有利于后续的不同应用。
本发明还提出了一种分子刷聚合物,所述聚合物分子刷的形貌结构为以PGM为主链,支链由聚乳酸、聚苯乙烯嵌段共聚物所组成的线性分子刷聚合物。
本发明还提出了所述聚合物分子刷的制备方法,通过RAFT可逆加成-断裂链转移聚合反应聚合得到PGM主链,通过开环聚合接枝上聚乳酸之后再通过RAFT聚合接枝上聚苯乙烯嵌段聚合物,得到具有核壳结构的分子刷聚合物前驱体。
本发明还提出了所述磁性微孔有机纳米管杂化材料对藏红T染料循环吸附脱附的应用。
附图说明
图1:实施例1制备的磁性微孔有机纳米管杂化材料的合成路线示意图。
图2:实施例1制备的聚合物Dopa-PS配体的合成路线示意图。
图3:实施例1制备的磁性微孔有机纳米管杂化材料的TEM图。
图4:实施例1制备的磁性微孔有机纳米管杂化材料的BET及孔径分布图。
图5:实施例1制备的磁性微孔有机纳米管杂化材料对不同染料的饱和吸附量。
图6:实施例1制备的Dopa-CTA链转移剂在CDCl3中的核磁氢谱。
图7:实施例1制备的Dopa-CTA链转移剂在CDCl3中的核磁碳谱。
图8:实施例1制备的聚合物Dopa-PS配体在CDCl3中的核磁氢谱。
图9:实施例1制备的主链PGM在CDCl3中的核磁氢谱。
图10:实施例1制备的分子刷聚合物PGM-g-PLA在CDCl3中的核磁氢谱。
图11:实施例1制备的分子刷聚合物PGM-g-PLA-CTA在CDCl3中的核磁氢谱。
图12:实施例1制备的分子刷聚合物PGM-g-(PLA-b-PS)在CDCl3中的核磁氢谱。
图13:实施例1制备的(a)Fe3O4-Cit,(b)Fe3O4@Dopa-PS,(c)Fe3O4-MONNs和(d)PGM-g-(PLA-b-PS)的红外谱图。
图14:对实施例1制备的(a)Fe3O4-Cit,(b)Fe3O4@Dopa-PS和(c)Fe3O4-MONNs热重分析。
图15:实施例1制备的X-rd及磁性测试。
图16:实施例1制备的磁性微孔有机纳米管杂化材料对藏红T的吸附及磁性分离;(i)为藏红T加入磁性微孔有机纳米管杂化材料吸附后并进行磁性分离的效果图;(ii)为藏红T初始溶液的图片;中间为钕铁硼磁铁。
图17:实施例1制备的磁性微孔有机纳米管杂化材料对钙黄绿素的吸附及磁性分离;(i)为钙黄绿素加入磁性微孔有机纳米管杂化材料吸附后并进行磁性分离的效果图;(ii)为钙黄绿素初始溶液的图片;中间为钕铁硼磁铁。
图18:实施例1制备的磁性微孔有机纳米管杂化材料对藏红T的解吸和再吸附。
图19:实施例1制备的磁性微孔有机纳米管杂化材料的结构图。
具体实施方式
结合以下具体实施例和附图,对本发明作进一步的详细说明,本发明的保护内容不局限于以下实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。实施本发明的过程、条件、试剂、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。
实施例1:
(1)Fe3O4@Dopa-PS磁性纳米粒子的制备
1)Dopa-CTA的制备
