CN106006722A - 斜方相碘化铯铅单晶纳米线的制备方法和用途 - Google Patents

斜方相碘化铯铅单晶纳米线的制备方法和用途 Download PDF

Info

Publication number
CN106006722A
CN106006722A CN201610478240.1A CN201610478240A CN106006722A CN 106006722 A CN106006722 A CN 106006722A CN 201610478240 A CN201610478240 A CN 201610478240A CN 106006722 A CN106006722 A CN 106006722A
Authority
CN
China
Prior art keywords
lead
cesium iodide
phase
monocrystal nanowire
nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610478240.1A
Other languages
English (en)
Other versions
CN106006722B (zh
Inventor
赵俊乾
潘书生
李广海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Hefei Institutes of Physical Science of CAS
Original Assignee
University of Science and Technology of China USTC
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC, Hefei Institutes of Physical Science of CAS filed Critical University of Science and Technology of China USTC
Priority to CN201610478240.1A priority Critical patent/CN106006722B/zh
Publication of CN106006722A publication Critical patent/CN106006722A/zh
Application granted granted Critical
Publication of CN106006722B publication Critical patent/CN106006722B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing lead, with or without oxygen or hydrogen, and containing two or more other elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明公开了一种斜方相碘化铯铅单晶纳米线的制备方法和用途。制备时先将碘化铅加入保护性气氛、68.5~72.5℃和搅拌下的γ‑丁内酯中,得到砖红色浊液,再将碘化铯加入砖红色浊液中,得到混合溶液,随后,先持续将混合溶液置于保护性气氛、68.5~72.5℃和搅拌下至少80min,得到亮黄色混合溶液,再待其冷却后置于相对湿度≤20%的68.5~72.5℃下蒸干,制得单晶生长方向为<100>方向,线直径为0.1~0.15μm、线长≥100μm的斜方相碘化铯铅单晶纳米线。它可作为基础单元来构筑纳米线器件或纳米线阵列器件,用于使用X射线对其进行激发而产生464±10nm、564±10nm的X射线荧光;它极有望广泛地应用于构筑纳米光子学的基础单元以及光电探测器、高能射线探测等领域。

