CN106007699B - β-磷酸三钙/碳酸钙双相陶瓷材料及其制备方法 - Google Patents

β-磷酸三钙/碳酸钙双相陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN106007699B
CN106007699B CN201610349122.0A CN201610349122A CN106007699B CN 106007699 B CN106007699 B CN 106007699B CN 201610349122 A CN201610349122 A CN 201610349122A CN 106007699 B CN106007699 B CN 106007699B
Authority
CN
China
Prior art keywords
calcium carbonate
bata
tricalcium phosphate
ceramics material
biphase ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610349122.0A
Other languages
English (en)
Other versions
CN106007699A (zh
Inventor
陈晓明
阳范文
朱继翔
田秀梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Medical University
Original Assignee
Guangzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Medical University filed Critical Guangzhou Medical University
Priority to CN201610349122.0A priority Critical patent/CN106007699B/zh
Publication of CN106007699A publication Critical patent/CN106007699A/zh
Application granted granted Critical
Publication of CN106007699B publication Critical patent/CN106007699B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • C04B2235/3212Calcium phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种β‑磷酸三钙/碳酸钙双相陶瓷材料及其制备方法,属于生物材料领域。该β‑磷酸三钙/碳酸钙双相陶瓷材料由如下按重量百分比计的成分组成:10‑85wt%β‑磷酸三钙、10‑85wt%碳酸钙和5‑30wt%磷酸盐玻璃添加剂。本发明制备的β‑TCP/CC双相陶瓷体系不仅可提高人工骨的早期成骨活性,还能够解决人工骨材料降解速率与骨生长速率不匹配的问题,满足骨缺失修复和骨组织工程的需求。该材料具有优良的生物相容性、引导成骨活性和全生物降解特性,可用于人的骨缺损的修复和替代;通过调节材料的组成和结构,可以调节其生物降解速率,使之与骨组织的生长速度相匹配。

Description

β-磷酸三钙/碳酸钙双相陶瓷材料及其制备方法
技术领域
本发明属于生物材料技术领域,具体涉及一种β-磷酸三钙/碳酸钙双相陶瓷材料及其制备方法。
背景技术
目前,用于骨修复的产品约有数十种之多,其修复骨缺失的效果各异。除了同种异体骨和异种骨外,人工骨产品主要可归结为以下几种材料:羟基磷灰石(HAP)多孔陶瓷;β-磷酸三钙(β-TCP)多孔陶瓷;β-TCP/HAP双相多孔陶瓷;多孔生物活性玻璃陶瓷;硫酸钙固化体;磷酸钙骨水泥(固化产物以HAP为主晶相);生物降解高分子材料(如胶原、聚乳酸等)与HAP或β-TCP复合的多孔材料等。近二十年来,随着骨组织工程学的发展,人们逐渐追求可在体内全生物降解,且降解速率与新骨生长速率匹配的骨引导或诱导材料,那些不降解或降解速度太慢或降解速度太快的材料体系在一定程度上受到了局限。由于磷酸钙类多孔陶瓷在组成、结构和力学性能等方面更接近于人体骨组织,且能诱导干细胞向骨细胞分化,因此,受到格外的关注。尤其是鉴于β-TCP/HAP多孔陶瓷良好的生物相容性和骨诱导性,发展了β-TCP/HAP双相多孔陶瓷,并在临床获得了广泛的应用。在这种双相材料中,β-TCP的局部降解引发了骨引、诱导性,HAP相则基本不降解而作为骨细胞粘附和生长的基质,因而获得良好的骨修复效果。但这一材料体系仍有不足之处,就是β-TCP相降解速度较慢,且其中HAP相仍难以降解。目前,临床上广泛使用的材料,如β-TCP多孔陶瓷和硫酸钙固化体均是可完全降解的生物材料,但前者降解速度较缓慢,而后者又降解速度过快。
发明内容
本发明的首要目的在于克服现有技术中的不足,提供一种β-磷酸三钙/碳酸钙双相陶瓷材料。该材料具有优良的生物相容性、引导成骨活性和全生物降解特性,可用于人的骨缺损的修复和替代;通过调节材料的组成和结构(孔结构和分布),可以调节其生物降解速率,使之与骨组织的生长速度相匹配。
本发明的另一目的在于提供所述的β-磷酸三钙/碳酸钙双相陶瓷材料的制备方法。
本发明的目的通过下述技术方案实现:一种β-磷酸三钙/碳酸钙双相陶瓷材料,由如下按重量百分比计的成分组成:10-85wt%β-磷酸三钙(β-TCP)、10-85wt%碳酸钙(CC)和5-30wt%磷酸盐玻璃添加剂(PBG)。
所述的β-磷酸三钙/碳酸钙双相陶瓷材料具有两种结构:一种是致密型材料,气孔率<10%;另一种是多孔型材料,气孔率≥10%。
所述的β-磷酸三钙(β-TCP)和碳酸钙(CC)的粒径优选为2-8μm。