S-1-十二烷基-S′-(α,α′-二甲基-α”-乙酸)三硫代碳酸酯(CTA,0.3646g,1.0mmol)和二环己基碳二亚胺(DCC,0.3095g,1.5mmol)溶于5mL干燥二氯甲烷中,在氮气保护下,冰浴下加入含N-羟基琥珀酰亚胺(NHS,0.1726g,1.5mmol)的二氯甲烷悬浮液,室温搅拌过夜。旋去溶剂后得到黄色粗产物,柱层析后得到当量的产物Suc-CTA。在氮气及避光条件下,Suc-CTA(1.14g,2.47mmol)和多巴胺盐酸盐(0.562g,2.96mmol)加入到20mL无水甲醇中,室温搅拌24小时。蒸去溶剂后得到黄色粗产物,通过柱层析提纯后得到黄色的Dopa-CTA,产率约60%。
2)Dopa-PS的制备
Dopa-CTA(60mg)、苯乙烯(3mL)、偶氮二异丁腈(1.9mg)溶于1.5mL的1,4-二氧六环中,三次液氮冷却-抽真空-解冻循环后,70℃反应8小时。所得聚合溶液用甲醇沉淀,二氯甲烷溶剂甲醇沉淀三次后,真空干燥24小时。核磁结果显示其聚苯乙烯的聚合度为30。
3)Fe3O4@Dopa-PS磁性纳米粒子的制备
柠檬酸稳定的四氧化三铁磁性粒子Fe3O4-Cit(150mg)和聚合物Dopa-PS(100mg)溶于5mL DMF中,超声3小时后50℃反应16小时。磁性分离,用THF洗去过量的Dopa-PS聚合物,之后真空干燥24小时。
(2)具有核壳结构的分子刷聚合物前驱体的制备
1)主链PGM的合成
甲基丙烯酸缩水甘油酯(2.3mL),AIBN(2.4mg),RAFT试剂CPD(18mg),苯(1.4mL)加入到反应管中,除去氧气后在60℃下封管反应12.5小时。反应结束后在甲醇中沉淀。二氯甲烷溶解甲醇沉淀三次。真空干燥24小时。核磁结果显示其聚合度为333。
2)主链PGM的水解
主链PGM(1.95g)溶于THF(40mL)中,加入冰醋酸80mL,在60℃下缓慢滴加蒸馏水123ml,反应24小时。THF溶解乙醚中沉淀三次。真空干燥24小时。
3)PGM-g-PLA的制备
水解后的PGM(15mg)和丙交酯(1.08g)溶于2.5mL无水DMF中,加入DBU32.4μL,室温下搅拌2小时。所得聚合物溶液用THF溶解,甲醇/蒸馏水(1:1)沉淀3次,真空干燥24小时。核磁结果显示其聚乳酸的聚合度为53。
4)PGM-g-PLA-CTA的制备
在氮气保护下,草酰氯(0.364mL,4.3×10-3mol)和S-1-十二烷基-S′-(α,α′-二甲基-α”-乙酸)三硫代碳酸酯(0.2g,4.3×10-4mol)溶于5mL无水二氯甲烷,常温搅拌2小时后,减压蒸去溶剂及草酰氯。残留物加入10mL无水二氯甲烷溶解,加入poly(GM-g-LA)-OH的无水二氯甲烷溶液(0.72g溶于10mL无水二氯甲烷),反应24小时后,二氯甲烷溶解甲醇沉淀三遍。真空干燥24小时。核磁结果显示其完全转化成PGM-g-PLA-CTA。
5)PGM-g-(PLA-b-PS)的制备
改性的PGM-g-PLA-CTA分子刷聚合物(100mg)、偶氮二异丁腈(0.18mg)、苯乙烯(2.5mL)溶于1.5mL的1,4-二氧六环中,三次液氮冷却-抽真空-解冻循环后,50℃反应24小时。所得聚合溶液用甲醇沉淀,二氯甲烷溶剂甲醇沉淀三次后,真空干燥24小时。核磁结果显示聚苯乙烯的聚合度为100。