Description

斜方相碘化铯铅单晶纳米线的制备方法和用途
技术领域
本发明涉及一种单晶纳米线的制备方法和用途,尤其是一种斜方相碘化铯铅单晶纳米线的制备方法和用途。
背景技术
碘化铯铅(CsPbI3)具有两种晶体结构,分别是高温稳定的钙钛矿结构和常温稳定的斜方相结构。一维结构碘化铯铅纳米线具有优异的发光特性,已实现了高品质的激光输出;另外,其一维电荷定向传导的特性,也使其可以方便的构筑高效率的光电探测器件。因此,人们为了获得斜方相碘化铯铅纳米线,做出了不懈的努力,如题为“Solution-PhaseSynthesis of Cesium Lead Halide Perovskite Nanowires”,Am.Chem.Soc.,2015,137(29),9230-9233(“溶液相合成铯铅卤化物钙钛矿型纳米线”,《美国化学学会杂志》2015年第137卷第29期第9230~9233页)的文章。该文中提及的斜方相碘化铯铅纳米线的长度为微米级;其制备方法采用液相法,具体过程为先使用碳酸铯、油酸和十八烯依次于120℃真空干燥1h、氮气保护和150℃下制作铯-油酸溶液,再使用十八烯、碘化铅、油酸和油胺依次于120℃真空干燥1h、氮气保护和180℃下1h制作碘化铅溶液,随后,先将碘化铅溶液迅速升温至250℃后,向其中加入铯-油酸溶液,并持续加热10min,得到混合液,再将混合液置于冰水浴中冷却后,将其依次于6000r/min下离心分离、使用正己烷溶液对分离得到的固态物进行多次的清洗,获得产物。这种产物虽能够在320nm光的激发下产生绿色荧光,却和其制备方法都存在着不足之处,首先,产物的长度过短,仅几微米,不利于应用于全波段发光和显示器件;其次,制备方法涉及的反应物过多,高达8种,且反应的温度偏高,同时还需先用几种原料合成中间反应物以作为进一步化学反应的前驱体,其技术的复杂程度和参数的控制要求均非常的高,极不利于工业化规模的生产。
发明内容
本发明要解决的技术问题为克服现有技术中的不足之处,提供一种制得的纳米线长较长、制作过程简便易行的斜方相碘化铯铅单晶纳米线的制备方法。
本发明要解决的另一个技术问题为提供一种使用上述斜方相碘化铯铅单晶纳米线的制备方法制备的斜方相碘化铯铅单晶纳米线的用途。
为解决本发明的技术问题,所采用的技术方案为:斜方相碘化铯铅单晶纳米线的制备方法包括液相法,特别是主要步骤如下:
步骤1,先按照碘化铅(PbI2)和γ-丁内酯的重量比为11~15:2的比例,将碘化铅加入保护性气氛、68.5~72.5℃和搅拌下的γ-丁内酯中,得到砖红色浊液,再将碘化铯(CsI)加入砖红色浊液中,得到混合溶液,其中,碘化铯与砖红色浊液中碘化铅的重量比为1~1.5:1~1.2;
步骤2,先持续将混合溶液置于保护性气氛、68.5~72.5℃和搅拌下至少80min,得到亮黄色混合溶液,再待亮黄色混合溶液冷却后,将其置于相对湿度≤20%的68.5~72.5℃下蒸干,制得单晶生长方向为<100>方向,线直径为0.1~0.15μm、线长≥100μm的斜方相碘化铯铅单晶纳米线。
作为斜方相碘化铯铅单晶纳米线的制备方法的进一步改进:
优选地,在配制≤10g/L的斜方相碘化铯铅单晶纳米线乙醇分散液后,将其滴至基底上,得到分散状的斜方相碘化铯铅单晶纳米线。
优选地,在将碘化铅加入γ-丁内酯中之前,将γ-丁内酯置于保护性气氛中,于68.5~72.5℃下搅拌15min。
优选地,碘化铅的纯度≥99%。
优选地,保护性气氛为氮气气氛,或氩气气氛,或氦气气氛,或氖气气氛。
优选地,γ-丁内酯的纯度≥99%。
优选地,碘化铯的纯度≥99%。
优选地,亮黄色混合溶液处于保护性气氛下冷却。
为解决本发明的另一个技术问题,所采用的另一个技术方案为:使用上述斜方相碘化铯铅单晶纳米线的制备方法制备的斜方相碘化铯铅单晶纳米线的用途为,