所述的磷酸盐玻璃添加剂(PBG)为Na2O-CaO-MgO-P2O5系生物玻璃,由如下按重量百分比计的成分组成:10-12wt%Na2O、5-8wt%CaO、1-2wt%MgO和79-81wt%P2O5。所述的Na2O-CaO-MgO-P2O5系生物玻璃可采用“高温熔融-水淬-细化”和“sol-gel法-煅烧-分散”两种工艺制备。
所述的β-磷酸三钙/碳酸钙双相陶瓷材料的制备方法,包括如下步骤:将10-85wt%β-磷酸三钙、10-85wt%碳酸钙和5-30wt%磷酸盐玻璃添加剂混合均匀,加入6-7wt%蒸馏水,混匀,密封存放至水分均匀,得到混合粉体;将氯化钠与所述的混合粉体按体积比5-6.5:5-3.5混合均匀,装入钢模中预压成型,然后装入乳胶袋,抽真空后密封,经200-250MPa的冷等静压成型坯体,脱模后干燥至120℃后置于气氛烧结炉中,以5℃/min的升温速率升温至650℃,保温20-40min后置于蒸馏水中,升温至80℃进行盐析,直至陶瓷中所有的氯化钠晶体全部溶出为止;将经盐析的β-TCP/CC双相生物陶瓷材料干燥至120℃,得到β-磷酸三钙/碳酸钙双相陶瓷材料。
所述的氯化钠的粒径优选为600-800μm。
所述的烧结优选在CO2气体保护下进行。
本发明相对于现有技术具有如下的优点及效果:本发明制备的β-TCP/CC双相陶瓷体系不仅可提高人工骨的早期成骨活性,还能够解决人工骨材料降解速率与骨生长速率不匹配的问题,满足骨缺失修复和骨组织工程的需求。该材料具有优良的生物相容性、引导成骨活性和全生物降解特性,可用于人的骨缺损的修复和替代;通过调节材料的组成和结构(孔结构和分布),可以调节其生物降解速率,使之与骨组织的生长速度相匹配。
附图说明
图1为实施例3的β-TCP/CC双相陶瓷材料的显微结构示意图;
图2为实施例3的β-TCP/CC双相陶瓷材料的粉体、成型、液相烧结示意图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
磷酸盐生物玻璃低温烧结剂的制备(高温熔融法)
采用Na2O-CaO-MgO-P2O5系磷酸盐生物玻璃(PBG)高温熔融制备,具体步骤如下:
1)配方
组成范围为:Na2O:10-12wt%,CaO:5-8wt%,MgO:1-2wt%,P2O5:79-81wt%。
2)熔融制备
将配好的原料放入瓷研砵中捣碎、研细,过40目筛,然后将过筛粉体放入耐高温瓷坩埚中,置于碳化硅高温炉中,以10℃/min的升温速度升温至1000℃,保温1小时。
3)水淬、细化
将保温1小时的玻璃熔融坩埚从炉中取出,将熔化的玻璃液倒入盛有蒸馏水的搪瓷盆中水淬,然后捞出玻璃熔块,经干燥、研磨和气流粉碎至近亚微米级,得到磷酸盐生物玻璃低温烧结剂。
实施例2
磷酸盐生物玻璃低温烧结剂的制备(溶胶-凝胶法)
制备工艺步骤如下:
1)将一定量的无水乙醇与去离子水均匀混合后加入一定量的十二胺(DDA),于恒温加热磁力搅拌器中搅拌10min形成混合溶液;
2)往上述溶液中加入磷酸三乙脂(TEP),搅拌30min;
3)称取一定量的硝酸钙、硝酸钠、硝酸镁溶于一定量的去离子水中,搅拌30min后彻底溶解形成水溶液;
4)将含硝酸钙、硝酸钠、硝酸镁的水溶液缓慢加入悬浊液中,搅拌3h使各组分完成水解、混合均匀;
5)将混合均匀后的乳白色悬浊液静置陈化1d,高速离心后得到白色凝胶沉淀,并用无水乙醇和去离子水反复离心漂洗三遍得到湿的白色沉淀;
6)将湿的白色沉淀在恒温干燥箱中60℃干燥24h得到干的白色沉淀粉末;
7)将干的白色沉淀粉末置于高温炉中,经过550-800℃热处理1-3h,获得球形微纳米生物活性玻璃粉末,即为磷酸盐生物玻璃低温烧结剂。
实施例3-11β-TCP/CC双相生物陶瓷材料的制备
β-磷酸三钙/碳酸钙双相陶瓷材料的制备方法,包括如下步骤:将β-磷酸三钙、碳酸钙和磷酸盐生物玻璃添加剂采用干法球磨混合均匀,加入6-7wt%蒸馏水,混匀,密封存放至水分均匀,得到混合粉体;将氯化钠与所述的混合粉体按体积比6.5:3.5、6:4、5:5混合均匀,装入钢模中预压成型,然后装入乳胶袋,抽真空后密封,经200-250MPa的冷等静压成型坯体,脱模后干燥至120℃后置于气氛烧结炉中,以5℃/min的升温速率升温至650℃,保温20-40min后置于蒸馏水中,升温至80℃进行盐析,直至陶瓷中所有的氯化钠晶体全部溶出为止。将经盐析的β-TCP/CC双相生物陶瓷材料干燥至120℃,得到β-磷酸三钙/碳酸钙双相陶瓷材料。(以下面的实施例3、气孔率50%(氯化钠与所述的混合粉体按体积比5:5混合)的样品为例,陈述放在后面。)
所述的氯化钠的粒径为600-800μm。
所述的烧结在CO2气体保护下进行。
所述的β-磷酸三钙/碳酸钙双相陶瓷材料具有两种结构:一种是致密型材料,气孔率<10%;另一种是多孔型材料,气孔率≥10%。
所述的β-磷酸三钙(β-TCP)和碳酸钙(CC)的粒径为2-8μm。
以实施例3为配方,氯化钠与实施例3配方粉体按体积比5:5混合时,所成型、烧成的样品经检测,其主要性能指标如下:
气孔率:52-55%;
抗压强度:1.2-2MPa;
体外降解性能:试样在Tris-HCl缓冲液(0.05mol/L,25℃)中浸泡30天,质量损失达到2%,而纯β-TCP生物陶瓷的质量损失仅有1%,因此,其体外降解速率已提高一倍。
表1各实施例的β-TCP/CC双相陶瓷的组成配方