(3)磁性微孔有机纳米管杂化材料(Fe3O4-MONNs)的制备
分子刷聚合物前驱体(PGM333-g-(PLA53-b-PS100))50mg和磁性纳米粒子Fe3O4@Dopa-PS 50mg溶于10ml干燥1,2二氯乙烷中,氮气保护下,加入二甲醇缩甲醛61μL和110mg无水三氯化铁,80℃反应12小时。甲醇淬灭,磁性分离后抽提24小时。加入10mL 1M NaOH和10mL甲醇混合液,80℃下反应24小时。最后水洗至中性。真空干燥24小时。
实施例2实施例1制备的磁性微孔有机纳米管杂化材料对染料的选择性吸附与磁性分离的应用实例:
将磁性微孔有机纳米管杂化材料5mg分别加入到20mL起始浓度为0.5mg/mL带不同电荷的染料藏红T或钙黄绿素中,室温浸泡24小时后,通过紫外可见光光谱进行定量计算,其结果如图5、图16和图17所示,由图5可以看出,由于该磁性微孔有机纳米管杂化材料管内带有羧基显负电性,因此可以选择性吸附阳离子水溶性染料其中包括亚甲基蓝、碱性品红、罗丹明6G和藏红T;而对于阴离子染料,例如钙黄绿素和曙红B,基本不吸附;由图16可以看出,吸附后溶液中藏红T已经基本消失,并且磁性微孔有机纳米管杂化材料可以通过磁铁很容易地吸附到瓶壁上,说明该杂化材料具有吸附阳离子染料和磁性分离的性能;由图17可以看出,吸附后溶液中钙黄绿素基本没发生变化,而磁性微孔有机纳米管杂化材料可以通过磁铁很容易地吸附到瓶壁上,说明该杂化材料不具有吸附阴离子染料但也能够磁性分离的性能。
实施例2实施例1制备的磁性微孔有机纳米管杂化材料对藏红T的解吸和再吸附的应用实例:
将磁性微孔有机纳米管杂化材料10mg浸泡于20ml起始浓度为2mg/mL的藏红T中,室温浸泡8小时。吸附有藏红T的磁性微孔有机纳米管杂化材料通过磁性分离后,用蒸馏水洗去表层的染料后,烘干。上清液通过紫外可见光谱检测。向烘干后的吸附有藏红T的磁性微孔有机纳米管杂化材料加入20mL醋酸/甲醇溶液(体积比=0.03/1),浸泡12小时后。磁性分离该杂化材料后,用紫外可见光谱测定洗脱液的染料浓度。磁性微孔有机纳米管杂化材料用醇甲醇溶液洗几遍后,烘干。继续重复上述步骤,一共循环六次。解吸率可以从下式计算得到:
式中,C0(mg/mL)和Ceq,ads(mg/mL)分别为吸附初始和平衡时藏红T的质量浓度;Vads(mL)为吸附藏红T时所用的染料溶液体积;Ceq,des(mg/mL)和Vdes(mL)分别为解吸液中藏红T的质量浓度和体积。
由图18可以看出,经过六次吸附和解吸附后,磁性微孔有机纳米管杂化材料对藏红T依旧具有很高的吸附量,而且解吸附率均在95%以上,说明该磁性微孔有机纳米管杂化材料具有优良的可重复使用性能。
图3为实施例1制备的磁性微孔有机纳米管杂化材料的TEM图,从图中可以看出,磁性粒子周围由不同方向的有机纳米管所包覆,其中磁性粒子粒径平均约200nm,纳米管平均长度约50nm,平均孔径约为5nm。