将斜方相碘化铯铅单晶纳米线作为基础单元来构筑纳米线器件或纳米线阵列器件,用于使用X射线对其进行激发而产生464±10nm、564±10nm的X射线荧光。
作为使用斜方相碘化铯铅单晶纳米线的制备方法制备的斜方相碘化铯铅单晶纳米线的用途的进一步改进:
优选地,X射线的波长为0.001~10nm。
相对于现有技术的有益效果是:
其一,对制备方法制得的产物分别使用X射线衍射仪、透射电镜、扫描电镜和稳态瞬态荧光光谱仪及X射线源进行表征,由其结果可知,产物为斜方相结构的碘化铯铅,其纳米线的单晶生长方向为<100>方向,线直径为0.1~0.15μm、线长≥100μm。这种由碘化铯铅合成的产物,既有着纳米线长较长的特点,又于波长320~400nm激发光的激发下产生出了波长为475nm左右、半峰宽为90nm左右的绿色荧光,还在X射线的照射下产生出了470nm左右、560nm左右的X射线荧光。
其二,制备方法简单、科学、高效。不仅制得了纳米线长较长的产物——斜方相碘化铯铅单晶纳米线,还使其仍保持原有的荧光特性之外,具有了优异的X射线荧光特性,更有着制备时所需原料少、,反应温度低、时间短,过程简便易行、成本低,利于工业化规模生产的特点;进而使产物极有望广泛地应用于构筑纳米光子学的基础单元以及光电探测器、高能射线探测等领域。
附图说明
图1是对制备方法制得的产物使用X射线衍射(XRD)仪进行表征的结果之一。其中,XRD谱图上部的4条谱线均为产物中碘化铯与碘化铅的重量比为1~1.5:1~1.2时的谱线,其与底部斜方相碘化铯铅标准卡片——JCPDS:01-074-1970的峰位均相同,该XRD谱图表明了合成的碘化铯铅纳米线为斜方相结构。
图2是对制得的产物分别使用扫描电镜(SEM)和透射电镜(TEM)进行表征的结果之一。其中,图2a为产物的SEM图像,图2b为产物的TEM单晶衍射图;由其可看出,产物的平均线直径约为0.12um,碘化铯铅纳米线的单晶生长方向为<100>方向,铯、铅和碘三种元素在纳米线内的分布是均匀的,纳米线生长方向的晶面间距为0.24nm。
图3是对制得的产物使用扫描电镜进行表征的结果之一。其中,图3a为产物的SEM图像,图3b为经分散处理后的产物的SEM图像。
图4是对制得的产物使用稳态瞬态荧光分光光度计和紫外-可见-近红外分光光谱仪进行表征的结果之一。其中,图4a为产物受光激发后产生的荧光谱图,其右上角的插图为产物的光吸收谱图;图4b为不同碘化铯与碘化铅重量比的产物的归一化荧光谱图。由该图的光致发光和光吸收谱可看出,产物受光激发产生出了波长为475nm左右、半峰宽为90nm左右的绿色荧光;通过调节碘化铅和碘化铯的相对比例,发光峰强度和宽度均可调控。
图5是对制得的产物使用稳态瞬态荧光分光光度计及X射线源进行表征的结果之一。其中,图5a为产物受733ev能量的X射线激发后产生的荧光谱图,其通过高斯函数拟合得出了波长为464nm和564nm两个独立的荧光峰;图5b为不同能量的X射线激发下产物的发光谱图。由该图可看出,在不同电子伏特的X射线激发下,产物产生的X射线荧光谱都由两个独立的荧光峰组成,其既有波长为464nm的峰,也有波长为564nm的峰。
具体实施方式
下面结合附图对本发明的优选方式作进一步详细的描述。
首先从市场购得或自行制得:
纯度≥99%的碘化铅;
纯度≥99%的γ-丁内酯;
纯度≥99%的碘化铯;
作为保护性气氛的氮气、氩气、氦气和氖气。
接着,
实施例1
制备的具体步骤为:
步骤1,先将γ-丁内酯置于保护性气氛中,于68.5℃下搅拌15min后,按照碘化铅和γ-丁内酯的重量比为11:2的比例,将碘化铅加入保护性气氛、72.5℃和搅拌下的γ-丁内酯中,得到砖红色浊液;其中,保护性气氛为氮气气氛。再将碘化铯加入砖红色浊液中,得到混合溶液;其中,碘化铯与砖红色浊液中碘化铅的重量比为1:1.2。