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种β-磷酸三钙/碳酸钙双相陶瓷材料,其特征在于,由如下按重量百分比计的成分组成:10-85wt%β-磷酸三钙、10-85wt%碳酸钙和5-30wt%磷酸盐玻璃添加剂;所述的β-磷酸三钙/碳酸钙双相陶瓷材料具有两种结构:一种是致密型材料,气孔率<10%;另一种是多孔型材料,气孔率≥10%;所述的磷酸盐玻璃添加剂为Na2O-CaO-MgO-P2O5系生物玻璃,由如下按重量百分比计的成分组成:10-12wt%Na2O、5-8wt%CaO、1-2wt%MgO和79-81wt%P2O5;所述的β-磷酸三钙/碳酸钙双相陶瓷材料的制备方法,包括如下步骤:将10-85wt%β-磷酸三钙、10-85wt%碳酸钙和5-30wt%磷酸盐玻璃添加剂混合均匀,加入6-7wt%蒸馏水,混匀,密封存放至水分均匀,得到混合粉体;将氯化钠与所述的混合粉体按体积比5-6.5:5-3.5混合均匀,装入钢模中预压成型,然后装入乳胶袋,抽真空后密封,经200-250MPa的冷等静压成型坯体,脱模后干燥至120℃后置于气氛烧结炉中,以5℃/min的升温速率升温至650℃,保温20-40min后置于蒸馏水中,升温至80℃进行盐析,直至陶瓷中所有的氯化钠晶体全部溶出为止;将经盐析的β-磷酸三钙/碳酸钙双相陶瓷材料干燥至120℃,得到β-磷酸三钙/碳酸钙双相陶瓷材料。
2.根据权利要求1所述的β-磷酸三钙/碳酸钙双相陶瓷材料,其特征在于,所述的β-磷酸三钙和碳酸钙的粒径为2-8μm。
3.根据权利要求1所述的β-磷酸三钙/碳酸钙双相陶瓷材料,其特征在于,所述的氯化钠的粒径为600-800μm。
4.根据权利要求1所述的β-磷酸三钙/碳酸钙双相陶瓷材料,其特征在于,所述的烧结在CO2气体保护下进行。
CN201610349122.0A 2016-05-23 2016-05-23 β-磷酸三钙/碳酸钙双相陶瓷材料及其制备方法 Expired - Fee Related CN106007699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610349122.0A CN106007699B (zh) 2016-05-23 2016-05-23 β-磷酸三钙/碳酸钙双相陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610349122.0A CN106007699B (zh) 2016-05-23 2016-05-23 β-磷酸三钙/碳酸钙双相陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106007699A CN106007699A (zh) 2016-10-12
CN106007699B true CN106007699B (zh) 2019-01-11

Family

ID=57093489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610349122.0A Expired - Fee Related CN106007699B (zh) 2016-05-23 2016-05-23 β-磷酸三钙/碳酸钙双相陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106007699B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107226717B (zh) * 2017-06-23 2020-04-07 陶合体科技(苏州)有限责任公司 由纳米孔活性玻璃包覆的多孔生物陶瓷及其制备方法
CN114984308B (zh) * 2022-06-28 2023-07-28 奥精医疗科技股份有限公司 一种唇腭裂修复材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404880A (zh) * 2001-08-09 2003-03-26 上海惠谷生物技术开发有限公司 多孔碳酸钙-羟基磷灰石梯度材料及制备方法
CN1488602A (zh) * 2003-08-12 2004-04-14 四川大学 多孔磷酸钙生物陶瓷材料及其制备方法
CN1528468A (zh) * 2003-10-16 2004-09-15 上海惠谷生物技术开发有限公司 多孔碳酸钙-羟基磷灰石梯度材料及制备方法
CN1644221A (zh) * 2005-01-26 2005-07-27 徐小良 多孔材料与凝胶的复合材料及其应用
CN1830907A (zh) * 2006-03-20 2006-09-13 天津大学 CaO-P2O5-Na2O-MgO玻璃增强多孔β-磷酸三钙生物陶瓷制备方法
CN104030718A (zh) * 2014-05-20 2014-09-10 广州医科大学 一种掺杂痕量元素的多孔碳酸钙陶瓷及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404880A (zh) * 2001-08-09 2003-03-26 上海惠谷生物技术开发有限公司 多孔碳酸钙-羟基磷灰石梯度材料及制备方法
CN1488602A (zh) * 2003-08-12 2004-04-14 四川大学 多孔磷酸钙生物陶瓷材料及其制备方法
CN1528468A (zh) * 2003-10-16 2004-09-15 上海惠谷生物技术开发有限公司 多孔碳酸钙-羟基磷灰石梯度材料及制备方法
CN1644221A (zh) * 2005-01-26 2005-07-27 徐小良 多孔材料与凝胶的复合材料及其应用
CN1830907A (zh) * 2006-03-20 2006-09-13 天津大学 CaO-P2O5-Na2O-MgO玻璃增强多孔β-磷酸三钙生物陶瓷制备方法
CN104030718A (zh) * 2014-05-20 2014-09-10 广州医科大学 一种掺杂痕量元素的多孔碳酸钙陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN106007699A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