图4为实施例1制备的磁性微孔有机纳米管杂化材料的BET及孔径分布图,曲线为IV型等温吸附曲线,在相对压力(P/P0=0.4-1.0)处出现滞后环说明存在介孔结构,其比表面积为648.67m2/g,孔容为0.642cm3/g。插图中,DFT孔径分布表明,分别存在微孔,其孔径分别为0.6和1.4nm以及4.0nm的介孔结构。
图6为实施例1制备的Dopa-CTA链转移剂在CDCl3中的核磁氢谱,其质子峰归属均能一一对应,说明成功合成了带有多巴胺结构的链转移剂Dopa-CTA。
图7为实施例1制备的Dopa-CTA链转移剂在CDCl3中的核磁碳谱,其特征碳峰归属均能一一对应,进一步证明了所合成的物质为带有多巴胺结构的链转移剂Dopa-CTA。
图8为实施例1制备的聚合物Dopa-PS配体在CDCl3中的核磁氢谱,通过三硫酯旁边的亚甲基上氢与苯环上氢的积分面积之比,计算出聚合物Dopa-PS配体的聚合度为30。
图9为实施例1制备的主链PGM在CDCl3中的核磁氢谱,通过端基分析法计算出PGM主链的聚合度为333。
图10为实施例1制备的分子刷聚合物PGM-g-PLA在CDCl3中的核磁氢谱,通过特征峰积分计算出侧链上聚乳酸的聚合度为53。
图11为实施例1制备的分子刷聚合物PGM-g-PLA-CTA在CDCl3中的核磁氢谱,核磁结果显示PGM-g-PLA完全转化成PGM-g-PLA-CTA。
图12为实施例1制备的分子刷聚合物PGM-g-(PLA-b-PS)在CDCl3中的核磁氢谱,核磁结果显示聚苯乙烯的聚合度为100。
图13为实施例1制备的(a)Fe3O4-Cit,(b)Fe3O4@Dopa-PS,(c)Fe3O4-MONNs和(d)PGM-g-(PLA-b-PS)的红外谱图,从(c)曲线可以看出,聚乳酸的特征峰1760cm-1消失,说明聚乳酸已经完全水解,得到中空结构的纳米有机管。而从(a)、(b)、(c)三曲线可以看出Fe3O4的特征峰没有发生变化,说明该杂化材料磁性粒子在制备过程中结构保持不变。
图14为对实施例1制备的(a)Fe3O4-Cit,(b)Fe3O4@Dopa-PS和(c)Fe3O4-MONNs进行热重分析,(a)曲线表明柠檬酸配体大约含量为8.1%;(b)表明该聚合物包覆层于250℃开始分解,直到450℃才结束,配体的含量大约为16.1%;而(c)曲线看出,该磁性微孔有机纳米管杂化材料的分解温度明显提高,表明该杂化材料已经形成高度交联的超交联结构。
图15为实施例1制备的X-rd及磁性测试,A图中,超交联前后的四氧化三铁的特征峰(220),(311),(400),(422),(511)和(440)与纯的立方四氧化三铁晶相特征峰(JCPDS#88-0315)均没有发生变化,说明整个制备过程不影响磁性纳米粒子的晶体结构和粒径大小。B图中,(a)和(b)均具有超顺磁性,其中聚苯乙烯包覆的四氧化三铁粒子饱和磁化强度为52.55emu/g,而磁性微孔有机纳米管杂化材料则降低至19.77emu/g,说明该杂化材料依然具有较强的磁响应性能,能够满足磁性分离的要求。
本发明的保护内容不局限于以上实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。