步骤2,先持续将混合溶液置于保护性气氛、68.5℃和搅拌下100min,得到亮黄色混合溶液;其中,保护性气氛为氮气气氛。再待亮黄色混合溶液处于保护性气氛下冷却后,将其置于相对湿度1%的68.5℃下蒸干;其中,保护性气氛为氮气气氛,制得近似于图2和图3所示,以及如图1中的曲线所示的斜方相碘化铯铅单晶纳米线。
实施例2
制备的具体步骤为:
步骤1,先将γ-丁内酯置于保护性气氛中,于69.5℃下搅拌15min后,按照碘化铅和γ-丁内酯的重量比为12:2的比例,将碘化铅加入保护性气氛、71.5℃和搅拌下的γ-丁内酯中,得到砖红色浊液;其中,保护性气氛为氮气气氛。再将碘化铯加入砖红色浊液中,得到混合溶液;其中,碘化铯与砖红色浊液中碘化铅的重量比为1.1:1.1。
步骤2,先持续将混合溶液置于保护性气氛、69.5℃和搅拌下95min,得到亮黄色混合溶液;其中,保护性气氛为氮气气氛。再待亮黄色混合溶液处于保护性气氛下冷却后,将其置于相对湿度5%的69.5℃下蒸干;其中,保护性气氛为氮气气氛,制得近似于图2和图3所示,以及如图1中的曲线所示的斜方相碘化铯铅单晶纳米线。
实施例3
制备的具体步骤为:
步骤1,先将γ-丁内酯置于保护性气氛中,于70.5℃下搅拌15min后,按照碘化铅和γ-丁内酯的重量比为13:2的比例,将碘化铅加入保护性气氛、70.5℃和搅拌下的γ-丁内酯中,得到砖红色浊液;其中,保护性气氛为氮气气氛。再将碘化铯加入砖红色浊液中,得到混合溶液;其中,碘化铯与砖红色浊液中碘化铅的重量比为1.2:1.15。
步骤2,先持续将混合溶液置于保护性气氛、70.5℃和搅拌下90min,得到亮黄色混合溶液;其中,保护性气氛为氮气气氛。再待亮黄色混合溶液处于保护性气氛下冷却后,将其置于相对湿度10%的70.5℃下蒸干;其中,保护性气氛为氮气气氛,制得如图2和图3所示,以及如图1中的曲线所示的斜方相碘化铯铅单晶纳米线。
实施例4
制备的具体步骤为:
步骤1,先将γ-丁内酯置于保护性气氛中,于71.5℃下搅拌15min后,按照碘化铅和γ-丁内酯的重量比为14:2的比例,将碘化铅加入保护性气氛、69.5℃和搅拌下的γ-丁内酯中,得到砖红色浊液;其中,保护性气氛为氮气气氛。再将碘化铯加入砖红色浊液中,得到混合溶液;其中,碘化铯与砖红色浊液中碘化铅的重量比为1.3:1.05。
步骤2,先持续将混合溶液置于保护性气氛、71.5℃和搅拌下85min,得到亮黄色混合溶液;其中,保护性气氛为氮气气氛。再待亮黄色混合溶液处于保护性气氛下冷却后,将其置于相对湿度15%的71.5℃下蒸干;其中,保护性气氛为氮气气氛,制得近似于图2和图3所示,以及如图1中的曲线所示的斜方相碘化铯铅单晶纳米线。
实施例5
制备的具体步骤为:
步骤1,先将γ-丁内酯置于保护性气氛中,于72.5℃下搅拌15min后,按照碘化铅和γ-丁内酯的重量比为15:2的比例,将碘化铅加入保护性气氛、68.5℃和搅拌下的γ-丁内酯中,得到砖红色浊液;其中,保护性气氛为氮气气氛。再将碘化铯加入砖红色浊液中,得到混合溶液;其中,碘化铯与砖红色浊液中碘化铅的重量比为1.5:1。
步骤2,先持续将混合溶液置于保护性气氛、72.5℃和搅拌下80min,得到亮黄色混合溶液;其中,保护性气氛为氮气气氛。再待亮黄色混合溶液处于保护性气氛下冷却后,将其置于相对湿度20%的72.5℃下蒸干;其中,保护性气氛为氮气气氛,制得近似于图2和图3所示,以及如图1中的曲线所示的斜方相碘化铯铅单晶纳米线。
若为进一步地提高产物的分散性,可在配制≤10g/L的斜方相碘化铯铅单晶纳米线乙醇分散液后,将其滴至基底上,得到分散状的斜方相碘化铯铅单晶纳米线。