Kaur et al. Review and the state of the art: sol–gel and melt quenched bioactive glasses for tissue engineering
Vitale-Brovarone et al. Development of glass–ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation
Xie et al. Preparation and characterization of low temperature heat-treated 45S5 bioactive glass-ceramic analogues
Aguilar-Reyes et al. Processing and in vitro bioactivity of high-strength 45S5 glass-ceramic scaffolds for bone regeneration
Ma et al. 3D printing of bioglass-reinforced β-TCP porous bioceramic scaffolds
Sanzana et al. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds
Bellucci et al. A new potassium-based bioactive glass: Sintering behaviour and possible applications for bioceramic scaffolds
KR20040010200A (ko) CaO-SiO2계 생체활성 유리 및 그것을 사용하는인산칼슘 유리 소결체
Mozafari et al. Synthesis, characterization and biocompatibility evaluation of sol–gel derived bioactive glass scaffolds prepared by freeze casting method
Liang et al. Bioactive comparison of a borate, phosphate and silicate glass
Zhang et al. Fabrication and properties of 3D printed zirconia scaffold coated with calcium silicate/hydroxyapatite
Bellucci et al. Revised replication method for bioceramic scaffolds
Vitale-Brovarone et al. Glass–ceramic scaffolds containing silica mesophases for bone grafting and drug delivery
WO2022166408A1 (zh) 一种生物活性骨用复合材料及其制备方法和应用
He et al. Fabrication of a novel calcium carbonate composite ceramic as bone substitute
Zenebe A review on the role of wollastonite biomaterial in bone tissue engineering
Shen et al. Direct ink writing core-shell Wollastonite@ Diopside scaffolds with tailorable shell micropores favorable for optimizing physicochemical and biodegradation properties
CN106007699B (zh) β-磷酸三钙/碳酸钙双相陶瓷材料及其制备方法
Yang et al. Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass
Ning Biomaterials for bone tissue engineering
Chen et al. Preparation and biological effects of apatite nanosheet-constructed porous ceramics
Palivela et al. Extrusion-based 3D printing of bioactive glass scaffolds-process parameters and mechanical properties: A review
Zhang et al. Microstructural, mechanical properties and strengthening mechanism of DLP produced β-tricalcium phosphate scaffolds by incorporation of MgO/ZnO/58S bioglass
Baino et al. Feasibility, tailoring and properties of polyurethane/bioactive glass composite scaffolds for tissue engineering
Abdollahi et al. The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190111