Claims (7)

1.一种磁性多级孔有机杂化纳米管杂化材料的制备方法,其特征在于,具体步骤包括:
(1)聚苯乙烯修饰的磁性纳米粒子的制备
首先合成具有多巴胺改性的链转移剂,然后通过RAFT可逆加成-断裂链转移聚合反应得到窄分子量分布的一端含有多巴胺结构的聚苯乙烯,最后通过与磁性纳米粒子进行配体交换得到表面由聚苯乙烯修饰的磁性纳米粒子;
(2)核壳结构的分子刷聚合物前驱体的制备
首先以甲基丙烯酸缩水甘油酯GM为单体,通过RAFT可逆加成-断裂链转移聚合反应聚合得到PGM主链,随后水解主链上的环氧基成羟基;然后通过开环聚合将丙交酯接枝到主链上,继而末端安装上RAFT链转移剂,最后将苯乙烯通过RAFT聚合接枝到分子支链上,得到具有核壳结构的分子刷聚合物前驱体;
(3)磁性微孔有机纳米管杂化材料的制备
将含有聚苯乙烯包覆的磁性纳米粒子和核壳结构的分子刷聚合物前驱体的原料混合液加入有机溶剂中,然后加入交联剂和催化剂,发生傅克烷基化反应进行傅克超交联反应,最后通过选择性水解分子刷的“内核”,即得到磁性微孔有机纳米管杂化材料。
2.根据权利要求1所述的方法,其特征在于,所述步骤(1)中,所用的磁性无机纳米粒子中,粒子尺寸为5~250nm;所述磁性无机纳米粒子是Fe3O4、γ-Fe2O3、NiFe2O4、CoFe2O4中的一种;所合成的多巴胺改性的链转移剂,其结构如下式(II)所示;所述窄分子量分布的一端含有多巴胺结构的聚苯乙烯中,聚苯乙烯的聚合度为n=20~100之间;
3.根据权利要求1所述的方法,其特征在于,所述步骤(2)中的反应路线如下式(III)所示:
其中,所述核壳结构的分子刷聚合物前驱体的主链PGM的聚合度为n=200~600,侧链PLA的聚合度n=20~60,而壳层聚苯乙烯的聚合度为n=80~160;
4.根据权利要求1所述的方法,其特征在于,所述步骤(3)中,傅克烷基化反应的催化剂为路易斯酸;催化剂和原料中苯环摩尔数的比例在1.5:1~4:1之间;所述路易斯酸催化剂为无水SnCl4、无水FeCl3、无水BF3或无水AlCl3;所述原料混合液中原料浓度在1mg/ml至20mg/ml之间。
5.根据权利要求1所述的方法,其特征在于,所述步骤(3)中,所述傅克烷基化反应过程中,待原料充分溶解分散后,加入交联剂和催化剂,常温搅拌30min,之后,温度升至80~120℃后恒温反应2~48小时。
6.根据权利要求1所述的方法,其特征在于,所述步骤(3)中,所述交联剂为四氯化碳、三氯甲烷、二氯甲烷、二甲醇缩甲醛、1,4-对二氯苄、三(氯甲基)苯、4,4’-二氯甲基联苯其中的一种,所述的有机溶剂为1,2-二氯乙烷、氯仿、四氯化碳、氯苯、邻二氯苯其中的一种。
7.根据权利要求1所述方法,其特征在于:所述步骤(3)中,用于选择性水解分子刷的内核的试剂为体积比为1:1的氢氧化钠溶液和甲醇,氢氧化钠溶液的浓度为0.5-2M。
CN201610430690.3A 2016-06-17 2016-06-17 一种磁性微孔有机纳米管杂化材料及其制备和应用 Expired - Fee Related CN106040204B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610430690.3A CN106040204B (zh) 2016-06-17 2016-06-17 一种磁性微孔有机纳米管杂化材料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610430690.3A CN106040204B (zh) 2016-06-17 2016-06-17 一种磁性微孔有机纳米管杂化材料及其制备和应用