再分别选用作为保护性气氛的氩气,或氦气,或氖气,重复上述实施例1~5,同样制得了如或近似于图2和图3所示,以及如图1中的曲线所示的斜方相碘化铯铅单晶纳米线。
使用斜方相碘化铯铅单晶纳米线的制备方法制备的斜方相碘化铯铅单晶纳米线的用途为,
将斜方相碘化铯铅单晶纳米线作为基础单元来构筑纳米线器件或纳米线阵列器件,用于使用X射线对其进行激发而产生464±10nm、564±10nm的X射线荧光,得到如图5所示的结果;其中,X射线的波长为0.001~10nm。
显然,本领域的技术人员可以对本发明的斜方相碘化铯铅单晶纳米线的制备方法和用途进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种斜方相碘化铯铅单晶纳米线的制备方法,包括液相法,其特征在于主要步骤如下:
步骤1,先按照碘化铅和γ-丁内酯的重量比为11~15:2的比例,将碘化铅加入保护性气氛、68.5~72.5℃和搅拌下的γ-丁内酯中,得到砖红色浊液,再将碘化铯加入砖红色浊液中,得到混合溶液,其中,碘化铯与砖红色浊液中碘化铅的重量比为1~1.5:1~1.2;
步骤2,先持续将混合溶液置于保护性气氛、68.5~72.5℃和搅拌下至少80min,得到亮黄色混合溶液,再待亮黄色混合溶液冷却后,将其置于相对湿度≤20%的68.5~72.5℃下蒸干,制得单晶生长方向为<100>方向,线直径为0.1~0.15μm、线长≥100μm的斜方相碘化铯铅单晶纳米线。
2.根据权利要求1所述的斜方相碘化铯铅单晶纳米线的制备方法,其特征是在配制≤10g/L的斜方相碘化铯铅单晶纳米线乙醇分散液后,将其滴至基底上,得到分散状的斜方相碘化铯铅单晶纳米线。
3.根据权利要求1所述的斜方相碘化铯铅单晶纳米线的制备方法,其特征是在将碘化铅加入γ-丁内酯中之前,将γ-丁内酯置于保护性气氛中,于68.5~72.5℃下搅拌15min。
4.根据权利要求1所述的斜方相碘化铯铅单晶纳米线的制备方法,其特征是碘化铅的纯度≥99%。
5.根据权利要求1所述的斜方相碘化铯铅单晶纳米线的制备方法,其特征是保护性气氛为氮气气氛,或氩气气氛,或氦气气氛,或氖气气氛。
6.根据权利要求1所述的斜方相碘化铯铅单晶纳米线的制备方法,其特征是γ-丁内酯的纯度≥99%。
7.根据权利要求1所述的斜方相碘化铯铅单晶纳米线的制备方法,其特征是碘化铯的纯度≥99%。
8.根据权利要求1所述的斜方相碘化铯铅单晶纳米线的制备方法,其特征是亮黄色混合溶液处于保护性气氛下冷却。
9.一种使用权利要求1所述斜方相碘化铯铅单晶纳米线的制备方法制备的斜方相碘化铯铅单晶纳米线的用途,其特征在于:
将斜方相碘化铯铅单晶纳米线作为基础单元来构筑纳米线器件或纳米线阵列器件,用于使用X射线对其进行激发而产生464±10nm、564±10nm的X射线荧光。
10.根据权利要求9所述的使用斜方相碘化铯铅单晶纳米线的制备方法制备的斜方相碘化铯铅单晶纳米线的用途,其特征是X射线的波长为0.001~10nm。
CN201610478240.1A 2016-06-24 2016-06-24 斜方相碘化铯铅单晶纳米线的制备方法和用途 Expired - Fee Related CN106006722B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610478240.1A CN106006722B (zh) 2016-06-24 2016-06-24 斜方相碘化铯铅单晶纳米线的制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610478240.1A CN106006722B (zh) 2016-06-24 2016-06-24 斜方相碘化铯铅单晶纳米线的制备方法和用途

Publications (2)

Publication Number Publication Date
CN106006722A true CN106006722A (zh) 2016-10-12
CN106006722B CN106006722B (zh) 2017-06-20

Family

ID=57083760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610478240.1A Expired - Fee Related CN106006722B (zh) 2016-06-24 2016-06-24 斜方相碘化铯铅单晶纳米线的制备方法和用途

Country Status (1)

Country Link
CN (1) CN106006722B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104357A (zh) * 2017-06-30 2017-08-29 黄山博蓝特半导体科技有限公司 一种纳米尺度激光器阵列的制备方法
CN110194954A (zh) * 2018-02-27 2019-09-03 中国科学院福建物质结构研究所 一种abx3型全无机钙钛矿纳米晶的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911705A (zh) * 2015-05-18 2015-09-16 陕西师范大学 低温溶液中生长abx3钙钛矿单晶的方法
CN105349140A (zh) * 2015-12-08 2016-02-24 重庆大学 基于CsPbBr3-xIx-ZnS钙钛矿量子点异质结的制备方法及其产品
CN105441074A (zh) * 2015-11-18 2016-03-30 重庆大学 一种基于对CsPbBr3钙钛矿量子点从蓝光到绿光调控的制备方法
CN105483825A (zh) * 2015-12-11 2016-04-13 华中科技大学 一种溴铅铯单晶制备方法
CN105523581A (zh) * 2016-02-25 2016-04-27 吉林大学 一种单尺寸CsPbX3钙钛矿纳米晶的制备方法
CN105600819A (zh) * 2015-12-23 2016-05-25 济南大学 一种卤化铯铅纳米异质结构的制备方法及所得产品
CN105633189A (zh) * 2016-01-22 2016-06-01 南京理工大学 液相合成的超薄无机钙钛矿CsPbBr3纳米片可见光探测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911705A (zh) * 2015-05-18 2015-09-16 陕西师范大学 低温溶液中生长abx3钙钛矿单晶的方法
CN105441074A (zh) * 2015-11-18 2016-03-30 重庆大学 一种基于对CsPbBr3钙钛矿量子点从蓝光到绿光调控的制备方法
CN105349140A (zh) * 2015-12-08 2016-02-24 重庆大学 基于CsPbBr3-xIx-ZnS钙钛矿量子点异质结的制备方法及其产品
CN105483825A (zh) * 2015-12-11 2016-04-13 华中科技大学 一种溴铅铯单晶制备方法
CN105600819A (zh) * 2015-12-23 2016-05-25 济南大学 一种卤化铯铅纳米异质结构的制备方法及所得产品
CN105633189A (zh) * 2016-01-22 2016-06-01 南京理工大学 液相合成的超薄无机钙钛矿CsPbBr3纳米片可见光探测器
CN105523581A (zh) * 2016-02-25 2016-04-27 吉林大学 一种单尺寸CsPbX3钙钛矿纳米晶的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DANDAN ZHANG, ET AL.: ""Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires"", 《JOURNAL OF THE AMERICAN CHEMISTRY SOCIETY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104357A (zh) * 2017-06-30 2017-08-29 黄山博蓝特半导体科技有限公司 一种纳米尺度激光器阵列的制备方法
CN110194954A (zh) * 2018-02-27 2019-09-03 中国科学院福建物质结构研究所 一种abx3型全无机钙钛矿纳米晶的制备方法

Also Published As

Publication number Publication date
CN106006722B (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
Mahalingam et al. Colloidal Tm3+/Yb3+‐doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low‐energy excitation
Sharma et al. Green luminescent ZnO: Cu 2+ nanoparticles for their applications in white-light generation from UV LEDs
Gao et al. Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method
Zheng et al. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method
Salhi et al. Efficient green and red up-conversion emissions in Er/Yb co-doped TiO2 nanopowders prepared by hydrothermal-assisted sol–gel process
Ledoux et al. Facile and rapid synthesis of highly luminescent nanoparticles via pulsed laser ablation in liquid
Cao et al. Hydrothermal synthesis and white luminescence of Dy3+‐Doped NaYF4 microcrystals
Udayabhaskar et al. Role of micro-strain and defects on band-gap, fluorescence in near white light emitting Sr doped ZnO nanorods
Stefanski et al. Laser induced white emission generated by infrared excitation from Eu3+: Sr2CeO4 nanocrystals
Kadyan et al. Optical and structural investigations of MLaAlO 4: Eu 3+(M= Mg 2+, Ca 2+, Sr 2+, and Ba 2+) nanophosphors for full-color displays
Abd et al. Ce-doped YAG phosphor powder synthesized via microwave combustion and its application for white LED
Das et al. Dual mode luminescence in rare earth (Er 3+/Ho 3+) doped ZnO nanoparticles fabricated by inclusive co precipitation technique
Hora et al. Effect of the PVA (polyvinyl alcohol) concentration on the optical properties of Eu-doped YAG phosphors
CN106006722A (zh) 斜方相碘化铯铅单晶纳米线的制备方法和用途
Wang et al. Highly efficient and stable blue photoluminescence from environmental-friendly double perovskites
Kasturi et al. Europium‐activated rare earth fluoride (LnF3: Eu3+–Ln= La, Gd) nanocrystals prepared by using ionic liquid/NH4F as a fluorine source via hydrothermal synthesis
Strek et al. The bright white emission from µ-diamonds
Lasheen et al. Synthesis and characterization of InP quantum dots for photovoltaics applications
Lai et al. Luminescent properties of GdPO 4: Eu nanorods
Pan et al. Luminescent properties of YBO3: Eu3+ nanosheets and microstructural materials consisting of nanounits
Joshi et al. Upconversion and anomalous power dependence in Ca12Al14O33: Er3+/Yb3+ single phase nanophosphor
Li et al. Crystal structures and optical properties of new quaternary strontium europium aluminate luminescent nanoribbons
Hu et al. Synthesis and up-conversion white light emission of RE3+-doped lutetium oxide nanocubes as a single compound
Wang et al. Luminescent properties of novel red-emitting phosphor: Gd 2 O 2 CN 2: Eu 3+
Chen et al. Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170620