Publications (2)

Publication Number Publication Date
CN106040204A CN106040204A (zh) 2016-10-26
CN106040204B true CN106040204B (zh) 2018-11-09

Family

ID=57169030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610430690.3A Expired - Fee Related CN106040204B (zh) 2016-06-17 2016-06-17 一种磁性微孔有机纳米管杂化材料及其制备和应用

Country Status (1)

Country Link
CN (1) CN106040204B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109420526B (zh) * 2017-08-21 2021-06-15 中国科学院大连化学物理研究所 一种编织介孔聚合物载银催化剂及其制备方法与应用
CN109880150B (zh) * 2019-01-25 2020-08-07 浙江大学 一种超疏水高比表面积微孔聚合物吸附材料的制备方法
CN109675534B (zh) * 2019-01-29 2021-03-23 中国地质大学(武汉) 孔径可调的废塑料基超交联聚合物及其制备方法和应用
CN110614086B (zh) * 2019-09-17 2023-02-28 湖北大学 一种磁性胶聚体及其制备方法、应用
CN113663649A (zh) * 2021-08-05 2021-11-19 华东师范大学 一种mof成型材料应用于低温二氧化碳捕获

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892854A (zh) * 2015-05-28 2015-09-09 华东师范大学 一种有机多级孔状材料的合成方法
CN105597822A (zh) * 2015-12-29 2016-05-25 华东师范大学 有机多级孔负载型催化剂及其合成方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892854A (zh) * 2015-05-28 2015-09-09 华东师范大学 一种有机多级孔状材料的合成方法
CN105597822A (zh) * 2015-12-29 2016-05-25 华东师范大学 有机多级孔负载型催化剂及其合成方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Well-dispersed gold nanoparticles anchored into thiol-functionalized hierarchically porous materials for catalytic applications;Yang Xu, et al;《Microporous and Mesoporous Materials》;20160414;第229卷;第1-7页 *

Also Published As

Publication number Publication date
CN106040204A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
CN106040204B (zh) 一种磁性微孔有机纳米管杂化材料及其制备和应用
Yang A facile approach to fabricate an immobilized-phosphate zirconium-based metal-organic framework composite (UiO-66-P) and its activity in the adsorption and separation of organic dyes
Zhou et al. Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release
CN104710559B (zh) 一种制备金属有机骨架材料薄膜的方法
Liu et al. pH-responsive magnetic metal-organic framework nanocomposite: a smart porous adsorbent for highly specific enrichment of cis-diol containing luteolin
Yao et al. Janus-like boronate affinity magnetic molecularly imprinted nanobottles for specific adsorption and fast separation of luteolin
CN110527039B (zh) 一种磁性表面分子印迹聚合物及其制备方法和应用
CN101792514B (zh) 一种核壳结构的磁性荧光双功能纳米粒子的制备方法
CN106699952B (zh) 一种苯硼酸基型的磁性印迹聚合物的制备方法
CN108745321B (zh) 用于分离花色苷的虚拟模板分子印迹磁性微球的制备方法
Jing et al. Preparation of lysine-decorated polymer-brush-grafted magnetic nanocomposite for the efficient and selective adsorption of organic dye
Kara et al. Synthesis, characterization and catalytic properties of sulfonic acid functionalized magnetic-poly (divinylbenzene-4-vinylpyridine) for esterification of propionic acid with methanol
CN100395851C (zh) 尺寸可控分子印迹聚合物磁性复合纳米颗粒及其制备方法
Sun et al. Dual functions of pH-sensitive cation Zr-MOF for 5-Fu: Large drug-loading capacity and high-sensitivity fluorescence detection
Zhao et al. Novel metal-organic framework combining with restricted access molecularly imprinted nanomaterials for solid-phase extraction of gatifloxacin from bovine serum
Bai et al. Synthesis and characterization of molecularly imprinted polymer microspheres functionalized with POSS
Cong et al. Fabrication of monodisperse anisotropic silica hollow microspheres using polymeric cave particles as templates
Liu et al. Separation and purification of target flavonoids using covalently connected MOFs@ boronic acid-functionalized-COFs magnetic hybrids: Precise identification and enhanced stability
CN108586660A (zh) Tnt磁性分子印迹聚合物微球的制备方法
Zhou et al. Hybrid hydrogel microspheres loading single-hole hollow imprinted particles for fast and selective uptake of 2′-deoxyadenosine
Yang et al. Hollow-structured molecularly imprinted polymers enabled specific enrichment and highly sensitive determination of aflatoxin B1 and sterigmatocystin against complex sample matrix
Wang et al. Preparation of magnetic molecularly imprinted polymer beads and their recognition for baicalein
CN103613722A (zh) 制备对2,4-二氯苯氧乙酸具有特异性吸附的磁性埃洛石分子印迹聚合物的方法
Kuang et al. Magnetic surface molecularly imprinted polymer for selective adsorption of 4-hydroxycoumarin
CN105754053A (zh) 一种mip磁性介孔硅基微球的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181109

Termination date: 20210617

CF01 Termination of patent right due to non-payment of annual fee